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Abstract

Multimodal sensors (visual, non-visual, and wearable) can
provide complementary information to develop robust per-
ception systems for recognizing activities accurately. How-
ever, it is challenging to extract robust multimodal repre-
sentations due to the heterogeneous characteristics of data
from multimodal sensors and disparate human activities, es-
pecially in the presence of noisy and misaligned sensor data.
In this work, we propose a cooperative multitask learning-
based guided multimodal fusion approach, MuMu, to ex-
tract robust multimodal representations for human activity
recognition (HAR). MuMu employs an auxiliary task learn-
ing approach to extract features specific to each set of ac-
tivities with shared characteristics (activity-group). MuMu
then utilizes activity-group-specific features to direct our pro-
posed Guided Multimodal Fusion Approach (GM-Fusion) for
extracting complementary multimodal representations, de-
signed as the target task. We evaluated MuMu by compar-
ing its performance to state-of-the-art multimodal HAR ap-
proaches on three activity datasets. Our extensive experimen-
tal results suggest that MuMu outperforms all the evaluated
approaches across all three datasets. Additionally, the abla-
tion study suggests that MuMu significantly outperforms the
baseline models (p < 0.05), which do not use our guided
multimodal fusion. Finally, the robust performance of MuMu
on noisy and misaligned sensor data posits that our approach
is suitable for HAR in real-world settings.

Introduction
Understanding human activity ensures effective human-
autonomous-system collaboration in various settings, from
autonomous vehicles to assistive living to manufacturing
(Sabokrou et al. 2019; Iqbal and Riek 2017, 2021; Yasar and
Iqbal 2021, 2022; Green et al. 2022b,a). For example, accu-
rate activity recognition could aid collaborative robots in as-
sisting a worker by bringing tools or autonomous vehicles in
requesting to take over the controls from a distracted driver
to ensure safety (Iqbal et al. 2019; Pakdamanian et al. 2020).

Human activity recognition (HAR) has been extensively
studied by utilizing unimodal sensor data, such as visual
(Ryoo et al. 2017; Zhang and Parker 2011; Fan et al. 2018),
skeleton (Arzani et al. 2017; Ke et al. 2017; Yan, Xiong, and
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Lin 2018; Iqbal, Rack, and Riek 2016), and wearable sensors
(Frank, Kubota, and Riek 2019; Batzianoulis et al. 2017).
However, unimodal methods struggle to recognize activity
in various real-world scenarios for multiple reasons. First,
distinct activities can be mistakenly classified as the same
when relying on visual sensors (Kong et al. 2019). For exam-
ple, carrying a light and a heavy object activities look similar
from visual modalities; however, they have distinct physical
sensor data (Fig.1-a & b: Gyroscope & Acceleration). Sec-
ond, unimodal methods may fail to recognize activities when
the sensor data is noisy (Fig.1-c). In these cases, using mul-
tiple modalities can compensate for the weaknesses of any
particular modality in recognizing an activity.

Several multimodal learning approaches have been pro-
posed to accurately recognize human activities by fusing
data from multiple sensors (Feichtenhofer et al. 2019; Kong
et al. 2019; Roitberg et al. 2015; Joze et al. 2020; Liu et al.
2019; Perez-Rua et al. 2019; Hasan et al. 2019; Islam and
Iqbal 2020). Although these approaches work adequately in
many scenarios, some crucial challenges remain in achiev-
ing robust recognition performance, particularly when data
from multiple sensors are missing or misaligned.

First, disparate activity-groups require different modali-
ties to accurately recognize activities (an activity-group con-
sists of a set of activities, that exhibit similar characteris-
tics). For example, Kubota et al. (2019) found that data from
the motion capture system helps to recognize gross-motion
activities involving arm and leg movements (e.g., walking),
whereas data from wearable sensors helps to recognize fine-
grained motion activities involving hand or finger move-
ments (e.g., grasping). Thus, if a model can exploit the
characteristics of activity-groups while extracting the mul-
timodal representations, then that model can improve HAR
performance. Moreover, in many existing datasets, activities
are grouped into categories based on shared characteristics
(Kubota et al. 2019; Awad et al. 2018). For example, Kong
et al. (2019) grouped human activities into three groups:
complex (e.g., carrying), simple (e.g., kicking), and desk
(e.g., using PC). Surprisingly, apart from grouping the ac-
tivities, these auxiliary activity-groups labels have not been
utilized in extracting multimodal representations.

Second, most existing multimodal learning approaches
assume non-noisy and time-aligned multimodal sensor data
during training and testing phases. These assumptions limit
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(a) Carry-Light (Non-noisy data) (b) Carry-Heavy (Non-noisy data) (c) Carry-Heavy (Noisy data, except Orientation sensor)

Figure 1: (a) Carry-Light and (b) Carry-Heavy activities have similar visual features. (a & b) These activities have distinct gy-
roscope and acceleration data. (a & b: bottom-row) Our proposed method, MuMu, can prioritize salient modalities (Gyroscope
and Acceleration, in this case) while extracting multimodal representations. (c) MuMu can adaptively adjust attention weights
when data is noisy. For example, MuMu pays more attention to the non-noisy data (Orientation) than the noisy data (Gyroscope
and Acceleration) or misaligned data (View-1 & 2). (Data samples are drawn from MMAct dataset (Kong et al. 2019)).

the applicability of the existing approaches in real-world set-
tings, as the presence of misaligned and noisy sensor data is
not uncommon due to occlusion and sensor noises (Fig. 1-c).
Thus, we need to develop and evaluate the multimodal learn-
ing approaches in the presence of noisy and misaligned sen-
sor data to ensure their applicability in real-world settings.

To address the aforementioned challenges, we propose a
novel Cooperative Multitask Learning-based Guided Multi-
modal Fusion Approach (MuMu) for HAR. In MuMu, we
have designed two cooperative tasks: an auxiliary and a tar-
get task. First, MuMu extracts activity-group-specific fea-
tures for activity-group recognition (auxiliary task). Sec-
ond, the activity-group-specific features direct our Guided
Multimodal Fusion Approach (GM-Fusion) to extract robust
multimodal representations for recognizing activities (target
task). Here, both tasks work cooperatively, where the aux-
iliary task guides the target task to extract complementary
multimodal representations appropriately.

We compared the performance of MuMu to several state-
of-the-art HAR algorithms on three multimodal activity
datasets (MMAct (Kong et al. 2019), UTD-MHAD (Chen,
Jafari, and Kehtarnavaz 2015) and UCSD-MIT (Kubota
et al. 2019)). The experimental results suggest that MuMu
outperforms all the evaluated approaches in all evaluation
conditions. MuMu achieved an improvement of 4.45% and
3.61% (F1-score) on the MMAct dataset for the cross-
subject and cross-session evaluations, compared to the state-
of-the-art approaches, respectively. Additionally, MuMu
achieved an improvement of 6.86% and 2.48% (top-1 accu-
racy) on the UCSD-MIT and the UTD-MHAD datasets for
leave-one-subject-out evaluation settings, compared to the
evaluated approaches, respectively. Furthermore, our qual-
itative analysis suggests that MuMu can appropriately pri-
oritize the modalities while extracting complementary rep-
resentations, even in the presence of noisy and misaligned
sensor data (Fig. 1). Moreover, our ablation study suggests

that MuMu significantly outperforms the baseline learning
approaches (p < 0.05), which do not use guided fusion.

Related Work
Multimodal Learning: Several multimodal learning ap-
proaches have been developed for various tasks, such as
video classification (Feichtenhofer et al. 2019; Xiao et al.
2020), activity recognition (Islam and Iqbal 2021; Long
et al. 2018; Joze et al. 2020), and visual question answering
(Lu et al. 2019; Li et al. 2019). Some of these approaches
have been designed to extract representations from similar
types of modalities (Feichtenhofer, Pinz, and Wildes 2016,
2017; Zhang et al. 2018). For example, Simonyan and Zis-
serman (2014) designed a two-stream CNN-based model to
extract spatial and temporal features from the visual modal-
ities. Similarly, Feichtenhofer et al. (2019) proposed a two-
stream learning model to extract spatial-temporal features
by varying the data sampling rate in those streams.

Other approaches have focused on extracting represen-
tations from heterogeneous modalities (Kong et al. 2019;
Samyoun et al. 2022; Joze et al. 2020; Perez-Rua et al. 2019;
Münzner et al. 2017; Liu et al. 2019). For example, Long
et al. (2018) designed an attention model to extract unimodal
features, which were then fused to produce multimodal rep-
resentations. Some approaches fuse representations at the in-
termediary layers of the model (Feichtenhofer et al. 2019;
Joze et al. 2020). For instance, Xiao et al. (2020) used a
multi-stream model to fuse representations at the interme-
diate layers. However, these approaches depend on human
experts to determine which layers’ representations should be
fused. These manual fusion approaches often introduce bias
in the model and produce suboptimal representations.

Multitask Learning: Several multitask learning models
have been designed which aim to share knowledge across
tasks to improve these tasks’ performance (Ruder 2017;
Hashimoto et al. 2016; Zhang and Yang 2017; Guo et al.
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2018; Vandenhende et al. 2020; Gagné 2019; Zhou et al.
2020a). For example, Standley et al. (2020) proposed a
framework where tasks are grouped and learned by exploit-
ing the cooperative and competitive relationships among the
tasks. Similarly, Guo, Lee, and Ulbricht (2020) utilized a
tree-structure and Gumbel-softmax (Jang, Gu, and Poole
2016) to determine which parts of the network can be shared
or branched to maximize the parameters sharing and the
tasks performance. Primarily, the existing multitask learning
approaches aim to maximize the sharing of learning param-
eters or knowledge among the heterogeneous tasks (Craw-
shaw 2020; Søgaard and Goldberg 2016; Ruder 2017).

Additionally, multitask models have been used to learn
shared representations (Ruder 2017; Xu et al. 2018; Zhou
et al. 2020b; Achille et al. 2019; Zamir et al. 2018). For ex-
ample, Liu, Johns, and Davison (2019) proposed a multitask
attention model for learning task-aware shared representa-
tions. Moreover, Sun et al. (2020) designed an algorithm to
learn feature sharing patterns across tasks for maximizing
shared representations. The overall goal of these approaches
is to compress a multitask model by maximizing the shared
representations among the competitive tasks. In this work,
we have designed a cooperative multitask learning approach,
where the auxiliary task guides the target task to extract mul-
timodal representations to recognize activities accurately.

MuMu: Multitask Learning-based
Guided Multimodal Fusion Approach

Problem Formulation
We define a cooperative multitask learning problem, which
involves learning the auxiliary and the target tasks coopera-
tively for multimodal fusion. Similar to the multi-class activ-
ity recognition problem, we aim to recognize a set of K ac-
tivities, A = (A1, . . . , AK), by extracting multimodal rep-
resentations (Xc) from M heterogeneous modalities, Xr =
(Xr

1 , . . . , X
r
M ) (r stands for raw feature). We have termed

this activity recognition (Ai ∈ A) as the target task.
Activity datasets defined activity-group in various ways.

For example, UCSD-MIT uses human motion to define
activity-group (gross & fine), whereas the MMAct dataset
uses the complexity of the activities (complex, simple &
desk). As different activity-groups share disparate char-
acteristics, they require different modalities for recogniz-
ing activities (Kubota et al. 2019). Thus, we divide the
activity set A into N activity-groups (G), where G =
(G1, . . . , GN ). Here, each activity-group (Gi), consists of
Ji unique activities that share similar characteristics, where
Gi = (Ai

1, . . . , A
i
Ji
), and Ai

j ∈ A. We have termed the
activity-group recognition (Gi ∈ G) as the auxiliary task.

Approach Overview
Our proposed Cooperative Multitask Learning-based
Guided Multimodal Fusion Approach (MuMu) consists of
three learning modules (Fig. 2):
• Unimodal Feature Encoder (UFE) encodes modality-

specific spatial-temporal features.
• Auxiliary Task Learning (ATL) Module extracts

activity-group-specific multimodal representations.

Figure 2: MuMu: Cooperative Multitask Learning-based
Guided Multimodal Fusion Approach. The Unimodal Fea-
ture Encoder encodes unimodal spatial-temporal features.
The Auxiliary Task module fuses the unimodal features
to extract the activity-group-specific features. The activity-
group features guide the Target Task module to fuse and
extract complementary multimodal representations by em-
ploying a Guided Multimodal Fusion Approach. We have
designed a multitask learning loss for end-to-end training.

• Target Task Learning (TTL) Module utilizes the
activity-group-specific features from the auxiliary task as
prior information to appropriately fuse and extract multi-
modal representations for activity recognition.

UFE: Unimodal Feature Encoder
We have adopted the Unimodal Feature Encoder (UFE) ar-
chitecture from the work by Islam and Iqbal (2020). In our
implementation, UFE independently encodes data from each
modality m ∈ M in four steps. First, UFE segments the
raw data and produces Xr

m = (xr
m,1, x

r
m,2, . . . , x

r
m,Sm

) ∈
RB×Sm×Dr

m , where B is the batch size, Sm is the segment
size, and Dr

m is the raw feature dimension of modality m.
Second, UFE encodes the spatial features of each segment
of modality m ∈ M . Third, UFE utilizes an LSTM to
encode unimodal spatial-temporal features. Fourth, a self-
attention model has been employed to extract salient uni-
modal features, Xu = (xu

1 , x
u
2 , . . . , , x

u
M ) ∈ RB×M×Du

,
from the spatial-temporal features (Du is the unimodal (u)
feature embedding size). Instead of utilizing a resource in-
tensive multi-head self-attention model, which was used by
Islam and Iqbal (2020), in this work, we have adopted a
lightweight self-attention model from Long et al. (2018).
MuMu uses the unimodal features, Xu, in the subsequent
learning modules to produce multimodal representations.

ATL: Auxiliary Task Learning Module
In the auxiliary task learning step, MuMu fuses the unimodal
features to extract activity-group-specific multimodal repre-
sentation for classifying the activity-groups in two steps:
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Self Multimodal Fusion Approach (SM-Fusion):
MuMu uses SM-Fusion to extract activity-group-specific
salient features. SM-Fusion assigns attention weight (αm)
to each modality for fusing unimodal features, Xu, and
extracting multimodal auxiliary representation, Xaux. The
attention weight, αm, is calculated in the following way,

γm = (W aux)TXu
m (1)

αm =
exp(γm)∑

m∈M

exp(γm)
(2)

Here, W aux is a learnable parameter. We have utilized
a 1D-CNN with a filter size of 1 to calculate αm. Finally,
this weight is used to fuse the unimodal features and extract
multimodal auxiliary representation, Xaux:

Xaux =
∑
m∈M

αmXu
m (3)

Activity-Group Classification: The auxiliary representa-
tion, Xaux, is passed through a auxiliary task learning net-
work, F aux, to classify the activity-group:

yaux = F aux(Xaux) (4)

TTL: Target Task Learning Module
In MuMu, we have designed a target task to extract multi-
modal representations and classify activities in two steps.
First, MuMu uses activity-group features from the auxil-
iary task to direct our proposed Guided Multimodal Fusion
Approach (GM-Fusion) to extract multimodal representa-
tions. Because activity-group features can help to prioritize
the salient modalities to extract multimodal representations
appropriately. Second, MuMu uses fused representations to
classify the activities. In MuMu, the auxiliary and the target
tasks work cooperatively to extract complementary multi-
modal representations for recognizing activities accurately.

Guided Multimodal Fusion Approach (GM-Fusion):
GM-Fusion uses the activity-group-specific features from
auxiliary task as prior information, Xaux, to extract mul-
timodal representations. First, GM-Fusion projects the ex-
tracted unimodal features, Xu, to produce unimodal key
(Ku) and value (V u) feature vectors in the following way:

Ku = XuWK ;V u = XuWV (5)

Here, WK and WV are learnable parameters. These uni-
modal key and value vectors are used to extract the mul-
timodal representation. Second, GM-Fusion projects multi-
modal auxiliary representation, Xaux, to produce auxiliary
query feature vector (Qaux).

Qaux = XauxWQ (6)

Here, WQ is a learnable parameter. This auxiliary query
feature vector (Qaux) is used as a prior to extract comple-
mentary multimodal representation, Xc, by utilizing the uni-
modal key (Ku) and value (V u) feature vectors:

Xc
′

= σ

(
QauxKuT

√
Du

)
V u (7)

Xc = W oXc
′

(8)
Here, W o is a learnable projection parameter.

Activity Classification: Multimodal representation, Xc,
is concatenated with activity-group-specific features, Xaux,
for activity classification. Xc is passed through a target task
learning network, F t, to classify the activities:

Xf = W f [Xc;Xaux] (9)

yt = F t(Xf ) (10)
Here, W f is a learnable projection parameter.

Multitask Learning Loss
We have designed a multitask learning loss for end-to-end
training of MuMu. This loss is used to train the auxiliary and
the target tasks jointly. First, we use cross-entropy auxiliary
loss, Laux, to train the auxiliary task for activity-group clas-
sification. Laux enforces the auxiliary task branch to learn
the activity-group-specific multimodal representations.

Laux(yaux, ŷaux) =
1

B

B∑
i=1

yauxi log ŷauxi (11)

Second, we calculate the cross-entropy loss, Lt, to train
the target task for activity classification. This loss ensures
that the target task learns the robust multimodal representa-
tions for activity recognition.

Lt(yt, ŷt) =
1

B

B∑
i=1

yti log ŷ
t
i (12)

Finally, the auxiliary and target task losses are combined
for end-to-end training of MuMu:

loss = Lt(yt, ŷt) + βauxLaux(yaux, ŷaux) (13)
Here, βaux is the weight of auxiliary task learning loss.

Experimental Setup
Datasets
We evaluated the performance of our proposed approach,
MuMu, by applying it on three multimodal activity datasets:
UCSD-MIT (Kubota et al. 2019), UTD-MHD (Chen, Ja-
fari, and Kehtarnavaz 2015) and MMAct (Kong et al. 2019).
MMAct dataset contains 37 activities which are categorized
into 3 groups: 16 complex (e.g., carrying), 12 simple (e.g.,
kicking), 9 desk(e.g., using PCs). UCSD-MIT dataset con-
tains nine automotive and block assembly activities from
2 groups: 4 gross-motion (e.g., attaching part), and 5 fine-
motion (e.g., palmar grab). UTD-MHAD contains 27 activ-
ities which are categorized into 4 groups: 9 hand gesture
(e.g., draw circle), 9 sports (e.g., bowling), 5 daily (e.g., door
knock), and 4 training exercises (e.g., squat). Please check
the supplementary materials for more details.
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Method F1-Score (%)
SMD (Hinton, Vinyals, and Dean 2015) 63.89

Student (Kong et al. 2019) 64.44
Multi-Teachers (Kong et al. 2019) 62.67

MMD (Kong et al. 2019) 64.33
MMAD (Kong et al. 2019) 66.45

HAMLET (Islam and Iqbal 2020) 69.35
Keyless (Long et al. 2018) 71.83

MuMu (Our method) 76.28

Table 1: Cross-subject performance comparison (F1-Score)
of multimodal learning methods on MMAct dataset

Method F1-Score (%)
SVM+HOG (Ofli et al. 2013) 46.52

TSN (RGB) (Wang et al. 2016) 69.20
TSN (Optical-Flow) (Wang et al. 2016) 72.57

MMAD (Kong et al. 2019) 74.58
TSN (Fusion) (Wang et al. 2016) 77.09

MMAD (Fusion) (Kong et al. 2019) 78.82
Keyless (Long et al. 2018) 81.11

HAMLET (Islam and Iqbal 2020) 83.89
MuMu (Our method) 87.50

Table 2: Cross-session performance comparison (F1-Score)
of multimodal learning methods on MMAct dataset

Learning Architecture Implementation
We segmented the data from visual modalities (RGB and
depth) with a window size of 1 and a stride of 3. For the
data from other sensor modalities, we used a window size
of 5 and a stride of 5. To encode segmented spatial features,
we used ResNet-50 model (He et al. 2016) for data from
visual modalities (RGB and depth) and Co-occurrence ap-
proach (Li et al. 2018) for data from other sensors modali-
ties (sEMG, Acceleration, Gyroscope, and Orientation). The
unimodal feature of each modality is encoded to 128 sized
feature embedding. We used two fully connected layers with
Re-LU activation after the first layer for activity-group clas-
sification in auxiliary task learning. We used similar task
learning architecture for the activity classification in target
task learning. For more implementation and training proce-
dure details, please check the supplementary materials.

Results and Discussion
Comparison with Multimodal Approaches
Results: We evaluated MuMu’s performance by compar-
ing it against the state-of-the-art HAR approaches on
three datasets: MMAct, UTD-MHAD, and UCSD-MIT. For
MMAct dataset, we followed originally proposed cross-
subject and cross-session evaluation settings and reported
F1-scores (Tables 1 & 2). The results suggest that MuMu
outperforms state-of-the-art approaches on both cross-
subject and cross-session evaluation settings with improve-
ments of 4.45% and 3.61% in F1-score, respectively. For
UTD-MHAD and UCSD-MIT datasets, we followed leave-
one-subject-out cross-validation and reported top-1 accura-
cies (Tables 4 & 3). The results suggest that MuMu out-

Learning Methods Merge Types F1-Score (%)

Non-Attention SUM 52.35
CONCAT 50.92

HAMLET (Islam and Iqbal 2020) SUM 50.04
CONCAT 48.26

Keyless (Long et al. 2018) SUM 51.68
CONCAT 54.48

MuMu (Our method) - 61.34

Table 3: Performance comparison (F1-Score) of multimodal
learning methods on UCSD-MIT dataset.

Method Accuracy (%)
MHAD (Chen, Jafari, and Kehtarnavaz 2015) 79.10

SOS (Hou et al. 2016) 86.97
S2DDI (Wang et al. 2017) 89.04

DCNN (Imran and Kumar 2016) 91.20
Keyless (Long et al. 2018) 92.67

MCRL (Liu, Kong, and Jiang 2019) 93.02
PoseMap (Liu and Yuan 2018) 94.51

HAMLET (Islam and Iqbal 2020) 95.12
MuMu (Our method) 97.60

Table 4: Performance comparison (top-1 accuracy) of multi-
modal learning methods on UTD-MHAD dataset.

performs the best performing baselines with improvements
of 6.86% and 2.48% in top-1 accuracy on UCSD-MIT and
UTD-MHAD datasets, respectively.

Discussion: The experimental results (Tables 1, 2, 4
& 3) suggest that MuMu outperforms all the state-of-the-
art approaches in all evaluation conditions. Moreover, the
results indicate that attention-based HAR methods (i.e.,
MuMu, Keyless (Long et al. 2018) and HAMLET (Islam
and Iqbal 2020)) outperform Non-Attention-based methods
(i.e., PoseMap (Liu and Yuan 2018) and TSN (Wang et al.
2016)). Unlike MuMu, the other attention-based methods do
not consider the activity-group information to extract multi-
modal representations. In our implementation, MuMu uti-
lizes the activity-group information to extract complemen-
tary representations using our Guided Multimodal Fusion
approach (GM-Fusion). GM-Fusion allows the prioritization
of different modalities based on the activity-group informa-
tion extracted by the auxiliary task learning module. Thus,
the experimental results posit that incorporating activity-
group information allows the extraction of complementary
representations effectively to improve the HAR accuracy.

Although state-of-the-art multimodal HAR approaches
show comparatively better performance on cross-session
evaluation settings (Tables 2 & 4), the performance de-
grades on challenging cross-subject evaluation conditions
for all evaluated baselines (Tables 1 & 3). The performance
degrades because MMAct and UCSD-MIT datasets con-
tain data samples that enforce the utilization of the wear-
able sensors to recognize activities accurately, where the
wearable sensor data vary considerably across subjects (see
Fig. 1). To address this challenge, MuMu utilizes activity-
group features to guide GM-Fusion to extract salient multi-
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Learning
Methods

Modality Combinations
R+S R+S+P R+D+S+P

Keyless 90.20 92.67 83.87
HAMLET 95.12 91.16 90.09

MuMu 96.10 97.44 97.60

Table 5: Performance comparison (Accuracy %) of the im-
pact of modality changes on UTD-MHAD dataset. R: RGB,
D: Depth, S: Skeleton, P: Physical Sensors.

modal representations for recognizing activities accurately.
On the other hand, state-of-the-art approaches fused uni-
modal features without considering activity-group informa-
tion. Additionally, in the cross-subject evaluation condi-
tions, MuMu outperforms the F1-score of state-of-the-art
approaches on MMAct and UCSD-MIT datasets with an
improvement of 4.45% and 6.86%, respectively. These per-
formance improvements indicate that MuMu can generate
robust multimodal representation by prioritizing the salient
modalities than other approaches.

Impact of Supplementary Modalities
To investigate whether additional modalities help to improve
the performance of learning models, we evaluated the per-
formance of MuMu and two baseline approaches (Keyless
(Long et al. 2018)) and HAMLET (Islam and Iqbal 2020))
with various combinations of modalities. We conducted this
study on the UTD-MHAD dataset with RGB, Depth, Skele-
ton, Physical sensors modalities. The experimental results
suggest that MuMu outperformed the evaluated baselines on
all the combinations of modalities tested (see Table 5).

Results & Discussion: In Table 5, the results suggest
that incorporating additional modalities helps MuMu to im-
prove the HAR accuracy. However, additional modalities do
not always improve the performance of two baselines. For
example, incorporating the depth modality degrades the ac-
curacy of the baseline methods, whereas the HAR accuracy
of MuMu improves slightly with this additional modality.

The performance of the baselines degrades, as additional
modalities may not provide salient information to recog-
nize activities accurately. For example, visual modality may
not provide salient information for gesture recognition (e.g.,
wave, swipe), whereas physical sensors can help recognize
those activities accurately. The baselines either concatenated
or used self-attention to fuse unimodal features without con-
sidering the characteristics of activity-group, which results
in performance degradation with supplementary modalities.
However, MuMu uses activity-group information to guide
the target task for prioritizing and fusing the additional
modalities to extract complementary multimodal represen-
tations for recognizing activities accurately. Therefore, it is
essential to prioritize the salient modalities for extracting ro-
bust representation to recognize activities accurately.

Impact of Noisy Modalities
We conducted both quantitative and qualitative experiments
to evaluate the performance of MuMu and three baselines
(Non-Attention, HAMLET, and Keyless) in the presence of

Learning
Methods

No Noisy
Modality

Noisy Modalities
Visual Non-Visual

Non-Attention 68.29 66.30 66.02
HAMLET 69.35 64.10 67.57

Keyless 71.83 67.94 68.29
MuMu 76.28 74.22 73.78

Table 6: Performance comparison (F1-Score %) of the im-
pact of noisy data on MMAct dataset. Visual: RGB (View 1
& 2), Non-visual: Gyroscope, Orientation & Acceleration.

noisy and misaligned sensor data. We developed the Non-
Attention method for evaluation purposes, where we extract
unimodal features using CNN+LSTM model without using
an attention mechanism. The extracted unimodal features
are concatenated to classify activities.

We conducted this study in cross-subject evaluation set-
ting on MMAct dataset with visual modalities (View 1 & 2)
and non-visual modalities (Gyroscope, Orientation & Ac-
celeration). We randomly dropped raw features either from
visual or non-visual modalities with 50% probability to in-
troduce noise. The quantitative and qualitative experimental
results are presented in Table 6 and Fig 1, respectively.

Results & Discussion: The experimental results suggest
that MuMu outperforms the evaluated baselines in the pres-
ence of noisy data (Table 6). In MuMu, our proposed Guided
Multimodal Fusion Approach (GM-Fusion) appropriately
prioritizes the modalities and extracts the robust multimodal
representation from noisy sensor data for accurate activity
recognition. However, the baseline multimodal learning ap-
proaches either use Non-Attention or self-attention based
multimodal fusion, which may not effectively extract com-
plementary multimodal representations.

Additionally, the qualitative results of multimodal atten-
tion visualization (Fig. 1-Bottom row) indicate the same
phenomenon that MuMu can prioritize the salient modal-
ities to extract complementary representations from noisy
and misaligned sensor data. For example, although the gy-
roscope and acceleration data provide distinctive features
for carry-heavy activity, MuMu adjusts the multimodal at-
tention weights when we introduce noise in those modali-
ties (Fig. 1-Bottom row), by paying more attention to the
non-noisy modality (Orientation) and less attention to noisy
modalities (Gyroscope and Acceleration), which contribute
to better HAR performance on noisy data (Table 6). In
Fig. 1-Center row, it can be observed that HAMLET, which
uses a self-attention based fusion approach, increased the at-
tention weight to the noisy sensor data (i.e., Acceleration in
Fig 1(c)) compared to the attention weight assigned on the
non-noisy data samples (Fig 1(a & b)). These qualitative re-
sults indicate that self-attention based fusion may not ap-
propriately prioritize the noisy sensor data to extract robust
multimodal representations (Fig. 1-Center row), which also
reflects in the quantitative results in Table 6.

Ablation Study and Significance Analysis
To investigate the importance of various modules of MuMu,
we developed three single-task-based baseline models by re-
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Model
Type

Learning
Models

Average
F1-Score

Standard
Deviation

Significant
Over §

Single
Task

B1 68.48% 1.26 None
B2 † 70.52% 0.98 B1 & B3
B3 † 69.19% 0.72 B1

Multitask MuMu ∗ 75.97% 0.29 B1, B2 & B3

Table 7: Ablation study of MuMu components on MMAct
Dataset. B1: Non-Attention, B2: Unimodal Attention, B3:
Uni + Multimodal Attention. † Self-Attention based Multi-
modal Fusion, ∗ Guided Multimodal Fusion, § Significance
analysis at α = 0.05 (Following Dror et al. (2019))

moving the auxiliary task learning branch in MuMu (Fig. 2).
The Non-Attention model (B1) does not employ any atten-
tion approach in extracting unimodal or fusing multimodal
features. The Unimodal Attention model (B2) employs an
attention approach to extract unimodal features and concate-
nate multimodal features (similar to Keyless (Long et al.
2018)). The Unimodal + Multimodal Attention model (B3)
uses an attention approach to extract unimodal and fuse
multimodal features (similar to HAMLET (Islam and Iqbal
2020)). We trained and tested these models five times with
different initialization of the learning parameters. Finally,
we conducted the significance analysis at level α = 0.05
by following the procedure proposed by Dror, Shlomov, and
Reichart (2019). We conducted this experimental analysis
on MMAct dataset in cross-subject evaluation setting.

Results and Discussion: The experimental results in Ta-
ble 7 suggest that the baseline B3, which uses an attention
approach to prioritize the modalities, fails to outperform B2
significantly. Here, B2 uses the attention approach only to
extract unimodal features. These results indicate that how a
multimodal learning approach fuses the information is cru-
cial in improving the HAR performance.

Moreover, the experimental results in Table 7 indicate
that MuMu significantly outperforms all the baseline mod-
els and improves the HAR accuracy. The primary difference
between MuMu and the baseline models is that MuMu uses
activity-group features to guide the target task for extracting
multimodal representations. Thus, this experimental analy-
sis indicates that MuMu, with the help of our guided mul-
timodal fusion approach, can appropriately fuse multimodal
features to improve the HAR accuracy significantly.

Qualitative Analysis
We conducted two qualitative analyses to evaluate the effec-
tiveness of our guided multimodal fusion approach. First,
we visualized the attention weights to evaluate whether
MuMu can prioritize the salient modalities (Fig. 1). Second,
we visualized t-SNE embeddings of unimodal and multi-
modal representations obtained using MuMu (Fig. 3-Right)
and HAMLET with self-attention based fusion (Islam and
Iqbal 2020) (Fig. 3-Left). We conducted these studies on the
MMAct dataset in cross-subject evaluation setting.

Attention Visualization: Our experimental analysis
(Fig. 1) suggests that appropriately prioritizing the relevant

Figure 3: The t-SNE visualization of unimodal and mul-
timodal representations. (Left) HAMLET (Self-Attention
based Fusion), (Right) MuMu (Guided Multimodal Fusion).

modalities aids in improved HAR performance. The results
in Fig. 1-a & b indicate that MuMu can appropriately pri-
oritize the salient modalities (Gyroscope and Acceleration)
in extracting complementary representations to distinguish
visually similar activities (i.e., carry-light and carry-heavy).
Additionally, when the data from these modalities are noisy,
MuMu adjusts the attention weights to the non-noisy modal-
ities (i.e., visual and orientation) to extract robust represen-
tations (Fig. 1). These results indicate that MuMu can adjust
attention weights based on the extracted unimodal features
to produce complementary representations. On the other
hand, the self-attention based fusion approach can not ap-
propriately prioritize the relevant modalities (Fig. 1), which
results in performance degradation (Table 7).

Feature Visualization (t-SNE): Feature Visualization
(t-SNE): In Fig. 3, one can observe that the features are
sparsely distributed with fractured clusters when obtained
from HAMLET, whereas the features are more compact and
smoothly distributed when obtained from MuMu. Specifi-
cally, for visual modalities, MuMu produces clustered repre-
sentations, whereas HAMLET produces sparsely distributed
representations. This visualization indicates that MuMu can
extract non-overlapping distinctive representations, result-
ing in an improved HAR performance.

Conclusion

In this work, we have proposed a cooperative multitask
learning-based guided multimodal fusion approach, MuMu.
MuMu first extracts activity-group features for activity-
group recognition (Auxiliary task). MuMu then utilizes the
activity-group features in the Guided Multimodal Fusion
(GM-Fusion) module to extract complementary multimodal
representations for HAR (Target task). Our extensive ex-
perimental results suggest that MuMu outperforms state-of-
the-art approaches on three multimodal activity recognition
datasets in all evaluation conditions. Additionally, the ro-
bust performance on noisy data indicates the applicability
of MuMu in real-world settings. Future work will focus on
evaluating the performance of MuMu on other multimodal
learning tasks, such as human motion prediction, visual-
language navigation, and action or video retrieval.
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