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Abstract

Since human drivers only consider the driving-related factors
that affect vehicle control depending on the situation, they can
drive safely even in diverse driving environments. To mimic
this behavior, we propose an autonomous driving frame-
work based on the two-stage representation learning that ini-
tially splits the latent features as domain-specific features and
domain-general features. Subsequently, the dynamic-object
features, which contain information of dynamic objects, are
disentangled from latent features using mutual information
estimator. In this study, the problem in behavior cloning is
divided into several domain-specific subspaces, with experts
becoming specialized on each domain-specific policy. The
proposed mixture of domain-specific experts (MoDE) model
predicts the final control values through the cooperation of
experts using a gating function. The domain-specific features
are used to calculate the importance weight of the domain-
specific experts, and the disentangled domain-general and
dynamic-object features are applied in estimating the control
values. To validate the proposed MoDE model, we conducted
several experiments and achieved a higher success rate on the
CARLA benchmarks under several conditions and tasks than
state-of-the-art approaches.

Introduction
In the field of autonomous driving, behavior cloning is
receiving interest as a promising approach to imitate the
demonstrations of human drivers by mapping from cam-
era input to control output. Starting with a basic end-to-end
model (Bojarski et al. 2016) that explores the lane-keeping
task (Virgo 2017), several successive deep networks (Codev-
illa et al. 2018; Sauer, Savinov, and Geiger 2018; Chen,
Yuan, and Tomizuka 2019) have been developed to solve
the task of driving in complex urban scenarios. Although
methods leveraging deep networks can manipulate the ego-
vehicle safely under training environments, they predict un-
expected control values, particularly under unseen condi-
tions, such as different weather and towns compared to the
weather and towns present in the training data. In addition,
there is still a well-known limitation that threatens the abil-
ity of generalization caused by the lack of policy experi-
ence (Chen et al. 2020) and the causal confusion (Codev-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

illa et al. 2019). Based on recent efforts in this field, multi-
task learning (Li et al. 2018; Yang et al. 2018; Kim et al.
2020), which leverage representation of closely related tasks
through a joint optimization strategy, is considered a good
solution for increasing generalization ability under unseen
conditions. Furthermore, representation learning (Xing et al.
2021), which automatically separates the related or unre-
lated hidden variables through a learning process in multiple
source environments, can be another solution by distinguish-
ing true causes in observed training demonstration patterns
based on the supervision. The disentanglement with explicit
consideration of the given knowledge makes the model fo-
cus on essential information in the driving situation.

Our work is concerned with the following observations in
an attempt to improve the generalization performance. First,
the same static components such as lanes and curbs, the
types and locations of which are regulated by law, may con-
tain some helpful hints for driving because their existence
ensures safety and efficiency by informing drivers about se-
mantic information on the road. Human drivers perceive this
information easily; however, the learning-based autonomous
driving models need to specify this information explicitly.
We adopt a concept from a previous study, latent unified
state representation (LUSR) (Xing et al. 2021), to exploit the
road components restricted by regulations. It disentangles
domain-specific features and domain-general features from
the original latent space. The domain-general latent factors
contain information in common to all domains and can be
used to predict the control values, regardless of the domain-
specific variations. Second, dynamic objects appear in var-
ious shapes and colors at arbitrary positions and relatively
small compared to static objects. We disentangle dynamic-
object features from latent space using a learning strategy,
which maximizes and minimizes mutual information be-
tween target latent spaces (Belghazi et al. 2018b; Sanchez,
Serrurier, and Ortner 2020). We maximize the mutual infor-
mation between the dynamic-object representation and ob-
servation while minimizing mutual information between the
dynamic-object features and the others (Sanchez, Serrurier,
and Ortner 2020). Third, we can estimate the distribution of
action spaces under unseen conditions by combining distri-
bution from the observed driving conditions. Let us assume
that we drive for the first time on a rainy evening. Humans
can drive based on the experience of clear evenings and rainy
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days. By applying these conceptual approaches to a mixture
of expert (MoE) (Jacobs et al. 1991) algorithms, we train
multiple experts to consider the same input data from differ-
ent points of view. Our key contributions are as follows:

• We propose a novel autonomous driving framework us-
ing the latent space that is disentangled into three disjoint
parts: domain-specific, domain-general, and dynamic-
object feature space. The domain-relevant features are
used to calculate the weights of the domain-specific ex-
perts, and the domain-irrelevant features are used to pre-
dict control values for generalization.

• We introduce the location offset regularization that esti-
mates the current position from the kinetic formulation
and penalizes the difference between the calculated loca-
tion of the vehicle and the predicted location to leverage
the useful representation contained in the related subtask.

• We empirically demonstrate the proposed mixture of
domain-specific experts (MoDE) for autonomous driv-
ing by conducting several experiments. We achieve state-
of-the-art driving performance on autonomous driving
benchmarks, especially in unseen driving environments.

Related Work
End-to-end Autonomous Driving Architecture
Nvidia is the first to adopt convolutional neural networks
(CNNs) to predict the steering angle with a single front-
facing RGB camera (Bojarski et al. 2016). Based on the ex-
ploration of the CNN architecture, Codevilla et al. (Codev-
illa et al. 2018) proposed a conditional imitation learning
(CIL) model, in which training specialized sub-modules for
each high-level command leads to a goal point. The condi-
tional branch-based driving model is the most popular ap-
proach for learning a model with navigational commands.
Following this study, enhanced branched networks proposed
by Sauel et al., (Sauer, Savinov, and Geiger 2018) and
Wang et al. (Wang et al. 2019) used conditional affordance
branches and sub-goal angle branches.

However, the driving model, which is optimized for train-
ing data, can make it difficult to increase the generaliza-
tion ability across diverse conditions. Recently, many stud-
ies have been conducted (Codevilla et al. 2019; Chen et al.
2020; Li et al. 2018) to solve the generalization problem
under unseen conditions. Our proposed network adopts the
conditional branched network concept for utilizing the nav-
igation command and representation learning to increase
generalization ability for the vision-based end-to-end au-
tonomous driving.

Disentangled Representation Learning
Depending on the task at hand, the goal of learning disen-
tangled representations is to train the informative and unin-
formative factors of data variation. Many generative mod-
els (Jeon et al. 2021; Zeno, Kalinovskiy, and Matveev 2019;
Chen et al. 2018; Jha et al. 2018) that learn disentangled
representations of informative factors show successive re-
sults based on generative adversarial network (Goodfellow
et al. 2014) or variational auto-encoder (VAE) (Kingma and

Welling 2013). In research related to autonomous driving,
Xing et al. (Xing et al. 2021) aimed to learn a latent uni-
fied state representation for different domains via cycle-
consistent VAE (Jha et al. 2018). The mapping function
of LUSR divides the latent space into domain-specific and
domain-general spaces. The different domains correspond
to different weather conditions, and the domain-general fea-
ture is common factors such as lanes on the road. In this
case, the domain-general feature can be used as an infor-
mative factor to predict the domain-irrelevant control value
of an autonomous vehicle. However, the element-wise loss
of VAE (Pihlgren, Sandin, and Liwicki 2020) gives a small
error even if dynamic objects are ignored in the feature em-
bedding and image reconstruction processes.

Recently, an additional novel disentanglement approach
is proposed by Sanchez et al. (Sanchez, Serrurier, and Ort-
ner 2020) based on the neural mutual information estimator
(Belghazi et al. 2018a) by splitting the representation into
shared and exclusive information of paired data. Based on
these studies, we extend the LUSR with a mutual informa-
tion estimator to disentangle dynamic object features from a
given latent space.

Ensemble Learning for Autonomous Driving
Deep ensemble learning combines weak predictive results
from several models or branches with various voting mech-
anisms to achieve better performances than that obtained
from a single deep learning model. The MoE, which is
a well-known ensemble approach, comprises several spe-
cialized experts, where each expert tries to learn the tar-
get output on a subset of the input space. If we know in
advance that a set of training conditions are divided into
subsets, the model can be designed as several experts with
a gating network, which assigns weights to expert net-
works according to the specific conditions. Ohn-Bar et al.
(Ohn-Bar et al. 2020) proposed a learning situational driv-
ing (LSD) strategy, which learns situational policies with a
multi-modal agent trained to mimic agents with specific be-
haviors. The LSD model considers the sub-driving scenarios
to be the sub-policies. However, the conditional module has
several action prediction branches, which learn sub-policies
that correspond to different commands, act as the scenario-
specific experts. Hence, we design a mixture of experts net-
work, where each expert serves as a domain-specific control
value estimator, weighted by the importance calculated by
the contribution of each domain.

Methods
Task Definition
The goal of a vision-based end-to-end autonomous driving
task is to mimic the human driver by learning a model using
observations. Each observation (o = [I, v] ∈ O) consists of
tuples, a RGB image from a front-facing camera and mea-
sured speed of the ego-vehicle. In addition, a high-level nav-
igation command (c ∈ C = {follow lane, go straight, turn
right, and turn left}) is provided by a global path planner
to guide the vehicle to the final destination. When a vehi-
cle enters an intersection, the command serves as a guide to
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indicate the direction of the destination. The command is a
categorical variable that acts as a switch; this switch con-
trols the selective activation of a prediction branch. Further
details on global navigation can be found in the literature
(Dosovitskiy et al. 2017; Codevilla et al. 2018).

At every time step, the driving model estimates the low-
control action (a ∈ A = [−1, 1]2), which consists of contin-
uous longitudinal and lateral control values, from the given
observations and global paths. In addition, to train domain-
specific policy, we utilize the weather conditions (w ∈ W
= {weather labels under training condition}) that are avail-
able to set by a data collector. The training dataset is defined
D = {[oi, wi, ci,ai]}Ni=1, where N is the number of data.
AndD is divided into two types (DObj , DNoObj).DObj and
DNoObj have the same configurations, with the exception of
the inclusion/exclusion of dynamic objects.

A mapping function maps the driving scene I to the fea-
ture space (Fz). In the space Fz , important factors that
directly affect driving are divided into three categories: 1)
domain-general features (fz) appearing in common as en-
acted in the Road Traffic Act, 2) domain-specific features
(f̂z) according to the driving conditions, such as weather,
and 3) dynamic object features (f̃z), such as dynamic ve-
hicles and pedestrians. Depending on the dataset type, Fz
has different features: FzObj = [fz, f̂z, f̃z] and FzNoObj =

[fz, f̂z], where FzObj is the mapped space from I ∈ DObj

and FzNoObj is the mapped space from I ∈ DNoObj .

Disentanglement of Driving-related Factors
To map our supervision from raw image I to the high-level
description in feature spaceFz , we first adopt the concept of
latent unified state representation (LUSR) (Xing et al. 2021)
to disentangle the fz and f̂z of variation in the pair image.
We sample a pair of images, I1 and I2, from DNoObj at
the same domain. The objective for cycle-consistent VAE
to minimize is

Lcyclic = Lforward + Lreverse, (1)

where

Lforward = −E
qφ(fz,f̂z|I)[log pθ(I|f

z, f̂z∗)]

+KL(qφ(fz|I)||p(fz))

Lreverse = Efz∼p(fz)[||qφ(pθ(fz, f̂z1 ))− qφ(pθ(fz, f̂z2 ))||1]

Here, qφ and pθ are parameterized probability function of
the encoder and decoder. f̂z∗ is any domain-specific feature
embedded by the encoder, whereas f̂z1 and f̂z2 represent em-
bedded features from different domains.

Similar to the cycle-consistent VAE, the learning process
is a weakly supervised, except for the high-level navigation
command classifier and the weather classifier. In the pro-
cess of embedding, the conditional VAE (Sohn, Lee, and
Yan 2015) utilizes a categorical input to control the distribu-
tion of latent variables of the encoder and the output of the
decoder. Because the main purpose of our method is well-
refined feature-based behavior cloning, and not reconstruc-
tion of an input image, fz is fed into the command classifier,

and f̂z is fed into the weather classifier to guide the distribu-
tion of the latent space. Intuitively, fz has information of the
common factors across all domains, such as lane and curb,
and the factors appear similarly in the same command. Fur-
thermore, f̂z represents the domain-specific factors, such as
weather. With the categorical labels, therefore, we can learn
the disentanglement of latent variables and the modeling of
multiple modes simultaneously. The objective function is
can be defined with categorical cross-entropy (CCE):

Lcce = CCE(ŵφ, w) + CCE(ĉφ, c), (2)

where ŵφ and ĉφ are predicted outputs of the weather and
command classifier.

Because there is no explicit knowledge about dynamic ob-
jects in raw observation I , we assume that f̃z is an exclusive
representation of fz and f̂z at I ∈ DObj . To extract the fac-
tors, we employ the exclusive representation learning pro-
cess of the disentangling representation via the mutual in-
formation estimator (Sanchez, Serrurier, and Ortner 2020).

Let us assume that p(x, z) is the joint probability density
function and that p(x) and p(z) are the marginal probabil-
ity density function of two random variables X ∈ X and
Z ∈ Z . The mutual information can be estimated and maxi-
mized based on the Jensen-Shannon divergence with a statis-
tics neural network, Tω : X × Z → R with parameter ω, as
written in Equation 3.

M̂I
JSD

ω (X,Z) = Ep(x,z)[− log(1 + e−Tω(x,z))]

−Ep(x)p(z)[log(1 + eTω(x,z))]
(3)

In our case, X and Z can be an input image I and Fz =

[fz, f̂z, f̃z], respectively. f̃z is represented by deep neural
network Eψ : I → f̃z of parameters ψ. Equation 4 is the
objective function of the mutual information maximization.

LmaxMI = Lglobalω,ψ (I,Fz) + Llocalγ,ψ (I,Fz) (4)

Here, each term in equation 4 can be defined as:

Lglobalω,ψ (I,Fz) = M̂I
JSD

ω (I,Fz)

Llocalγ,ψ (I,Fz) =
∑
i

M̂I
JSD

γ (C
(i)
ψ (I),Fz),

where Cψ(I) := {Ciψ}
M×M
i=1 is a feature map encoded from

I by Eψ to reflect useful spatial information. The mutual in-
formation is computed by the global statistics network Tω
and the local statistics network Tγ of parameters ω and γ. In
this process, we enforce the dynamic object information to
f̃z by remaining fz and f̂z are fixed.

Furthermore, to minimize the mutual information be-
tween [fz, f̂z] and f̃z , we use an adversarial objective as
written in Equation 5.

LminMI = E
p([fz,f̂z ])p(f̃z)

[logDρ([fz, f̂z], f̃z)]+

E
p([fz,f̂z ],f̃z)

[log(1−Dρ([fz, f̂z], f̃z))],
(5)

where Dρ is a discriminator defined by neural network to
classify representations drawn from p([fz, f̂z])p(f̃z) as real
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Figure 1: Overall architecture of the proposed network. The input I is given to the VAE and perception network. f̂z and fz

are represented by the VAE Network. The features f̃z , independent of f̂z and fz and required to determine the control values,
are encoded by the perception network. fz , f̃z , and measured speed feature are fused by FC layers and fed into the conditional
modules called the expert. The gating network assigns a weight gi to each of the expert’s output âi.

and representations drawn from p([fz, f̂z], f̃z) as fake sam-
ple. The adversarial objective is to make the dimensions
of the concatenated representation [fz, f̂z] independent of
the dimensions of the representation f̃z (Brakel and Ben-
gio 2017). The total objective function for disentangling
dynamic-object features is defined:

LMI = max
ω,γ,ψ

min
ρ

LmaxMI − LminMI (6)

Mixture of Domain-specific Experts
We adopt a mixture of experts model to train sub-policies
on each specialized expert instead of using a single expert
for mapping visual observations to control values. Hence,
we divide the policy space into several weather conditions,
with experts becoming specialized on each domain-specific
policy.

The disentangled features are fed into the next neural net-
work layers to be used for each purpose as displayed in
Figure 1. Weather-specific weights for the experts are cal-
culated by gating function with a gating network and f̂z .
The gating network consists of two fully connected (FC)
layers, and the gating function is a softmax nonlinear op-
erator to allocate the weather-specific weight of each con-
ditional module for predicting the action values according
to a certain driving condition. Because fz and f̃z are the
domain-irrelevant features, they have consistent representa-
tion on any domain. However, the control values in the ac-
tion space (A) have different distributions according to the
driving condition. For example, on rainy days a higher brake
value is required due to tire slip. The disentangled domain-
irrelevant features have well-refined information about the
road components and they can be better utilized to train the
domain-specific action space. With this approach, the pro-
posed mixture of domain-specific experts (MoDE) frame-

work can estimate an accurate distribution of action vector
through the cooperation of experts. For this reason, fz and
f̃z are fed into the experts to estimate the control values. The
objective of proposed MoDE framework can be written as:

LMoE =
∑
i

gi||âi,ψ − a||22, (7)

where âψ are predicted action values with the perception
network of parameter ψ and g is probability of picking ex-
pert for each condition.

Location Offset Prediction Regularization
Except for the explicit mapping of on-policy demonstrations
to the model, a proven approach to increase the generaliza-
tion ability is to jointly train with a related subtask. Firstly,
following the exploration (Codevilla et al. 2019), we utilize a
speed prediction branch; the loss term is defined as follows:

Lv = ||v̂ψ − v||22. (8)
In addition to the previous study, we introduce another

subtask called location offset prediction. Based on the kine-
matic dynamics, the location offset from the ego-vehicle in
current global coordinates (xt, yt) at the next time-step t+ 1
are defined as follows:

xt+1 = vtcos(δt)∆t (9)
yt+1 = vtsin(δt)∆t, (10)

where vt is the current speed from the sensorimotor con-
troller and δt is the wheel steering angle. ∆t is a constant
time-gap defined by the collecting frequency, and in this
study, we set it to 0.1. The loss function of the location offset
can be written:

Ll = ||l̂ψ − l||22. (11)
Here, v̂ψ and l̂ψ are the predicted outputs from perception
network and l is that calculated offset by the equation 9 and
10.
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Experiments
Benchmarks and Datasets
The CARLA simulator supports dynamic objects, such as
vehicles and pedestrians, for a large variety of driving
situations. To empirically justify our approach, we con-
ducted several experiments on the NoCrash CARLA bench-
mark (Codevilla et al. 2019) and the AnyWeather bench-
mark (Ohn-Bar et al. 2020) of CARLA simulator version
0.8.4. All benchmarks evaluate the driving performance un-
der various situations, such as “Training Conditions”, “New
Weather”, “New Town”, and “New Town & Weather”, in
terms of success rate (SR). For a fair comparison with other
methods, we conducted experiments according to the bench-
mark policies (Dosovitskiy et al. 2017; Codevilla et al.
2019). Since the previous models (Ohn-Bar et al. 2020;
Kim et al. 2020) achieve almost perfect SRs on the original
CARLA benchmark (Dosovitskiy et al. 2017), it is difficult
to compare the driving performance of the model using the
benchmark. In addition, AnyWeather benchmark includes
“New Town & Weather” condition, which is the most dif-
ficult environment of the original CARLA benchmark. For
these reasons, we do not compare the experimental results
on the original CARLA benchmark.

With the autopilot system (felipecode 2018) for the
CARLA simulator, we collect the training data D under two
conditions: the driving dataset with objects (DObj) and with-
out objects (DNoObj). The DObj is constructed by referring
to the configuration of the CIL (Codevilla et al. 2018) ap-
proach: three frontal RGB cameras, an arbitrary number of
objects, and random noise injection. We randomly collected
the sample of the number of objects from the intervals [100,
150] and [200, 300] for vehicles and pedestrians, respec-
tively. The DNoObj consists of paired driving images cap-
tured by three frontal RGB cameras, with the same angle
configuration to DObj , under four training weather condi-
tions. Data preprocessing is an essential step in overcoming
the limitations derived from the extremely unbalanced data
(Codevilla et al. 2019). Because most of the data were col-
lected in straight driving scenarios, the experts are trained to
only focus on going straight. Referring to the idea of Wang
et al. (Wang et al. 2019), we divide the control values into
bins of size 0.1 and sample them randomly.

Implementation in Detail
Concerning the model architecture, we adopt a similar
model to the LUSR for cycle-consistent VAE, except for the
number of CNN layers. To increase the representation ability
of the encoder network, we use twice as many CNN layers
at each convolutional block in LUSR. In addition, we uti-
lized ResNet50 (He et al. 2016) pre-trained on ImageNet as
a backbone network for the perception network.

The number of hidden units of the fz , f̂z , and f̃z is 256,
and the size of the ffu is 512. Furthermore, the classifiers
and gating network are three FC layers with sizes of 256,
128, and 4. In the second training stage, the weights of
the gating network are initialized using the weights of the
weather classifier learned in the first training stage. The size
of the other FC layer groups and the conditional modules

(Figure 1) are the same as those in the conditional imitation
learning extension with a ResNet backbone and speed regu-
larization (CILRS) (Codevilla et al. 2019) framework. In our
experiment, we employ a 256 × 256 input image resolution
based on the previous study (Ohn-Bar et al. 2020). Every
model is trained using the Adam solver with mini-batches
of 200 samples. The learning rate is set to 0.0001 at the be-
ginning and then it decreases by a factor 0.1 at 25 %, 50 %,
and 75 % of the total number of training epochs.

Total loss function of the first training stage is defined as:

LF = λvaeLcyclic + λcceLcce, (12)

where λvae and λcce are 0.8 and 0.2, respectively. Addition-
ally, total loss function for the second stage is defined as
follows:

LS = −λMILMI + λMoELMoE + λr(Lv + Ll), (13)

where λMI , λMoE , and λr are 0.2, 0.7, and 0.1, respectively.

Comparison with the State-of-the-art
We compare our model with the recent state-of-the-art ap-
proaches: the CILRS (Codevilla et al. 2019), learning situa-
tional driving (LSD) (Ohn-Bar et al. 2020) model, and future
action and states network (FASNet) (Kim et al. 2020). Ev-
ery model utilizes the ResNet backbone as the perception
network and uses an RGB image as the observation.

Table ?? reports the quantitative comparison on the
NoCrash benchmark with state-of-the-art networks. This
benchmark measures the driving ability of the model to re-
act to dynamic objects under various conditions for three
driving tasks: “Empty”, “Regular Traffic”, and “Dense Traf-
fic”. As shown in Table ??, our proposed MoDE achieves
state-of-the-art SRs, except for some conditions. Although
we have a little lower performance compared to other mod-
els under the “New Town” condition for the “Empty” task,
we achieve higher SRs in other tasks. Especially, the most
important result is that our model has the highest SRs un-
der every “Regular Traffic” task. The “Empty” task focuses
on measuring the capacity of lateral control, and there ex-
ists randomness in the results of the “Dense Traffic” task
due to numerous objects appearing and moving in random
positions. Some episodes fail because a pedestrian suddenly
crashes itself into the ego-vehicle or the intersection is al-
ready blocked by an accident of other vehicles. For these
reasons, comparing the results of the “Regular Traffic” is
most reasonable for evaluating the longitudinal and lateral
control abilities of the models.

The AnyWeather benchmark is a new benchmark to mea-
sure the generalization capability under drastically diverse
visual conditions, which are the “New Town” under all ten
kinds of weather unseen in the training process. The results
are presented in Table ?? and the MoDE model exhibits
state-of-the-art SRs under all tasks. It is observable that the
MoDE has a higher generalization ability to unseen driving
environments. Analyzing the result, the most difficult condi-
tions are “MidRainSunset” and “HardRainSunset” because
the lane is invisible in heavy rain and dark illumination.
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Training Conditions New Weather
Task CILRS LSD FASNet MoDE CILRS LSD FASNet MoDE
Empty 97±2 - 96±0 98±0 96±1 - 98±0 98±0
Regular 83±0 - 90±1 93±0 77±1 - 80±1 84±2
Dense 42±2 - 44±2 45±3 47±5 - 38±4 46±2

New Town New Town & Weather
Task CILRS LSD FASNet MoDE CILRS LSD FASNet MoDE
Empty 66±2 94±1 95±1 93±0 90±2 95±1 92±2 94±2
Regular 49±5 68±2 77±2 80±2 56±2 65±4 66±4 68±2
Dense 23±1 30±4 37±2 37±2 24±8 32±3 32±4 34±4

Table 1: Comparison with the state-of-the-art networks on the NoCrash CARLA benchmark in terms of SR in each condition.
The results are percentage (%) of SR and higher values are better.
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Figure 2: Average outputs of the gating function for every weather in the CARLA simulator. Every odd row contains images
of the driving scene; even rows contain graphs of the calculated importance weights for the experts under certain weather. The
first four weather are training conditions: “ClearNoon”, “WetNoon”, “HardRainNoon”, and “ClearSunset”.

New Town & Weather
Task CILRS LSD FASNet MoDE
Straight 83.2 85.6 93.2 93.6
One Turn 78.4 81.6 87.0 89.2
Navigation 76.4 79.6 82.8 83.6
Nav. Dynamic 75.6 78.4 81.2 82.4

Table 2: Experimental results on the AnyWeather benchmark
in terms of SR.

Ablation Study
We performed the ablative analysis to assess whether our
approaches improve the driving performance for the “Reg-
ular Traffic” of NoCrash benchmark and the “Nav. Dy-
namic” of AnyWeather benchmark using without the loca-
tion offset regularization (W/O LR), the mixture of experts

(W/O MoE), and mutual information estimator (W/O MI).
The elimination of each module does not cause the SRs to
decrease much under the “Training Conditions”. This as-
pect means that commonly used neural network architec-
ture, such as the perception network, VAE network, and
single conditional module, have sufficient ability to encode
the features needed to predict the control value for training
data. As shown in Figure 3, the SRs decrease consistently
with the elimination of each module. It can be interpreted
that each module improves the generalization ability for the
unseen driving environments. In the case of W/O LR, the
SRs slightly dropped under every conditions. This suggests
that the joint optimization with location offset task imple-
ments the perception network to learn general representa-
tion for the diverse situation. Moreover, we have experimen-
tally demonstrated that combination of experts specialized in
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Figure 3: Results of the ablation studies on the NoCrash
benchmark under “Regular Traffic” task and AnyWeather
benchmark (AnyW) under “Nav. Dynamic” task. The NW
and NT are “New Weather” and “New Town”, respectively.

each domain is a good strategy to achieve reliable prediction
of action values under unseen environment. Finally, when
we train the model without the mutual information estima-
tor (W/O MI), the SRs dropped the most. It seems that the
generalization ability is significantly degraded because the
f̃z cannot be guaranteed to be a domain-irrelevant feature.

Weights of Experts under Diverse Conditions
Figure 2 shows the mixing proportion assigned to each ex-
pert. Since we set the number of experts to four, the bars
in the histogram represent the importance of experts under
the weather condition. The first four results are the train-
ing weather condition and the rest are the results of the test
condition. For the training conditions, most outputs are pre-
dicted by a particular conditional module. Furthermore, for
the test environment, the assigned combination of experts
for certain weather is quite reasonable. For example, to pre-
dict the control values of “CloudyNoon” the gating network
assigns the experts of “ClearNoon” and “HardRainNoon”.

Visualization of Disentangled Features
To show that our proposed two-stage representation learn-
ing can disentangle the dynamic object feature, we train a
simple decoder using fixed fz , f̂z , and f̃z for image recon-
struction. After finishing the training, we first select images
I1 from DObj and I2 from DNoObj and then extract their
latent features. Second, we reconstruct the images (Î1, Î2)
using swapped features f̃z1 from I1 with f̃z2 from I2. As a
result, the vehicle moves from Î1 to the Î2 displayed in the
last row of Figure 4.

To dive deeper into the disentangled latent space, we plot
in Figure 5 the t-SNE embeddings of the domain-specific,
domain-general, and dynamic-object features extracted from
the trained encoders with and without the mutual informa-
tion estimator. As displayed in Figure 5(a), the latent space
is well split into three disjoint spaces through the proposed
two-stage representation learning process. Furthermore, the
four clusters of the domain-specific embedding visualize the
four weather in the training dataset. The result shown in Fig-
ure 5(b) demonstrates that the dynamic-object features are

(a) (b) (c) (d)

Figure 4: Results of reconstructed images. The first row is
input images, and the second row is reconstructed images
that take fz , f̂z , and f̃z from the first row. The last row is
reconstructed images by swapping f̃z from (a) and (c) with
(b) and (d), respectively.

(a) (b)

෢𝑓𝑧

𝑓𝑧

෪𝑓𝑧

෢𝑓𝑧

𝑓𝑧

෪𝑓𝑧

Figure 5: t-SNE plots of the disentangled domain-specific,
domain-general, and dynamic-object embeddings. a) Fea-
tures are extracted by trained encoders through the proposed
representation learning process; b) Features are extracted by
trained encoders without the mutual information estimator.

not separated from other features without the mutual infor-
mation estimator.

Conclusion
In this study, we introduced a novel autonomous driving
framework based on the two-stage representation learn-
ing approach to disentangle the latent feature space into
three disjoint features. To solve the problem that no explicit
knowledge about the dynamic objects is present, we adopted
the statistics neural network, that splits the latent features
using a mutual information estimator. We guided each fac-
tor in the representation learning process to ensure that each
feature has a distribution suitable for its purpose by simul-
taneously optimizing related tasks in a multi-task learning
manner. These well-refined features are utilized to train the
MoDE framework in realizing a stable autonomous driving
model. We have empirically shown that the proposed strat-
egy can improve the robustness of the model under unseen
environments through various driving experiments.
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