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Abstract

Despite significant improvements on the image generation
performance of Generative Adversarial Networks (GANs),
generations with low visual fidelity still have been observed.
As widely used metrics for GANs focus more on the over-
all performance of the model, evaluation on the quality of
individual generations or detection of defective generations
is challenging. While recent studies try to detect featuremap
units that cause artifacts and evaluate individual samples,
these approaches require additional resources such as exter-
nal networks or a number of training data to approximate the
real data manifold. In this work, we propose the concept of
local activation, and devise a metric on the local activation to
detect artifact generations without additional supervision. We
empirically verify that our approach can detect and correct ar-
tifact generations from GANs with various datasets. Finally,
we discuss a geometrical analysis to partially reveal the rela-
tion between the proposed concept and low visual fidelity.

Introduction
Since the adversarial generative training scheme (Good-
fellow et al. 2014) emerged, deep generative neural net-
works (DGNNs) have shown incredible performance on im-
age generation tasks. From recent research with generative
adversarial networks (GANs), various structures and train-
ing strategies (Brock, Donahue, and Simonyan 2019; Kar-
ras et al. 2018; Miyato et al. 2018; Karras, Laine, and Aila
2019) have been proposed to overcome the weaknesses of
the adversarial training scheme (e.g., unstable training) and
to accelerate the improvements of visual fidelity of the gen-
erations.

Despite significant improvements, models sometimes
present undesirable outcomes such as perceptually defec-
tive generations called artifacts. Various metrics have been
suggested to evaluate the performance of a generator (Sal-
imans et al. 2016; Heusel et al. 2017; Sajjadi et al. 2018;
Kynkäänniemi et al. 2019). However, it is non-trivial to eval-
uate the visual fidelity of each individual sample because
existing metrics mainly focus on the distributional differ-
ence between the real dataset and the generations in the fea-
ture manifold. A research, which uses the nearest neighbor
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based similarity in the feature manifold (Kynkäänniemi et al.
2019), was proposed as an alternative to estimate the quality
of individual generations. Although this method has shown
effectiveness in evaluation, it requires a huge amount of real
data and an external network for feature embedding to make
the scoring process reliable.

A few studies have been conducted to understand the in-
ternal generation mechanism of GANs to detect or correct
the individual generations with low visual fidelity. In GAN
Dissection (Bau et al. 2019), the authors identify the de-
fective units that mainly cause artifacts based on a set of
generations on which a featuremap unit is highly activated.
The authors further improve the fidelity of individual gen-
erations by zero-ablating the detected featuremap units. A
similar approach trains an external classifier to extract the
region with low visual fidelity in the individual generations
and identifies internal units related to the extracted region
(Tousi et al. 2021). On the other hand, manipulation of the
latent code based on the binary linear classifier has been pro-
posed to correct the artifact (Shen et al. 2020). While these
approaches can be utilized to evaluate the fidelity of individ-
ual samples, they still require additional resources such as a
human annotation process.

In this paper, we propose the concept of local activation to
detect and correct the artifact generations in an unsupervised
manner. We also discuss a geometrical analysis to partially
investigate the relation between the local activation and low
visual fidelity of individual generations. The main advan-
tages of our method are twofold: (1) external networks or
supervisions are unnecessary to detect and correct artifact
generations. The evaluation is performed solely on the tar-
get generator by using the internal property for scoring, and
(2) the proposed approach can be applicable to various struc-
tures of GANs for evaluating the visual fidelity, because the
proposed approach is based on neurons that are the com-
mon basic components of neural networks. We experimen-
tally verify that our method can detect and correct artifact
effectively on PGGAN (Karras et al. 2018), and StyleGAN2
(Karras et al. 2020) with various datasets.

Related Work
Deep Generative Neural Networks DGNNs are the mod-
els which approximate the input distribution given a tar-
get with neural networks. Representative architectures in-
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Figure 1: An illustrative example of the locally activated neuron in PGGAN model trained on CelebA-HQ. We manually select
two featuremap units in layer 6 (∈ R512×16×16) which are expected to relate to low visual fidelity (red background in G(z)) and
mouth. (Left) The black box in each featuremap unit means the spatial information of the selected neuron. (Right) The sections
of activation patterns in the latent space. The black solid line in each side means the activation pattern in the corresponding
axis. The axis is randomly selected for the visualization. The red dots indicate the change points (Definition 1) and green/blue
lines are the approximated curvature of local activation for each axis. The neuron in unit 179 has more locally activated pattern
compared to the activation pattern of the neuron in unit 229.

clude variational autoencoder (VAE) (Kingma and Welling
2014), neural language models (Peters et al. 2018; Kenton
and Toutanova 2019; Brown et al. 2020) and GANs. In par-
ticular, the adversarial training between a generator and a
discriminator (Goodfellow et al. 2014) has shown impres-
sive performance in image generation (Karras et al. 2018;
Karras, Laine, and Aila 2019; Karras et al. 2020; Brock,
Donahue, and Simonyan 2019).

Analysis for Interior Mechanism of GANs GAN Dis-
section (Bau et al. 2019) proposes a framework to investi-
gate the generative role of each featuremap unit in GANs.
It is shown that artifact generations can be improved by
ablating units that are related to artifact generations. An-
other work (Shen et al. 2020) trains a linear classifier based
on artifact-labeled data and removes artifacts by moving
the latent code over the trained hyperplane. A sampling
method with the trained generative boundaries was sug-
gested to explain shared semantic information in the gen-
erator (Jeon, Jeong, and Choi 2020). Classifier-based de-
fective internal featuremap unit identification was devised
(Tousi et al. 2021). The authors increase the visual fidelity
by sequentially controlling the generation flow of the iden-
tified units. Analyses for latent space of the generator were
also performed to manipulate the semantic of the genera-
tion (Peebles et al. 2020; Härkönen et al. 2020). Our work
focuses more on the generation process and the relation be-
tween defective generation and the internal characteristics
connected from the latent space.

Metric for Generative Model Various metrics have been

proposed to evaluate the performance of generative models
and each properties are well-summarized in (Borji 2019).
Although Fréchet Inception Distance (FID) (Heusel et al.
2017) and Inception Score (IS) (Salimans et al. 2016) have
shown robustness to image distortion, they sometimes as-
sign high scores for generations with low visual fidelity. Pre-
cision and Recall (P&R) is a surrogate metric to quantify
mode dropping and inventing based on training data (Sajjadi
et al. 2018; Kynkäänniemi et al. 2019). The authors also de-
vised Realism Score (RS) to evaluate the visual fidelity of
individual samples by comparing feature embeddings with
training data. Perceptual path length (PPL) is another met-
ric that quantifies the smoothness of the latent space with
a hypothesis that the region in the latent space for defec-
tive generations has a small volume (Karras, Laine, and Aila
2019).

Locally Activated Neurons in GANs
In this section, we present our main contribution, the concept
of local activation and its relation with low visual fidelity for
individual generations. From previous research (Bau et al.
2019; Jeon, Jeong, and Choi 2020; Tousi et al. 2021), we
can presume that each internal featuremap unit in the gen-
erator handles a specific object (e.g., tree, glasses) for the
final generation. In particular, an artifact that has low visual
fidelity can also be considered as a type of object. Thus, it is
possible to identify the units causing low visual fidelity. To
expand these observations, we focus on neurons as the basic
component of a featuremap unit.
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Figure 2: Activation patterns of the neurons in the manually
selected featuremap units for the given latent code z. The
middle column represents the heatmaps of the activation pat-
terns around z where each row corresponds to each axis of
the latent space. The rows are sorted by the local activation
in the descending order from top to bottom. The right-most
column represents the activation patterns for a specific axis
(the dotted rows in the middle column) in the 2D represen-
tation. The neurons related to the defective region are more
locally activated.

Quantification of Local Activation
We observe the neurons that correspond to the artifact region
often show a bounded activation pattern. Figure 1 shows one
example of artifact generation and two featuremap units in
PGGAN. Unit 179 is highly correlated to the artifact region
(red background) in the generation and unit 229 corresponds
to the mouth part, which shows high visual fidelity. The right
side of Figure 1 shows 3D representations of the activation
patterns in the latent space for two neurons from unit 179
and unit 229, respectively. The neuron from unit 229 shows
high activation over a large area in the latent space. In con-
trast, the neuron from unit 179, which corresponds to the
artifact region, shows high activation only in a restricted
area across various pairs of axes. Figure 2 further supports
how the activation patterns are different between the artifact-
related neurons and the normal neurons. In the second col-
umn, activation patterns of the artifact-related neurons (neu-
rons 3 and 4) are more sharply concave across the latent axes
compared to the normal neurons (neurons 1 and 2). The con-
cave shape of the activation pattern suggests that the acti-
vation is bounded and concentrated around the given latent
code.

From the observations in Figures 1 and 2, we suspect that
the bounded activation pattern may be related to the visual
fidelity of a generation. We call this bounded activation pat-
tern local activation and the corresponding neuron a locally
activated neuron. However, it is non-trivial to exactly quan-
tify the local activation for an internal neuron in the latent
space, because (1) commonly used generators have high di-
mensional latent space, and (2) the activation pattern forms
a highly non-convex shape in the latent space. To mitigate

these problems, we approximate the curvature of the local
activation pattern with a line search for each latent dimen-
sion within the empirical search bound.

Let the generator G with L layers be G(z) =
gL(gL−1(· · · (g1(z)))) = gL:1(z), where z is a vector in
the latent space Z ⊂ RDz , gl(hl−1) = σ(w⊤

gl
hl−1),

hl−1 = gl−1:1(z), and σ(·) is an activation function such
as LeakyReLU or ReLU1. One can express the bias of each
layer in the homogeneous representation with this unified
equation by applying an additional dimension for the bias.
For the i-th neuron gil:1(z) of gl:1(z), we can obtain an ac-
tivation pattern with the line search over the perturbation
range for each latent dimension and we define the left/right
change points for each activation pattern as follows.
Definition 1 (Change Point) Let the given latent code be
z0, the dimension index be d ∈ {1, ..., Dz}, the search
bound be R > 0, and the canonical basis be ed =
(0, ..., 0, 1, 0, ..., 0)⊤ with the nonzero component at posi-
tion d. For the set of change point P = {r|gil:1(z0+r ·ed) =
0}∪{−R,R} for r ∈ [−R,R], the right and the left change
points of i-th neuron at the l-th layer are defined respectively
as,

rp = min
∀r∈P ;r≥0

(r) and lp = max
∀r∈P ;r≤0

(r). (1)

We note that if there are no points where activation signs
are changed, the search bounds are considered as the change
points by Definition 1. We approximate the curvature of the
local activation by computing the curvature (the coefficient
of the second degree term) of the quadratic approximation of
three points (the left/right change points and the given latent
code z0) for each latent axis, and averaging over the latent
dimensions. The green and blue curves in Figure 1 illustrate
the approximated quadratic functions for quantifying the lo-
cal activation.
Definition 2 (Curvature of Local Activation (CLA)) Let
the given latent code be z0 and the left/right change points
be lp and rp respectively as in Definition 1. The right slope
is defined as rs = (gil:1(z0 + rp · ed) − gil:1(z0))/

rp and
the left slope is ls = (gil:1(z0 +

lp · ed) − gil:1(z0))/
lp for a

latent dimension d. With Ci,l(d, z0) = (rs − ls)/(rp − lp),
the curvature of local activation for the i-th neuron in the
l-th layer around the given latent code z0 is defined as,

C̄i,l(z0) =
1

Dz

Dz∑
d=1

Ci,l(d, z0). (2)

Although the definitions are constructed in the continuous
space, we empirically use a grid search with search bound
R = 30, dividing the search range by 20 for experiments
throughout the paper. Details of the hyperparameter setting
are provided in Appendix A.

Figure 3 shows the featuremap units that have the highest
average CLA over the neurons in each unit. We can identify
that the activated region for the units with a high CLA is
semantically aligned with the artifact area in the generation.

1There are various activation functions for deep neural net-
works, we only consider LeakyReLU and ReLU function in this
paper.
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Figure 3: CLA based artifact unit identification. Bi-linear
upsampled featuremap units are overlaid with the original
generation.

Learning Dynamics for Local Activation
This section explores the dynamics of CLA for the epochs
to validate the correlation between the visual fidelity and
the magnitude of CLA. The experiments are performed with
pre-trained snapshots of PGGAN model trained on CelebA-
HQ2. First, we manually select the featuremap unit related
to the defective area in layer 6 ∈ R512×16×16. Next, we ob-
serve the change of local activation and the artifact emerging
process during the training. Figure 4 indicates the change of
the defective area (low visual fidelity) in the generation and
the corresponding CLA. We can identify that the CLA in-
creases when the activation area decreases or the activation
value increases in a small area.
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Figure 4: (First row) The visualization of activation pattern
in the latent space for the neuron (white box in the fea-
turemap unit) with selected axes. (Second row) The gener-
ation G(z) for the fixed latent code. (Third row) Calculated
CLA for the neurons in the unit.

Experimental Evaluations
This section presents analytical results of empirical rela-
tions between the low visual fidelity of individual gener-
ations and the proposed concept. We select two different
GANs with various datasets. We use the pre-trained net-
works from the authors’ official github; (1) PGGAN trained
on LSUN-Bedroom, LSUN-Church outdoor (Yu et al. 2015)
and CelebA-HQ2 and (2) StyleGAN2 trained on LSUN-Car,

2https://github.com/tkarras/progressive growing of gans

LSUN-Cat, LSUN-Horse (Yu et al. 2015) and FFHQ3. To
evaluate visual fidelity for individual samples, we define
score as,

Sl(z) =
∑
i

|min(C̄i,l(z), 0) ∗ sign(max(hl,i, 0))+

max(C̄i,l(z), 0) ∗ sign(min(hl,i, 0))|. (3)

The defined score considers the degree of concavity/convex-
ity for positive/negative activation, respectively. If the sum-
mation value of the given generation G(z) is larger than
other generations, we can expect that G(z) has a low visual
fidelity.

Qualitative Results
We randomly select 10k latent codes without truncation for
each GAN and calculate the CLA on layer 4 ∈ R512×8×8

for each generation. We choose the top/bottom 1k samples
as High/Low CLA groups based on the score, respectively.

Artifact Detection Figure 8 depicts the results of detec-
tion in each GAN. We observe that the generations with a
high CLA appear to be more defective than those with a low
CLA. For example, in StyleGAN2 with LSUN-Car, we can
identify that the generations which have a high CLA do not
include clear information of the car compared with genera-
tions that have a low CLA. More detection results are avail-
able in the Appendix C-I.

Artifact Correction To validate that the locally activated
neurons are related to the artifact, we perform an ablation
study on the High CLA group as described in (Tousi et al.
2021). Instead of training an external classifier to identify
the artifact causing internal units, we use the average CLA
over the neurons in each unit. We set the hyperparameters
as follows: stopping layer l = 4, the number of ablation
units n = 100, and the maintain ratio λ = 0.9 for cor-
rection. We measure the RS after correction (last column
in Table 1.). In Figure 5, we observe that when the genera-
tions contain severe artifacts, as in the cases of PGGAN with
LSUN-Bedroom or LSUN-Church, we may need a more so-
phisticated method than simple ablation to correct the ar-
tifact. Nevertheless, we can improve the visual fidelity in
most GANs in the experiments with simple ablation. From
the detection and correction experiments, we believe that the
locally activated neurons have a strong relationship with low
visual-fidelity in the generation.

Quantitative Results
To quantify the fidelity of the detected generations, we cal-
culate RS and PPL for each group; (1) low CLA and (2) high
CLA and (3) random selection (30 trials). We use 30k real
images for each model to calculate RS and set the number
of neighborhood k = 3. For PPL, we perform interpola-
tion in the latent space z with ϵ = 10−4. Table 1 indicates
the scores for each group in various GANs. We can identify
that the high CLA groups have low RS and high PPL com-
pared to random groups. The results consistently show that

3StyleGAN2:https://github.com/NVlabs/stylegan2
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Metric Model Dataset Random Low CLA High CLA Correction

RS (↑ is better)

PGGAN
LSUN-Bedroom 1.028±0.003 1.042 1.017 1.002
LSUN-Church 1.036±0.004 1.059 1.012 1.000
CelebaA-HQ 1.076±0.004 1.132 1.011 1.018

StyleGAN2

LSUN-Car 1.066±0.004 1.084 1.044 1.061
LSUN-Cat 1.048±0.004 1.071 1.027 1.047
LSUN-Horse 1.056±0.004 1.046 1.053 1.054
FFHQ 1.075±0.004 1.077 1.069 1.097

PPL (↓ is better)

PGGAN
LSUN-Bedroom 423.8±7.1 243.9 683.3 -
LSUN-Church 356.4±7.9 213.7 558.0 -
CelebaA-HQ 243.1±12.9 114.9 443.7 -

StyleGAN2

LSUN-Car 1472.6±29.3 920.7 1938.9 -
LSUN-Cat 1501.3±27.7 1053.2 2060.4 -
LSUN-Horse 1207.4±21.5 885.5 1552.5 -
FFHQ 484.9±19.2 377.7 596.2 -

Table 1: The detection and correction results on various GANs.
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Figure 5: Examples for the correction results on various
GANs for High CLA group. More examples are available
in Appendix J.

the proposed method can effectively identify the generations
with low visual fidelity. We note that the proposed method
only uses the internal property to evaluate the visual fidelity
of individual samples.

Diversity and Fidelity To compare diversity and the fi-
delity in each group, we calculate precision and recall
(Kynkäänniemi et al. 2019) with the truncated samples as
the baseline4. In Figure 6, we can identify that the low CLA
group shows the higher precision (fidelity) with slightly
lower recall (diversity) comparing to the high CLA group.
However, the low CLA group shows much larger recall (di-
versity) comparing to the truncated samples for StyleGAN2.
For PGGAN, the recall is higher on the truncated samples
but the precision is higher on the low CLA group.

Discussion
Geometrical Interpretation of LA
In this section, we investigate the relation between the local
activation and the visual fidelity under the specific condition.
We begin by specifying the neurons in terms of whether they

4The latent z space for PGGAN and the w space for StyleGAN2

Precision Recall

■Low CLA ■𝜓 = 0.5■High CLA ■𝜓 = 0.3 ■𝜓 = 0.7

PGGAN StyleGAN2

(a) (b) (c) (d) (e) (f) (g) (a) (b) (c) (d) (e) (f) (g)

PGGAN StyleGAN2

(a) Bedroom (b) Church (c) CelebA-HQ (d) Car (e) Cat (f) Horse (g) FFHQ

Figure 6: Precision and recall for each group in various
GANs.

positively/negatively contribute to the discriminator’s deci-
sion. The discriminator D(x) can be similarly described as
the generator in Section where x is the target to generate
such as a face image. The output of discriminator y for the
latent code z is represented as y = D(G(z)). When we con-
sider one instance z0 and the corresponding feature vector
for the l − 1-th layer h̄l−1, one can linearize the networks
G and D with a piece-wise linear activation function which
is commonly used in the modern GANs. Let γ ≥ 0 be the
slope parameter for LeakyReLU (in ReLU case, γ is zero)
and wgl,i be the i-th column vector. The corresponding lin-
earized parameter w̄gl,i is defined as,

w̄gl,i =

{
wgl,i where w⊤

gl,i
h̄l−1 ≥ 0

γ · wgl,i otherwise
(4)

We can then write the linearized generator as Ḡ(z0) =
W⊤

G h̄l and the linearized discriminator as D̄(Ḡ(z0)) =
W⊤

D Ḡ(z0) where W⊤
G = w̄⊤

gL · · · w̄⊤
gl+1

∈ RDx×Dl and
W⊤

D = w̄⊤
dL

· · · w̄⊤
d1

∈ R1×Dx . The output of the discrim-
inator ȳ is paraphrased as,

ȳ = D̄(Ḡ(z0)) = W⊤
DW⊤

G h̄l =
∑
i

W⊤
DW⊤

G,ih̄l,i (5)

where W⊤
G,i is the i-th column vector of W⊤

G and h̄l,i is the
i-th element of the vector h̄l. We note that WD is the nor-
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mal vector of the decision boundary to score the visual qual-
ity (real or fake) of the current generation W⊤

G h̄l. The cur-
rent generation can be represented as a linear combination
of {W⊤

G,i}i with the coefficients {h̄l,i}i. The contribution of
the i-th neuron in the l-th layer to the discriminator output
ȳ is W⊤

DW⊤
G,ih̄l,i. We determine that the i-th neuron has a

negative/positive contribution if the contribution of the i-th
neuron decreases/increases for the decision of the discrimi-
nator. For example, when W⊤

DW⊤
G,ih̄l,i < 0, the i-th neuron

has a negative contribution.
We perform a geometrical analysis for the neurons that

have a negative/positive contribution to the output of dis-
criminator in the vanilla GAN (Goodfellow et al. 2014). We
begin with describing how to update the parameters related
to the direction of the contribution of each neuron and then
analyze the consequences of updates. The loss function for
the generator G and discriminator D is defined as,

min
G

max
D

V (D,G) = Ex∼pdata(x)[log f(D(x))]+

Ex∼pz(z)[log(1− f(D(G(z))))] (6)

where f(·) is the sigmoid function. For wgl , the updated pa-
rameter w+

gl
by the stochastic gradient descent of the given

latent code z0 with linearized form is described as,
w+

gl
= wgl + ηc0f

′(ȳ)W⊤
DW⊤

G h̄l−1 (7)

where c0 = (1 − f(D(G(z0))))
−1 and η is learning rate.

The i-th column vector wgl,i induces activation of the i-th
neuron in the l-th layer (h̄l,i), and is updated by the direc-
tion h̄l−1 with weight δi = ηc0f

′(ȳ)W⊤
DW⊤

G,i ∈ R. Figure
7 presents geometrical illustrations of the update for four
possible cases.

In Figure 7, we can observe that the perpendicular dis-
tance between the generative boundary and the feature vec-
tor h̄l,i (colored dotted lines) decreases in the negative con-
tribution cases when the learning rate is sufficiently small.
Further, the magnitude of the activation value for h̄l,i also
decreases in the negative contribution cases (h̄l,i · δi < 0) as

h̄⊤
l−1w

+
gl,i

= h̄⊤
l−1(wgl,i + δih̄l−1)

= h̄⊤
l−1wgl,i + δi∥h̄l−1∥2. (8)

From the analysis on the vanilla GAN, we can presume that
when a neuron in the generator negatively contributes to the
discriminator output, the generator tries to deactivate the
neuron by reducing the activation and distance to deceive
the discriminator. As the penalization can be applied for the
arbitrary latent code z, if a neuron has the negative contribu-
tion consistently during the training, the corresponding ac-
tivated region in the latent space will shrink. If the locally
activated region is not fully removed during the training, the
corresponding neuron may generate artifacts when highly
activated.

We note that although the analysis can suggest the partial
explanations, the theoretical reasons for the observed rela-
tion are still remained as an open question.

Comparisons with PPL
We discuss the differences from the Perceptual Path Length
(PPL), which is the most similar to the proposed method

(a) തℎ𝑙,𝑖 > 0 & 𝛿𝑖 > 0

Po
si

tiv
e 

C
on

tri
bu

tio
n

(b) തℎ𝑙,𝑖 < 0 & 𝛿𝑖 < 0

N
eg

at
iv

e 
C

on
tri

bu
tio

n

(c) തℎ𝑙,𝑖 < 0 & 𝛿𝑖 > 0 (d) തℎ𝑙,𝑖 > 0 & 𝛿𝑖 < 0

+

-

0

+

-

0

+

-

0

+

-

0

+

-

0

+

-

0

+

-

0

+

-

0

■
𝑤

(o
rig

in
al

)
■

𝑤
+

(u
pd

at
e)

Figure 7: The geometrical illustrations of update cases
(h̄l−1 → h̄l,i). The black arrow and the dot represent h̄l−1,
the green arrow is δih̄l−1 (update term), the blue arrow is
w̄gl,i (original parameter) and the red arrow is w̄+

gl,i
(updated

parameter). The bottom-left plot indicates the activation val-
ues on the black dashed line before and after the update. The
bottom-right plot shows the conceptual representation of the
activation pattern change after the update (z0 → h̄l,i).

among feasibility metrics in that both measure the smooth-
ness of the latent space of the generator. The first differ-
ence is that PPL needs an external network (e.g., pre-trained
VGG16) to quantify the smoothness in the latent space. The
dependency on the external network not only requires ad-
ditional resources but also raises a limitation that the relia-
bility depends on the capability of the external network. In
other words, if the class of generations is not well-aligned to
the external network, it becomes non-trivial to guarantee the
reliability of the quantified perceptual distance in the fea-
ture space of the external network. Secondly, PPL measures
the first order derivative whereas our method measures the
second order derivative. Even though the path length regu-
larization is applied in StyleGAN v2 to regularize the first
order derivative, we can still observe high CLA.

Conclusion
In this paper, we propose the concept local activation on
the internal neurons of GANs to evaluate the low visual fi-
delity of generations. We further discuss an analysis on the
relationship between the proposed concept and low visual
fidelity of individual generations under the restricted condi-
tion. We perform empirical studies to validate the relations
on artifact detection and correction settings. The proposed
method shows reasonable performance without additional
supervision or resources. Because the proposed method uses
the basic element (neuron) of neural networks and its inter-
nal information, we believe that the proposed approach can
be extended to a wide range of deep neural networks.
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Figure 8: Artifact detection results in various GANs. We select bottom 24 (good) and top 24 (bad) samples for qualitative
comparison. We confirm that the generations with high CLA have lower visual fidelity compared to the the generations with
low CLA. Appendix C-I provide more examples for artifact detection.
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