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Abstract

Various deepfake detectors have been proposed, but chal-
lenges still exist to detect images of unknown categories or
GAN models outside of the training settings. Such issues
arise from the overfitting issue, which we discover from our
own analysis and the previous studies to originate from the
frequency-level artifacts in generated images. We find that
ignoring the frequency-level artifacts can improve the detec-
tor’s generalization across various GAN models, but it can
reduce the model’s performance for the trained GAN mod-
els. Thus, we design a framework to generalize the deepfake
detector for both the known and unseen GAN models. Our
framework generates the frequency-level perturbation maps
to make the generated images indistinguishable from the real
images. By updating the deepfake detector along with the
training of the perturbation generator, our model is trained
to detect the frequency-level artifacts at the initial iterations
and consider the image-level irregularities at the last itera-
tions. For experiments, we design new test scenarios varying
from the training settings in GAN models, color manipula-
tions, and object categories. Numerous experiments validate
the state-of-the-art performance of our deepfake detector.

Introduction
The recent rise of Generative Adversarial Networks
(GAN) (Goodfellow et al. 2014; Karras et al. 2018; Karras,
Laine, and Aila 2019; Karras et al. 2020) has allowed the
easy and extensive generation of highly realistic fake im-
ages, as known as deepfakes. Unfortunately, the risk of ma-
licious abuse of deepfakes also rises with such an advance-
ment (Nguyen et al. 2019), and the importance of detecting
deepfakes has become crucial. The target range of deepfakes
has broadened from swapping the face of the celebrity on the
body of pornography to spreading misinformation in social
media as fake news, and even alluring victims to transfer
money for scams (Tolosana et al. 2020; Nguyen et al. 2019).
To solve this issue, the tech giants and the academia have
joined together for ‘Deepfake Detection Challenge’ (Dol-
hansky et al. 2019, 2020) to promote the current issues and
encourage fellow researchers to tackle this problem.

As confirmed by several previous studies (Chen et al.
2021), the CNN-based generative models are known to have
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Figure 1: Various Patterns of Frequency Artifacts. The
frequency-level artifacts can be extracted by averaging the
frequency-level spectrum of the generated images. The ap-
pearance of artifacts is evident but uniquely vary by the type
of GAN model or object category. Thus, we can analyze that
the artifacts are easily detected by their evident appearances
but can cause overfitting to the training settings. Thus, the ar-
tifacts should be ignored for generalized detection, but they
are still useful for specific detection of GAN models.

limitations in reconstructing the high-frequency compo-
nents. However, as shown in Fig. 1, although the frequency-
level artifacts are effective to detect the generated images for
the specific GAN models, it is easy for the detectors to be
overfitted to the training settings, due to the unique appear-
ances of the frequency-level artifacts varying by the CNN
structures and training categories. Thus, it can be analyzed
that the frequency-level artifacts are effective to detect the
generated images from the known GAN models, but the key
to the generalization of deepfake detectors is to reduce the
effect of frequency-level artifacts during training.

Based on intuition, we propose a novel framework com-
posed of two modules: the Frequency Perturbation GAN
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(FrePGAN) and the deepfake classifier. FrePGAN contains
the frequency-level perturbation generator and the perturba-
tion discriminator, which cooperate to adversarially gener-
ate perturbation maps added onto both the real and fake im-
ages for reduced differences in the frequency-level. Then,
the perturbed images are fed into the deepfake classifier
to distinguish the fake images from the real ones in the
pixel-level. To train the deepfake detector to utilize both the
frequency-level artifacts and the general pixel-level irregu-
larity, we update the frequency-level perturbation generator
and the deepfake classifiers alternatively. To validate the per-
formance of our model, we conduct numerous experiments
using multiple deepfake datasets. Including the benchmark
evaluations, we have designed three types of distinct test set-
tings using unknown categories, models, and manipulations
unused during training. Our model achieves state-of-the-art
performance in both the known and unseen settings.

Our paper makes the following contributions:
• We develop FrePGAN to generate the frequency-level

perturbation maps to ignore the domain-specific artifacts
in fake images.

• The perturbation maps obtained from FrePGAN are
added to the given input images, which can reduce the
effect of domain-specific artifacts and improve the gen-
eralization ability of the deepfake detector.

• FrePGAN and the deepfake classifier are updated alter-
natively to train the deepfake classifier to consider both
the frequency-level artifact and the general feature.

• Our model achieves superior results compared to the
state-of-the-art models and robust detection performance
of generated images in the known and unseen domains.

Related Work
The previous work can be categorized into the physiological
feature-based, image-based, and frequency-based detection.

Physiological Feature-based Detection
With the rise of realistic human deepfakes, most stud-
ies focus on the temporal properties, such as facial fea-
tures (Agarwal et al. 2019; Matern, Riess, and Stamminger
2019; Li and Lyu 2019; Montserrat et al. 2020), incoher-
ent head poses (Yang, Li, and Lyu 2019), and lack of eye-
blinking (Li, Chang, and Lyu 2018). (Rossler et al. 2019;
Dolhansky et al. 2019; Li et al. 2020) provide large-scale
datasets and evaluate various image forensics for face ma-
nipulations. However, since most of these methods focus on
the face only, they can be ineffective in non-facial domains.

Image-based Detection
To expand the detection range, some studies take images as
input data. Tralic et al. (Tralic, Petrovic, and Grgic 2012) an-
alyze the inconsistencies in blocking artifacts generated dur-
ing JPEG compression (Tralic, Petrovic, and Grgic 2012).
Ferrara et al. (2012) explore the demosaicing artifacts gen-
erated in manipulated images due to a color filter array (Fer-
rara et al. 2012) but the artifacts can disappear during re-
sizing. Thus, some focus on the deviations in lighting con-
ditions to detect manipulations (Carvalho, Farid, and Kee

2015; Peng et al. 2016). Also, (Bayar and Stamm 2016) sug-
gest learning the prediction error filters for generalization
but it struggles with post-processing methods used to ma-
nipulated regions. Thus, Cozzolino et al. (2018) propose an
adaptable neural network to new target domains using a few
training samples (Cozzolino et al. 2018). Wang et al. (2020)
use RGB images to distinguish cross-model manipulations,
such as blurring and JPEG (Wang et al. 2020). Also, (Guarn-
era, Giudice, and Battiato 2020) explore the hidden traces
by analyzing the last computational layer to predict real
and fake and the most probable technique used. Recently,
Zhao et al. (2021)suggests a multi-attention network to at-
tend different local parts for the artifacts and aggregate the
high and low features for classification (Zhao et al. 2021).

Frequency-based Detection
Some analyze the spectral traces in the frequency domain, as
(Kirchner 2008) suggests using the frequency artifacts with
the variance of prediction residue. Also, (Huang et al. 2017)
employ Fast Fourier Transform (Cooley, Lewis, and Welch
1969) and singular value decomposition to identify copy-
move manipulations. (Marra et al. 2019) suggest a GAN-
specific detection using the artificial fingerprints in the fre-
quency domain, and (Bappy et al. 2019) propose a manipu-
lation localization architecture using spatial maps and fre-
quency domain correlation. Also, (Frank et al. 2020) an-
alyze the frequency artifacts using Discrete Cosine Trans-
form, while (Zhang, Karaman, and Chang 2019) exploit the
artifacts induced by the up-sampler of GANs. Others (Du-
rall, Keuper, and Keuper 2020; Durall et al. 2019) exploit the
spectral distortions via azimuthal integration, while (Jeong
et al. 2021) adopt the bilateral high-pass filters for gener-
alized detection. (He et al. 2021) propose to re-synthesize
testing images and extract visual cues for flexible detection.

Deepfake Detection Framework
We design a generalized deepfake detector containing the
Frequency Perturbation GAN (FrePGAN) and the deepfake
classifier. FrePGAN generates the frequency-level perturba-
tion maps for the deepfake detector to ignore the frequency-
level artifacts. To reduce the effect of the frequency-level
artifacts, both real and fake images are added with the gener-
ated perturbation maps of FrePGAN, respectively. The deep-
fake classifier is designed to distinguish between the real and
fake images. The visual illustration for the overall architec-
ture is shown in Fig. 2.

Training of Deepfake Detection Framework
Though FrePGAN and the deepfake classifier can be trained
in a sequence, we purposefully train both networks in one
iteration for comprehensive training of various properties of
the perturbation maps. Also, through the alternating update,
we can enhance the generalization of the deepfake classi-
fier by expanding the variety of its input data. At the initial
updates, FrePGAN fails to generate the proper perturbation
map to ignore the effect of frequency-level artifacts, so the
deepfake classifier is trained to distinguish the fake images
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Figure 2: Overall framework. Consisted of FrePGAN for generating the frequency-level perturbations and the deepfake classifier
for distinguishing the real and fake, the framework allows detecting fake images with the balanced effect of domain-specific
frequency-level artifacts and general image-level irregularity in the generated images.

from the real images by using the artifact that is easy to be
detected. On contrary, when FrePGAN is sufficiently trained
to generate the perturbation maps confusing the real and fake
images, the deepfake classifier needs to extract the new fea-
ture that works generally across the various types of GAN
models. As a result, the alternating updates can make the
deepfake classifier consider the frequency-level artifacts and
the general features simultaneously.

Frequency Perturbation GAN
To train FrePGAN, we build a novel architecture com-
posed of two major parts: the perturbation map generator
trained by the perturbation generation losses, and the per-
turbation discriminator. The input of FrePGAN is an image
x ∈ Rw×h×c where w, h, and c present its width, height,
and number of channels, respectively. Each and every input
image is labeled by y either as real (y = 0) or generated
(y = 1), representing either actually captured in the real
world or generated by GAN. We define the real and gen-
erated images as xr ≡ xy=0 and xf ≡ xy=1 respectively,
and thus x would be one of xr or xf . The perturbation map
generator and the perturbation discriminator are denoted as
G(•) and D(•), respectively.

Perturbation Map Generator As in Fig. 3, the real and
fake images can be easily distinguished when transformed
into the frequency domain. Also, it can be observed that the
frequency-level artifacts mainly locate at the high-frequency
components. Thus, by adding the frequency-level perturba-
tions, we can reduce the effect of domain-specific artifacts.

To ignore the frequency-level artifacts, the perturbation
should be generated in the frequency domain as well. Thus,
we utilize the frequency map transformed from the orig-
inal image as the input of the perturbation map genera-
tor. The perturbation map generator contains three modules:
frequency-level transformer, frequency-level generator, and
the inverse frequency-level transformer.

First, the frequency-level transformer converts the input
image into the frequency map by employing Fast Fourier
Transform (FFT) (Cooley, Lewis, and Welch 1969), as de-
noted by x̃ = F(x) where x̃ ∈ Rw×h×2c is the frequency
map transformed from x and F(•) represents the operation
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Figure 3: Comparison in power spectra of real and fake data.
We average the power spectrum from (a) the entire training
data and (b) the generated data, respectively. For every GAN
model of the graph, the fake images suffer from the dramatic
increment of the high-frequency components.

of FFT. The number of channels of x̃ becomes doubled be-
cause each image channel is separated into two channels for
the real and imaginary parts of the frequency-map.

Then, the frequency-level generator receives x̃ to generate
a frequency map with the same size of x̃. The scheme of the
generator is similar to those of image-to-image translation
GANs (Isola et al. 2017; Zhu et al. 2017; Kim et al. 2017;
Choi et al. 2018, 2020; Liu et al. 2019), which contain the
encoder and decoder. Thus, when the frequency-level gener-
ator is denoted by H , and z̃ = H(x̃) where z̃ ∈ Rw×h×2c is
the output from the frequency-level generator.

Lastly, the generated map z̃ is transformed into a pixel-
level perturbation map. The overall operation of the pertur-
bation map generator is derived with a given input of x as:

G(x) = F−1(H(F(x))), (1)

where F−1(•) means the inverse FFT operation. We need
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to remark that the final output from the perturbation map
generator is shaped by G(x) ∈ Rw×h×c, which is shaped by
the same size of input x ∈ Rw×h×c.

Perturbation Discriminator To enhance the effect of the
generated perturbation maps, we add the perturbation dis-
criminator to adversarially train the perturbation map gen-
erator. The overall architecture follows the conventional
GAN discriminator (Radford, Metz, and Chintala 2015) that
down-samples the input features by the consecutive convolu-
tion layers and performs binary classification at the last con-
volution layer. By the last fully connected layer, the pertur-
bation discriminator distinguishes the output of the pertur-
bation map generator from the original image. Thus, for an
input of x, the target prediction of the perturbation discrim-
inator is a probability that can be represented by D(xr) = 0
and D(G(x)) = 1.

Training of FrePGAN The two compositions of FreP-
GAN are adversarially trained to generate the perturbation
maps from the input images. Thus, when real images are
given to FrePGAN, the empty perturbation maps should be
ideally acquired after the generator, due to the absence of
frequency-level artifacts. In contrast, when the perturbation
maps are added to the fake images, the distribution of the
added images should be difficult to distinguish from that of
real images.

At every iteration, two training steps alternate, updating
the perturbation map generator and the perturbation discrim-
inator, respectively. The perturbation map generator is up-
dated by minimizing the perturbation generation loss (LG)
while trying to maximize the discriminator loss (LD) for the
update of the perturbation discriminator. Thus, the overall
training of FrePGAN can be defined as:

Ĝ, D̂ = argG,D min
G

max
D
LG + LD. (2)

LG has the generative adversarial loss (Ladv) and the
compression loss (Lcom) to compress the magnitude of per-
turbation maps. At every mini-batch update, G is first up-
dated to minimize the following loss:

LG = λLadv + (1− λ)Lcom, (3)

where λ is a hyperparameter to tune the scales of Ladv and
Lcom. In this work, we use λ = 0.5.

We employ Ladv for the perturbation map generator to
generate the perturbation maps added to the images to be
indistinguishable from the real images by the perturbation
discriminator. Since xf is also the sample generated from
other GAN models, xf is improper to be considered as the
real sample for the adversarial training of FrePGAN. Thus,

Ladv = Ex∼X[log (1−D (G (x)))], (4)

where X represents the batch sets of images.
If only the generative adversarial loss is considered dur-

ing training, FrePGAN would not be able to preserve even
the distribution of real images by adding a large magnitude
of perturbation maps. Since the purpose of employing FreP-
GAN is to obtain a similar distribution of real images, we
additionally include the compression loss Lcom in the per-
turbation generation loss. Thus,

Lcom = Ex∼X

[
∥G(x)∥22

]
(5)

Algorithm 1: Training the deepfake detection model

G,D ← random initial parameters
C ← pre-trained parameters
epoch = 0
repeat

(X,Y)← batch sampled from dataset
//Forward Propagation
Estimate Ladv , Lcom, LD, LC by Eq. 4, 5, 6, 8
//Update parameters according to gradients
Update G by argG minG LG

Update D by argD maxD LD

Update C by argC minC LC

if No remaining data then
epoch← epoch+ 1

end if
until epoch = 20

According to the adversarial training, the perturbation dis-
criminator is trained to distinguish the images reconstructed
by the perturbation map generator (G(x)) from the real im-
ages (xr). Thus, LD can be defined as:

LD = Exr∼Xr
[log (D (xr))]

+ Ex∼X[log (1−D (x+G (x)))].
(6)

As a result, by alternating the generative adversarial loss and
the discriminator loss, the perturbation map generator can
generate high-quality perturbation maps.

Deepfake Classifier
The deepfake classifier is a network to distinguish whether
the input image is the generated fake one or not. Thus,
the overall framework of the deepfake classifier is a con-
ventional classification network using ResNet-50 (Li and
Lyu 2019) to predict the binary label for deepfake detec-
tion (Frank et al. 2020; Wang et al. 2020). We denote the
deepfake classifier as C(•).

Input of Deepfake Classifier Since the deepfake classi-
fier detects the presence of the informative features upon the
frequency-level artifacts in the input image, the images with
the generated perturbation maps should be inserted into the
deepfake classifier instead of the raw images. The input im-
age of the deepfake classifier is defined as:

AG(x) = x+G(x). (7)

Training of Deepfake Classifier The training loss of the
deepfake classifier is built by the cross-entropy loss as:

LC = E(x,y)∼(X,Y)

[
y log (C(AG(x)))

+ (1− y) log (1− C(AG(x)))
]
,

(8)

where Y is the set of real and fake labels paired with the re-
spective samples of X. Then, the deepfake classifier can be
trained as follows: Ĉ = argC minC LC . The training proce-
dure of our overall framework is presented in Algorithm 1.
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Model Original Hue Brightness Saturation Gamma Contrast Blur Rotation
Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P.

Wang(2020) 99.9 100. 73.9 81.3 61.8 74.7 74.3 84.4 70.2 83.2 66.6 79.7 45.3 49.1 71.3 80.4
Frank (2020) 99.6 99.4 85.5 97.2 84.2 97.2 91.2 98.0 85.4 97.4 84.3 96.7 53.8 90.3 99.6 99.4
Durall (2020) 99.7 99.3 98.6 97.9 93.6 88.8 98.6 97.9 97.2 95.3 94.8 91.0 50.0 53.2 98.4 97.6
Jeong (2021) 99.8 100. 85.0 92.6 89.9 90.8 96.9 99.6 99.7 100. 90.8 91.6 67.1 99.2 99.0 100.
Ours 100. 100. 95.0 99.7 99.5 100. 100. 100. 85.5 98.6 98.8 100. 98.5 98.5 100. 100.

Table 1: Comparison of cross-manipulation performance.

Training Resolutions

Model 1024× 1024 512× 512 256× 256 128× 128 64× 64
Acc. A.P. Acc. A.P. Acc. A.P. Acc. AP. Acc. A.P.

Wang (2020) 99.9 100. 97.6 97.3 66.1 74.4 62.6 69.4 50.4 54.9
Frank (2020) 99.6 99.4 92.2 90.2 90.5 86.0 91.3 86.9 89.7 85.1
Durall (2020) 99.7 99.3 85.1 79.0 80.0 73.7 77.2 70.9 77.9 71.7
Jeong (2021) 99.8 100. 97.9 99.9 97.8 99.8 89.4 96.9 59.7 62.2
Ours 100. 100. 100. 100. 100. 100. 98.0 99.9 95.9 99.4

Table 2: Testing results with variance in resolutions.

50

60

70

80

90

100

A
cc

. &
 A

.P
.

Categories Wang(ACC) Wang(AP) Frank(ACC) Frank(AP) Durall(ACC) Durall(AP) Ours(ACC) Ours(AP)

Figure 4: Comparison of performance in unknown categories.

Deepfake Image Prediction
After the training of our overall framework, we predict
whether the new test image is labeled as real or fake by
utilizing the perturbation map generator of FrePGAN (Ĝ)
and the deepfake classifier (Ĉ). For the new test image x′,
we acquire the perturbed images by estimating AĜ(x

′) =

x′ + Ĝ(x′). Then, AĜ(x
′) is fed into the deepfake classifier,

which results in the final prediction as: Ĉ(AĜ(x
′)).

Implementation Details
We employ the architecture of VGG model (Simonyan and

Zisserman 2014) for the perturbation map generator and
the discriminator of DCGAN (Radford, Metz, and Chin-
tala 2015) for the perturbation discriminator. In addition,
we utilize ResNet (Li and Lyu 2019) pre-trained by Im-
ageNet (Russakovsky et al. 2015) for the deepfake classi-
fier. We use Adam (Kingma and Ba 2014) to train the per-
turbation map generator and the perturbation discriminator
with the learning rate of 10−4 and 10−1, respectively. Also,
the deepfake classifier is trained by Adam (Kingma and Ba
2014) with the learning rate of 10−4. The batch size of the
optimizer is always set to 16, and the input image size is re-
sized to 256 × 256 when the image sizes vary. The number
of epochs is set to 20.

Experimental Results
We conduct experiments to confirm the performance of the
deepfake detector in the known domain and unseen domain.

Dataset
We conduct experiments based on the same trainset and test-
set of the experimental data of Wang et al. (Wang et al.
2020). The trainset contains 20 objects of Progan (Karras
et al. 2018). The testset consists of FFHQ (Karras, Laine,
and Aila 2019) and LSUN (Yu et al. 2015) to train Pro-
GAN (Karras et al. 2018), StyleGAN (Karras, Laine, and
Aila 2019), and StyleGAN2 (Karras et al. 2020), and em-
ploys Imagenet (Russakovsky et al. 2015) to train Big-
GAN (Brock, Donahue, and Simonyan 2019) and Cy-
cleGAN (Zhu et al. 2017). Also, we use CelebA (Liu
et al. 2015) for training StarGAN (Choi et al. 2018), and
COCO (Lin et al. 2014) for training GauGAN (Park et al.
2019). Lastly, we utilize Deepfake dataset (Rossler et al.
2019), which is a combination of various videos collected
online with partially generated images reconstructed by
face-swapping models.

Also, to test the model’s performance in various manipu-
lation techniques and resizing, we employ the face data of
ProGAN (Karras et al. 2018) dataset in 1, 024×1, 024 reso-
lution. For the experiments with unknown categories and un-
known models, we utilize the horse data of ProGAN (Karras
et al. 2018) dataset in 256× 256 resolution.

Deepfake Detection Performance
The deepfake detection performance is tested by the four
types of experiments: manipulated face images, resized face
images, unseen categories, and unseen models. We utilize
two evaluation metrics of the average precision score (A.P.)
and accuracy (Acc.) as represented by (Wang et al. 2020;
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Model #
Test Models

ProGAN StyleGAN StyleGAN2 BigGAN CycleGAN StarGAN GauGAN Deepfake Mean
Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P.

Wang 1 50.4 63.8 50.4 79.3 68.2 94.7 50.2 61.3 50.0 52.9 50.0 48.2 50.3 67.6 50.1 51.5 52.5 64.9
Frank 1 78.9 77.9 69.4 64.8 67.4 64.0 62.3 58.6 67.4 65.4 60.5 59.5 67.5 69.1 52.4 47.3 65.7 63.3
Durall 1 85.1 79.5 59.2 55.2 70.4 63.8 57.0 53.9 66.7 61.4 99.8 99.6 58.7 54.8 53.0 51.9 68.7 65.0
Jeong 1 82.5 81.4 68.0 62.8 68.8 63.6 67.0 62.5 75.5 74.2 90.1 90.1 73.6 92.1 51.6 49.9 72.1 72.1
Our 1 95.5 99.4 80.6 90.6 77.4 93.0 63.5 60.5 59.4 59.9 99.6 100. 53.0 49.1 70.4 81.5 74.9 79.3
Wang 2 64.6 92.7 52.8 82.8 75.7 96.6 51.6 70.5 58.6 81.5 51.2 74.3 53.6 86.6 50.6 51.5 57.3 79.6
Frank 2 85.7 81.3 73.1 68.5 75.0 70.9 76.9 70.8 86.5 80.8 85.0 77.0 67.3 65.3 50.1 55.3 75.0 71.2
Durall 2 79.0 73.9 63.6 58.8 67.3 62.1 69.5 62.9 65.4 60.8 99.4 99.4 67.0 63.0 50.5 50.2 70.2 66.4
Jeong 2 87.4 87.4 71.6 74.1 77.0 81.1 82.6 80.6 86.0 86.6 93.8 80.8 75.3 88.2 53.7 54.0 78.4 79.1
Our 2 99.0 99.9 80.8 92.0 72.2 94.0 66.0 61.8 69.1 70.3 98.5 100. 53.1 51.0 62.2 80.6 75.1 81.2
Wang 4 91.4 99.4 63.8 91.4 76.4 97.5 52.9 73.3 72.7 88.6 63.8 90.8 63.9 92.2 51.7 62.3 67.1 86.9
Frank 4 90.3 85.2 74.5 72.0 73.1 71.4 88.7 86.0 75.5 71.2 99.5 99.5 69.2 77.4 60.7 49.1 78.9 76.5
Durall 4 81.1 74.4 54.4 52.6 66.8 62.0 60.1 56.3 69.0 64.0 98.1 98.1 61.9 57.4 50.2 50.0 67.7 64.4
Jeong 4 90.7 86.2 76.9 75.1 76.2 74.7 84.9 81.7 81.9 78.9 94.4 94.4 69.5 78.1 54.4 54.6 78.6 77.9
Our 4 99.0 99.9 80.7 89.6 84.1 98.6 69.2 71.1 71.1 74.4 99.9 100. 60.3 71.7 70.9 91.9 79.4 87.2

Table 3: Comparison of cross-model performance.

Ablation settings Self Category Model Manipulation
Input Lcom Ladv Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P.
Freq ✓ 99.0 100. 90.9 98.2 69.4 76.1 90.9 98.4
Freq ✓ 100. 100. 91.0 98.5 67.3 74.4 91.3 99.1
Img ✓ ✓ 99.8 100. 92.9 99.2 68.7 77.4 92.4 99.6
Freq ✓ ✓ 100. 100. 95.5 99.4 74.9 79.3 96.8 99.5

Table 4: Ablation Test with Various Settings.

Durall, Keuper, and Keuper 2020; Frank et al. 2020). To vali-
date the effectiveness of the proposed deepfake detector, we
select the image-based (Wang et al. 2020) and frequency-
based state-of-the-art models (Frank et al. 2020; Durall, Ke-
uper, and Keuper 2020; Jeong et al. 2021) for comparison.

Deepfake Detection of Manipulated Face Images We
conduct various image manipulation experiments using the
face data of ProGAN (Karras et al. 2018) in 1, 024× 1, 024
resolution. To test the performance with unknown manipula-
tions, we add 7 various changes in images, such as adjusting
the hue, brightness, saturation, gamma, contrast, blurriness,
and image rotation. As shown in Table 1, ours is the most
robust model achieving superior performance in image ma-
nipulation experiments.

Deepfake Detection of Resized Face Images To test the
model with the previous detectors’ chronic issue of signifi-
cant performance decline with resizing, we conduct exper-
iments with the face data of ProGAN (Karras et al. 2018)
dataset by gradually reducing the image sizes with five dif-
ferent resolutions from 1, 024 × 1, 024 to 64 × 64. Based
on the experimental results of the resizing performance of
the models as shown in Table 2, we can confirm that our
model outperforms all other models when tested with the
five cases of resized resolutions. Furthermore, even when the
image resolution is reduced, our model maintains 100% per-
formance from 1, 024× 1, 024 to 256× 256. When reduced
to 128× 128 and 64× 64, our model’s performance slightly
declines but maintains at least 97.8%, proving the best per-
formance compared to the existing model.

Deepfake Detection of Unknown Categories As shown
in Figure 4, we conduct various experiments using the three
classifiers to analyze the performance of the models with

20 unknown categories. We compare our model’s perfor-
mance to the previous state-of-the-art models (Wang et al.
2020; Durall, Keuper, and Keuper 2020; Frank et al. 2020).
The experimental results verify that ours is the most robust
model in all categories, even when the number of training
classes increases and the type of inputs varies. The variety
in the testing environment shows that each component in our
model plays an important role to detect not only the test cat-
egory but also all categories.

Deepfake Detection of Unknown GAN Models To ex-
pand the scope, we compare the performance of our model
with 8 different generative models, including ProGAN (Kar-
ras et al. 2018), StyleGAN (Karras, Laine, and Aila 2019),
StyleGAN2 (Karras et al. 2020), BigGAN (Brock, Donahue,
and Simonyan 2019), CycleGAN (Zhu et al. 2017), Star-
GAN (Choi et al. 2018), GauGAN (Park et al. 2019), and
Deepfake (Rossler et al. 2019). As shown in Table 3, we
make changes to the training settings and conduct experi-
ments to detect the GAN models. First, we train the mod-
els with one type of category and test with all GAN mod-
els. Then, to add variety, we increase the number of training
categories to two and four. Interestingly, even when trained
with only one type of category, our model achieves ex-
cellent performance, similar to the case when trained with
four classes. The results show that ours achieves the high-
est performance in both Acc. and A.P in ProGAN (Karras
et al. 2018), StyleGAN (Karras, Laine, and Aila 2019), Gau-
GAN (Park et al. 2019), and Deepfake (Rossler et al. 2019).
Also, in StyleGAN2 (Karras et al. 2020), BigGAN (Brock,
Donahue, and Simonyan 2019), CycleGAN (Zhu et al.
2017), and StarGAN (Choi et al. 2018), ours achieves the
best results in both Acc. and A.P. Our performance rises with
the number of training categories, when tested with the par-
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Figure 5: Addition of Perturbation Maps. (a) shows the aver-
aged power spectrum of real and fake images, respectively.
(b) compares the averaged power spectrum of real with that
of fake. While the real and fake images can be distinguished
by the high-frequency components in the power spectrum,
the difference is nearly removed after the addition of the
generated perturbation maps.

tially generated images in Deepfake dataset.

Ablation Study
To validate the effectiveness of the components in the pro-
posed framework, we also test several variants. We mod-
ify four settings of the proposed framework, which include
the composition of the perturbation generation loss and the
data input types of the generator of FrePGAN. The train-
ing dataset for the ablation tests is the horse images gener-
ated by ProGAN (Karras et al. 2018). The testing environ-
ments for cross-category and cross-model experiments are
the same as the previous section, and the manipulation ex-
periment is conducted by manipulating the horse test images
with the same methods of cross-manipulation experiments.

The results of the ablation tests are provided in Table 4.
The best performance of (91.8, 94.6) can be obtained by
utilizing the entire framework with the frequency-level gen-
erator, the adversarial learning mechanism, and the compres-
sion loss. Interestingly, the simultaneous usage of the com-
pression loss and the adversarial loss makes synergy to im-
prove the generalization of deepfake classifier. This result
shows that the quality of perturbation is important for the
overall performance. Also, when we replace our frequency-
level generator with the pixel-level generator without the fre-
quency transformers, the performance drops by far due to the
limited quality of the generated perturbation maps.

Visualization of Perturbation Maps
To visualize the effect of the perturbation maps, we con-
duct two experiments. First, as shown in Fig. 5, we obtain
the power spectra of real and fake images. Then, due to the
frequency-level artifacts, the high-frequency components of
real and fake become distinct to distinguish between them.
However, after adding the perturbation maps, the difference
is reduced by far in the power spectra, which validates that
the proposed framework successfully generates high-quality
perturbation maps to make the real and fake similar.

Second, as shown in Fig. 6, from one real image, we ob-
tain both the 1D and 2D power spectrum. Interestingly, even
after the addition of perturbation maps, the pixel-level image
and its 2D power spectrum are almost preserved. However,
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Figure 6: Effect of Perturbation Map. With the compression
loss, the magnitude of perturbation maps is negligent in the
pixel-level domain as shown in (b), but the perturbation map
increments the high-frequency components as shown in (c).

when we estimate the 1D power spectrum, we can find that
the high-frequency components are magnified, which results
in the 1D power spectrum similar to that of fake images con-
taining the frequency-level artifacts.

Conclusion

It has become highly important to develop a robust, gener-
alized deepfake detector, which is not limited to the train-
ing settings. Numerous experiments validate that our frame-
work achieves a generalized detection robust in various test-
ing scenarios including the unknown categories, GAN mod-
els, manipulations, and resizing. Trained with the perturba-
tion generation loss and compression loss, our newly pro-
posed FrePGAN generates perturbations to reduce the ef-
fects of domain-specific artifacts in generated images. Also,
our framework shows the effectiveness of the alternate up-
dates of the deepfake classifier and the perturbation genera-
tor, which is validated to be helpful for the improved gener-
alization of deepfake detectors.
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