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Abstract

In this paper, we propose a new joint object detection and
tracking (JoDT) framework for 3D object detection and track-
ing based on camera and LiDAR sensors. The proposed
method, referred to as 3D DetecTrack, enables the detector
and tracker to cooperate to generate a spatio-temporal rep-
resentation of the camera and LiDAR data, with which 3D
object detection and tracking are then performed. The detec-
tor constructs the spatio-temporal features via the weighted
temporal aggregation of the spatial features obtained by the
camera and LiDAR fusion. Then, the detector reconfigures
the initial detection results using information from the track-
lets maintained up to the previous time step. Based on the
spatio-temporal features generated by the detector, the tracker
associates the detected objects with previously tracked ob-
jects using a graph neural network (GNN). We devise a fully-
connected GNN facilitated by a combination of rule-based
edge pruning and attention-based edge gating, which exploits
both spatial and temporal object contexts to improve track-
ing performance. The experiments conducted on both KITTI
and nuScenes benchmarks demonstrate that the proposed 3D
DetecTrack achieves significant improvements in both detec-
tion and tracking performances over baseline methods and
achieves state-of-the-art performance among existing meth-
ods through collaboration between the detector and tracker.

Introduction
Multiple object tracking (MOT) based on sensor mea-
surements (e.g., camera and LiDAR) is essential for ma-
chine perception tasks in robotics and autonomous driving
applications. The traditional approach is the tracking-by-
detection strategy, which detects objects based on a single
snapshot of sensor measurements and temporally links the
detection results over multiple snapshots. In this approach,
detection and tracking are considered independent tasks and
thus have been studied separately by different research com-
munities.

Although the tracking-by-detection approach has been
shown to be effective in numerous studies, the following
question arises: if our end goal is to identify moving objects
based on the sequence of measurements received from the
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sensors, would it not be beneficial to jointly design and opti-
mize both detectors and trackers to improve the performance
of both?

Several works relevant to JoDT have been reported in the
literature (Zhang et al. 2021; Wang et al. 2020; Wang, Ki-
tani, and Weng 2020; Hu et al. 2019; Kim and Kim 2016;
Kieritz, Hubner, and Arens 2018; Voigtlaender et al. 2019;
Shenoi et al. 2020). The previous JoDT methods can be cat-
egorized into two approaches. The first approach integrates
the re-identification network for object association into the
detector and jointly optimizes them end-to-end. This ap-
proach was mostly developed for 2D MOT, including Track-
RCNN (Voigtlaender et al. 2019), JDE (Wang et al. 2020),
FairMOT (Zhang et al. 2021), RetinaTrack (Lu et al. 2020),
and GSDT (Wang, Kitani, and Weng 2020). The second ap-
proach exploits the intermediate features extracted by the
detector for MOT. The appearance cues and motion con-
text identified by the detector were used to perform tracking.
The 2D MOT methods in this category include MPNTrack
(Brasó and Leal-Taixé 2020), RNN tracker (Kieritz, Hubner,
and Arens 2018), CDT (Kim and Kim 2016), PredNet (Mun-
jal et al. 2020), and Chained-Tracker (Peng et al. 2020). The
JoDT methods for 3D MOT include the mono3DT (Hu et al.
2019) and JRMOT(Shenoi et al. 2020).

In this paper, we propose a new JoDT method, referred to
as 3D DetecTrack, which performs 3D MOT based on the
sequence of the camera images in conjunction with LiDAR
point clouds. In our framework, the detector and tracker co-
operate to utilize spatio-temporal information to perform 3D
object detection and tracking.

First, the detector generates spatio-temporal features by
combining the spatial features produced by the camera and
LiDAR sensor fusion over time. This operation creates fea-
tures for detecting objects with higher accuracy. The detec-
tion step in 3D DetecTrack also exploits the tracklet main-
tained by the tracker to improve detection accuracy. The re-
gion proposal network (RPN) calibrates an objectness score
based on the intersection of union (IoU) between the anchor
box and its nearest tracklet box. Then, refinement network
aggregates the instance-level features from adjacent frames
and adjusts the classification scores in a manner similar to
RPN. This design is inspired by the intuition that the track-
lets provide useful cues, which can increase the confidence
score for detecting objects.
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Next, the tracking step in 3D DetecTrack utilizes the
spatio-temporal features generated by the detector in the ob-
ject association task. According to the 3D bounding boxes
provided by the detector, the tracker pools the object fea-
tures from the temporally aggregated features and point-
encoded features. Then, it associates the detected objects
with those in the tracklet through a graph neural network
(GNN). We consider a fully-connected GNN model to rep-
resent both spatial and temporal relations between the ob-
jects. However, this approach causes the connections in the
graph to become excessively dense, which makes the con-
vergence of the GNN slower. To address this issue, we em-
ploy both rule-based edge pruning and attention-based edge
gating. Rule-based edge pruning removes the edges of a
graph based on the distance between the objects compris-
ing a pair. Attention-based edge gating learns to weight the
edges of the graph depending on the input. Attending to only
the critical edges of the graph enables the GNN to oper-
ate faster and more accurate. The detector and tracker are
trained in an end-to-end fashion. The contributions of this
paper are summarized as follows

• We propose a novel JoDT method in which the detector
and tracker can collaborate to obtain the spatio-temporal
representation of multi-sensor data for 3D MOT.

• We design a cooperative JoDT model that reconfigures
the outputs of both the RPN and the refinement net-
work based on the information inferred from the tracked
objects and also utilizes the spatio-temporal features
formed by the detector for object association.

• We devise a spatio-temporal gated GNN (SG-GNN),
which adopts both rule-based pruning and attention-
based edge gating to improve the tracking performance.

• We evaluate the performance of the proposed 3D Detec-
Track on both the KITTI and nuScenes datasets. Our ex-
periments demonstrate that the proposed 3D DetecTrack
achieves dramatic performance improvements over the
baselines and outperforms existing 3D MOT methods on
both datasets.

Related Work
3D Object Detection and Multi Object Tracking
3D object detection methods can be divided into two cate-
gories: (i) LiDAR-only and (ii) sensor fusion-based meth-
ods. The LiDAR-only 3D detectors encode point clouds
using the PointNet (Qi et al. 2017a,b) and detect objects
by applying a detection-head network. These methods in-
clude PointRCNN (Shi, Wang, and Li 2019), Part A2 (Shi
et al. 2019), STD (Yang et al. 2019), 3DSSD (Yang et al.
2020), VoxelNet (Zhou and Tuzel 2018), SECOND (Yan,
Mao, and Li 2018), PointPillar (Lang et al. 2019), and CIA-
SSD (Zheng et al. 2021). To overcome the limitations of
the LiDAR-only approach, many sensor fusion-based 3D
object detection methods have been developed, which en-
hance object features by combining intermediate features
obtained from the camera image and LiDAR point clouds.
These methods include ContFuse (Liang et al. 2018), MMF
(Liang et al. 2019), CLOCs (Pang, Morris, and Radha 2020),

and 3D-CVF (Yoo et al. 2020). In our method, we adopt a
3D-CVF (Yoo et al. 2020) as the baseline detector.

Numerous 3D MOT methods follow the tracking-by-
detection paradigm (Weng et al. 2020a; Chiu et al. 2020;
Weng et al. 2020b; Zhai et al. 2020; Zhang et al. 2019; Baser
et al. 2019), in which the objects are first detected in 3D,
the tracker then associates the detected objects. Since a sim-
ple but effective baseline 3D MOT method, AB3DMOT was
proposed in (Weng et al. 2020a). Various 3D MOT meth-
ods have been proposed including mmMOT (Zhang et al.
2019), FANTrack (Baser et al. 2019), and GNN3DMOT
(Weng et al. 2020b). These methods do not consider the co-
optimization of detection and tracking, limiting their poten-
tial for further performance gains.

Joint Object Detection and Tracking
Various JoDT methods have been proposed in (Zhang et al.
2021; Wang et al. 2020; Wang, Kitani, and Weng 2020; Peng
et al. 2020; Hu et al. 2019; Shenoi et al. 2020; Kim and
Kim 2016; Kieritz, Hubner, and Arens 2018; Ke et al. 2019;
Munjal et al. 2020). In the early phase, the idea of JoDT
was adopted for 2D MOT. CDT (Kim and Kim 2016) re-
stored undetected objects by examining forward and back-
ward tracing of tracking results. JDE (Wang et al. 2020) and
FairMOT (Zhang et al. 2021) incorporated a re-identification
model of the tracker into the detector. GSDT (Wang, Kitani,
and Weng 2020) performed simultaneous object detection
and tracking using GNN.

Recently, JoDT has been extended to 3D MOT. Mono3DT
(Hu et al. 2019) enhanced the performance of monocu-
lar camera-based 3D object detection by tracking moving
objects across frames via occlusion-aware association and
depth-ordering matching. JRMOT (Shenoi et al. 2020) com-
bined re-identification, detection and tracking steps into a
joint probabilistic data association framework. The proposed
3D DetecTrack differs from the aforementioned methods
in that the detector and the tracker cooperatively generate
strong spatio-temporal features, which are then used to per-
form 3D object detection and tracking.

Proposed Method
In this section, we present the details of the proposed 3D
DetecTrack method.

Overview
The overall architecture of the proposed 3D DetecTrack is
depicted in Figure 1. The proposed JoDT consists of i) detec-
tion stage and ii) tracking stage. We denote the tracklet at the
(t − 1)th time step as Tt−1 = (Tt−1,1, ..., Tt−1,NT

), where
NT is the number of tracked objects. The objective of JoDT
is to produce the detection results Dt = (Dt,1, ...,Dt,ND

)
and the tracklet Tt given Tt−1 and the sensor measurements
Yt acquired at the tth time step, where ND is the number of
detected objects. Note that NT and ND can vary over time.

Detection stage. We adopt the two-stage detection model,
3D-CVF (Yoo et al. 2020) as our baseline 3D object
detector. We choose the 3D-CVF because it can gener-
ate both camera-view 2D features and bird’s eye view
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Figure 1: The 3D DetecTrack effectively utilizes the spatio-temporal information to perform JoDT. The camera and LiDAR
features are temporally aggregated via SFANet. Trk-RPN and Trk-RefNet reconfigure the detection output using the tracklet
from the tracker. Using the RoI-aligned features produced by the detector, the objects are associated using SG-GNN. SG-GNN
exploits spatio-temporal relations among objects to perform object association. Finally, the affinity matrix is calculated based
on the output of SG-GNN. Our proposed network is trained in an end-to-end manner.

(BEV) LiDAR features. In our work, we modify the 3D-
CVF to produce spatio-temporal features. Let (F (v)

t−1, F
(v)
t )

be the camera-view features extracted from the images
(It−1, It) via the shared CNN backbone network. Simi-
larly, let (F (BEV )

t−1 , F
(BEV )
t ) be the BEV features obtained

by the voxelization process followed by the 3D CNN. The
spatio-temporal feature aggregation network (SFANet) ag-
gregates two concatenated features (F

(v)
t−1, F

(BEV )
t−1 ) and

(F
(v)
t , F

(BEV )
t ) to produce the spatio-temporal features

(F
(v,a)
t , F

(BEV,a)
t ). Because these two features are tempo-

rally correlated but not exactly identical, they should be
combined in different proportions, depending on their rel-
evance to the end task. For this goal, we employ a gated at-
tention mechanism, which adaptively balances the contribu-
tions of (F (v)

t−1, F
(BEV )
t−1 ) and (F

(v)
t , F

(BEV )
t ) by multiply-

ing the learnable weight maps At−1 and At. This operation
will be described in detail later. The detector then fuses the
camera features F

(v,a)
t and LiDAR features F

(BEV,a)
t into

F
(a)
t , following the procedure of 3D-CVF (Yoo et al. 2020).

Based on the features F (a)
t produced by SFANet, the RPN

predicts the object box and objectness scores for each an-
chor box. Subsequently, the refinement stage refines the box
coordinates and computes the classification scores. Our 3D
DetecTrack enhances the RPN and refinement stages by uti-
lizing the information obtained from the tracklet Tt−1. The
Trk-RPN calibrates the objectness score based on the IoU
between each anchor and its nearest tracklet in the BEV do-
main. The objects maintained in the tracklet are supposed
to increase the likelihood of objects being detected in the
vicinity, which implies that the tracker assists with the de-
tection task. The Trk-RefNet aggregates the instance-level
features at time t and t − 1 based on the cosine similarity-
based attention and adjusts the classification score based on
IoU between the anchor and the nearest tracklet.

Tracking stage. The tracking stage associates the de-
tection results Dt with the tracklet Tt−1 based on the
spatio-temporal features obtained in the detection stage.

The 3D boxes for the detected objects in Dt are projected
into the BEV domain to produce 2D boxes. Then, 2D
RoI pooling is performed for the ith object to extract the
RoI-aligned features, f (v,a)

t,i and f
(BEV,a)
t,i from F

(v,a)
t and

F
(BEV,a)
t , respectively. In addition, the tracker pools the

point-encoded features f
(p)
t,i via 3D-RoI alignment method

proposed in (Yoo et al. 2020). These features are concate-
nated as f

(D)
t,i = (f

(v,a)
t,i , f

(BEV,a)
t,i , f

(p)
t,i ). Similarly, a sim-

ilar feature pooling procedure is applied for the ith object
in the tracklet Tt−1. This yields the concatenated features
f
(T )
t−1,i = (f

(v,a)
t−1,i, f

(BEV,a)
t−1,i , f

(p)
t−1,i). Two feature groups

f
(D)
t,i and f

(T )
t−1,i serve for the discriminative features used

for object association.

Two features (f
(D)
t,1 , ..., f

(D)
t,ND

) and (f
(T )
t−1,1, ..., f

(T )
t−1,NT

)
are fed into the SG-GNN. These features are represented
by nodes in the graph. The SG-GNN associates the objects
in Dt with those in Tt−1 by matching (f

(D)
t,1 , ..., f

(D)
t,ND

) and

(f
(T )
t−1,1, ..., f

(T )
t−1,NT

). We consider a fully connected graph
to model the spatial and temporal relations among the ob-
jects in Dt and Tt−1. Because these dense connections can
lead to unnecessary feature exchanges between nodes, we
devise rule-based pruning and attention-based edge gating to
improve SG-GNN. Finally, the SG-GNN produces an affin-
ity matrix based on the pairwise association score for all
edges connecting the nodes from Dt and those from Tt−1.
The affinity matrix is then processed by the Hungarian algo-
rithm (Kuhn 1955) to output the final tracklet Tt. The entire
procedure is repeated until the input sequence is complete.

Spatio-Temporal Feature Aggregation Network

The SFANet selectively combines two spatial feature maps
obtained in two adjacent time steps. Suppose that there exist
two feature maps F (·)

t−1 and F
(·)
t of the same size C×X×Y .

The SFANet applies the weighted aggregation of F (·)
t−1 and
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Figure 2: Both Trk-RPN and Trk-RefNet utilize the tracklet
Tt−1 to improve the detection performance.

F
(·)
t as

F
(·,a)
t = At ⊗ F

(·)
t +At−1 ⊗ F

(·)
t−1, (1)

where ⊗ denotes pixel-wise multiplication and the attention
maps At and At−1 have a size of 1×X × Y . The attention
maps At and At−1 are computed as

At = σ(conv3×3(F
(·)
t ⊕ F

(·)
t−1)) (2)

At−1 = 1−At (3)

where σ(·) is the logistic-sigmoid function, conv3×3 are the
convolutional layers with 3× 3 kernels, and the operation ⊕
denotes concatenation.

Tracklet-aware 3D Object Detection
The detailed structures of Trk-RPN and Trk-RefNet are de-
picted in Figure 2 (a) and (b), respectively.

Trk-RPN. Trk-RPN produces P region proposals
R1, ...,RP based on the feature maps F (a)

t obtained by the
SFANet. For each anchor, the initial objectness score and 3D
box coordinates are predicted through a 1×1 convolution.
The objectness score is calibrated using the IoU between the
anchor box and tracklet boxes in Tt−1 in BEV domain. For
each anchor, IoU is obtained as the highest IoU among all
tracklet boxes. IoU is set to 0 if the anchor does not over-
lap with any tracklet box. The input feature, initial object-
ness score, and IoU are concatenated and passed through

the additional feedforward neural network to output the ad-
justed objectness score. Because higher IoU values indicate
a higher chance of an anchor being positive, they are ex-
pected to increase the objectness score of the anchor.

Trk-RefNet. Trk-RefNet refines the 3D box predic-
tion and classification score for all region proposals found
by Trk-RPN. Based on the jth region proposal Rj , the
RoI-aligned features g

(v,a)
t,j and g

(BEV,a)
t,j are pooled from

F
(v,a)
t and F

(BEV,a)
t . In addition, 3D-RoI alignment (Yoo

et al. 2020) is applied to extract the point-encoded fea-
tures g

(p)
t,j . These features are concatenated as g

(D)
t,j =

(g
(v,a)
t,j , g

(BEV,a)
t,j , g

(p)
t,j ). Whereas SFANet combines feature

maps without any alignment, Trk-RefNet spatially aligns ob-
ject features before performing feature aggregation. Treating
Rj as an anchor, Trk-RPN predicts the 3D bounding box
for the (t − 1)th time step based on F

(a)
t−1. Then, the con-

catenated features for the (t − 1)th time step are obtained
as g(D)

t−1,j = (g
(v,a)
t−1,j , g

(BEV,a)
t−1,j , g

(p)
t−1,j). Finally, the instance-

level features, g(D)
t,j and g

(D)
t−1,j are aggregated as

ht,j = g
(D)
t,j + w(g

(D)
t,j , g

(D)
t−1,j)g

(D)
t−1,j , (4)

w(g
(D)
t,j , g

(D)
t−1,j) denotes the cosine similarity defined as

w(g
(D)
t,j , g

(D)
t−1,j) =

ϕ(g
(D)
t,j )⊙ ϕ(g

(D)
t−1,j)∥∥∥ϕ(g(D)

t,j )
∥∥∥
2

∥∥∥ϕ(g(D)
t−1,j)

∥∥∥
2

, (5)

where ϕ(·) denotes the global average pooling operation,
and ⊙ denotes the inner product operation. The cosine simi-
larity measures the correlation between two detection results
and is used to adjust the weight applied to the features at the
(t− 1)th time step.

Trk-RefNet calibrates the classification score by applying
the fully-connected layers to the initial classification score
concatenated with the IoU between the region proposal and
the nearest tracklet box.

Spatio-Temporal Gated Graph Neural Network
Spatio-temporal graph. The graph models the relation
among the objects in Dt and Tt−1. According to the
3D boxes in Dt and Tt−1, RoI pooling is performed
to obtain the RoI-aligned features (f

(D)
t,1 , ..., f

(D)
t,ND

) and

(f
(T )
t−1,1, ..., f

(T )
t−1,NT

). These RoI-aligned features are repre-
sented by nodes, and their explicit pairwise relationships are
encoded by the edges. Previous works (Weng et al. 2020b;
Wang, Kitani, and Weng 2020) used a GNN connecting the
nodes at the tth time step with those at the (t−1)th time step.
In our work, we consider a spatio-temporal graph, which ad-
ditionally connects the nodes within the nodes at the tth time
step as well as those within the nodes at the (t − 1)th time
step. This captures the spatial relation between the objects.
Our fully-connected graph is motivated by the idea that un-
derstanding the spatial relation between objects will help
better associate the objects temporally. However, owing to
the dense connections of the graph, a GNN may require un-
necessary exchanges of the features, thereby leading to a
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higher convergence speed. To address this issue, we apply
rule-based edge pruning and attention-based edge gating to
SG-GNN, as described below.

Rule-based edge pruning. Rule-based edge pruning dis-
cards unnecessary edges from a graph based on the spatial
distance between objects. Two types of rules are applied.
First, the edges connecting the nodes at the tth time step are
pruned if the Euclidean distance between the object centers
in the BEV domain is larger than the threshold Ls meter.
Similarly, the edges connecting the nodes at the (t − 1)th
time step are pruned according to the same condition. This
implies that the SG-GNN only attends to the spatial rela-
tion between nearby objects. Second, the edges connecting
the nodes between the tth time step and the (t − 1)th time
step are pruned if the Euclidean distance between objects
is larger than Lt meter. This design is justified by the fact
that objects that are distant from each other are less likely
to be associated. These pruning rules can simplify the node
connectivity, thereby requiring much fewer iterations. In our
experiments, we set Ls = 15 meter and Lt = 5 meter based
on an empirical study.

Attention-based edge gating. We also apply attention-
based edge gating, in which an attention mechanism is used
to attend the model only on the influential edges. This
method adaptively adjusts the weight for the edge based on
the similarity of the two features associated with the nodes
at both ends. The basic node feature aggregation step fol-
lows the rule suggested in (Morris et al. 2019). Consider N
source nodes nA,1, ..., nA,N and a single target node nB .
In the intermediate iteration of GNN, we have the features
fA,1, ..., fA,N and fB at the nodes nA,1, ..., nA,N and nB ,
respectively. The attention weight ai is applied to the di-
rected edge EnA,i→nB

from nA,i to nB during node fea-
ture aggregation. Specifically, ai is multiplied by the fea-
tures fA,i when aggregating the features fA,1, ..., fA,N at
node nB . The attention weight ai is calculated by

sk =
fA,k ◦ fB

∥fA,k∥2 ∥fB∥2
(6)

ai =
ew·si∑N

k=1 e
w·sk

(7)

where ◦ denotes the dot product, and w is the learnable pa-
rameter. This attention weight reduces the influence of edges
in which the two features are not aligned well. This enables
the SG-GNN to focus only on the association of important
features.

Object Association
After a fixed number of iterations, the SG-GNN ends up with
the features (f ′

t,1, · · · , f ′
t,ND

) and (f ′
t−1,1, · · · , f ′

t−1,NT
) at

the nodes. The affinity matrix A is constructed based on the
association score between the objects in Dt and those in
Tt−1. The (i, j)th element of A is provided by the associa-
tion score Aij between f ′

t−1,i and f ′
t−1,j , which is calculated

by
Aij = σ(fc(f ′

t−1,i ⊗ f ′
t,j)) (8)

where fc represents fully connected layers with a depth of 3.
The association score has a value between 0 and 1 and the

affinity matrix A is fed to the Hungarian algorithm (Kuhn
1955) to determine the tracklet Tt.

Loss Function
We adopt a multi-task loss to train the 3D DetecTrack. The
total loss function comprises the detection loss Ldet and
tracking loss Ltrk, i.e., Ltotal = Ldet + Ltrk. The detection
loss Ldet is expressed as

Ldet = Lrpn + Lref (9)

where Lrpn denotes the RPN loss used to train the network
pipeline up to Trk-RPN, and Lref denotes the refinement loss
in training Trk-RefNet. Following the setup in (Yoo et al.
2020), the RPN loss Lrpn comprises the focal loss (Lin et al.
2017) for the classification task and the Smoothed-L1 loss
for the regression task. The refinement loss Lref is defined
similarly.

The tracking loss Ltrk measures the mean squared error
(MSE) of the affinity matrix A, defined as

Ltrk =
1

ND ·NT

NT∑
i=1

ND∑
j=1

(Aij −Agt
ij )

2. (10)

Note that Agt represents the ground truth (GT) of the affinity
matrix A. The GT affinity matrix Agt is calculated in two
steps. In the first step, the 3D IoU between the output Dt and
its GT boxes is calculated and the object ID of the GT box is
assigned to the object in Dt if the highest 3D IoU is above
0.5. Comparing the object IDs in Tt−1 and those assigned
to Dt, we assign 0 or 1 to the GT affinity matrix Agt. In the
training phase, our 3D DetecTrack model regards the GT for
Dt−1 as the tracklet Tt−1.

Experiments
KITTI Dataset
Dataset and evaluation metrics. The KITTI dataset was
collected from urban driving scenarios using a single cam-
era and Velodyne HDL-64E LiDAR (Geiger, Lenz, and Ur-
tasun 2012). To validate our method, we split the tracking
training dataset evenly into train set and valid set by half,
following (Weng et al. 2020b). Because the KITTI object
detection dataset did not contain sequence data, performance
was evluated only on the KITTI object tracking dataset. As
a benchmark, we evaluated the 3D MOT performance on
the KITTI object tracking valid dataset. As 3D MOT perfor-
mance metrics, we used sAMOTA, AMOTA, and AMOTP
metrics (Weng et al. 2020a) as well as the standard CLEAR
metric (Bernardin and Stiefelhagen 2008). We also exam-
ine the 2D MOT performance on the KITTI object track-
ing test dataset for the Car category. For 2D MOT, we used
the KITTI evaluation metric (Luiten et al. 2020) including
HOTA, DetA, and AssA. Because our method was designed
under the JoDT framework, we also evaluated the 3D detec-
tion performance. As a performance metric, we used the av-
erage precision (AP) with three difficulty levels, i.e., ”easy”,
”moderate”, and ”hard” as suggested in (Geiger, Lenz, and
Urtasun 2012).
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Method Runtime (ms) sAMOTA(%) AMOTA(%) AMOTP(%) MOTA(%) MOTP(%)
FlowMOT (Zhai et al. 2020) - 90.56 43.51 76.08 85.13 79.37

AB3DMOT (Weng et al. 2020a) 4.7 93.28 45.43 77.41 86.24 78.43
mmMOT (Zhang et al. 2019) 20 70.61 33.08 72.45 74.07 78.16
FANTrack (Baser et al. 2019) 70 82.97 40.03 75.01 74.30 75.24

GNN3DMOT (Weng et al. 2020b) - 93.68 45.27 78.10 84.70 79.03
Method of (Weng, Yuan, and Kitani 2020) - 92.37 44.96 76.83 84.49 78.32

PC-TCNN (Wu et al. 2021) - 95.44 47.64 - - -
3D-CVF (Yoo et al. 2020) 20 75.22 35.50 78.06 75.62 79.73+ mmMOT (Zhang et al. 2019)
3D-CVF (Yoo et al. 2020) 4.7 93.85 46.47 79.64 88.83 80.11+ AB3DMOT (Weng et al. 2020a)

Proposed method 160 (37) 96.49 48.87 81.56 91.46 82.24

Table 1: The model is trained on KITTI tracking training set and evaluated on KITTI tracking validation set for Car class.

Method mAP sAMOTA(%) AMOTA(%) AMOTP(%) MOTA(%) MOTP(%)
FANTrack (Baser et al. 2019) - 19.64 2.36 22.92 18.60 39.82
mmMOT (Zhang et al. 2019) - 23.93 2.11 21.28 19.82 40.93

GNN3DMOT (Weng et al. 2020b) - 29.84 6.21 24.02 23.53 46.91
AB3DMOT (Weng et al. 2020a) - 39.90 8.94 29.67 31.40 57.54

Method of (Weng, Yuan, and Kitani 2020) - 28.96 11.36 25.83 22.81 41.99
Baseline 49.15 39.48 8.99 24.17 36.91 54.20

Proposed method 52.89 45.60 11.43 27.69 43.49 55.57

Table 2: The model is trained on nuScenes training set and evaluated on nuScenes validation set.

Implementation details. Our 3D DetecTrack model was
trained in two steps. In the first step, we trained only the de-
tection stage of the 3D DetecTrack using both the KITTI ob-
ject detection and tracking datasets. The detection stage re-
quires tracklet Tt−1 for training. Since the detection dataset
does not contain sequence data, the sequence was created
by copying the same data. We trained the detection stage
following the setup suggested in (Yoo et al. 2020). In the
second step, the detection stage was initialized with the
pre-trained model and the entire 3D DetecTrack model was
trained end-to-end on the KITTI object tracking dataset. We
trained the entire network over 40 epochs using the ADAM
optimizer (Kingma and Ba 2014). The initial learning rate
was set to 10−4 and decayed by a factor of 0.1 at the 26th and
35th epochs. The weight decay parameter was set to 10−4,
and the mini-batch size was set to 4.

nuScenes Dataset
Dataset and evaluation metrics. The nuScenes dataset is a
large scale autonomous driving dataset which contains more
than 1,000 driving scenarios. The dataset was collected us-
ing six multi-view cameras, 32-channel LiDAR, and 360-
degree object annotations. We evaluated 3D MOT perfor-
mance for 7 categories (bicycle, bus, car, motorcycle, pedes-
trian, trailer and truck), as a subset of the detection cate-
gories in (Caesar et al. 2020). We also evaluated the 3D
detection performance for 10 categories, including barrier,
construction vehicle, and traffic cone as well as the afore-
mentioned 7 categories. As 3D MOT performance metrics,
we used the standard CLEAR metric (Bernardin and Stiefel-
hagen 2008) and the sAMOTA, AMOTA, and AMOTP met-
rics (Weng et al. 2020a). We used the nuScenes detection
score (NDS) (Caesar et al. 2020) as a 3D detection perfor-
mance metric.

Implementation details. We trained the 3D DetecTrack
using a similar procedure similar to that used for the KITTI
benchmark. We trained the entire model over 20 epochs. The
initial learning rate was set to 10−4 and decayed by a factor
of 0.1 at the 13th and 17th epochs. The rest of configurations
were the same as those for KITTI.

Experimental Results
Performance on KITTI. Table 1 presents the 3D MOT per-
formance and runtime evaluated on the KITTI tracking valid
set. The KITTI benchmark provides a test dataset for 2D
MOT, but not for 3D MOT; therefore, we strictly followed
the 3D MOT evaluation procedure presented in (Weng et al.
2020a). We compared our 3D DetecTrack with several out-
standing 3D MOT methods including FlowMOT (Zhai et al.
2020), AB3DMOT (Weng et al. 2020a), mmMOT (Zhang
et al. 2019), FANTrack (Baser et al. 2019), GNN3DMOT
(Weng et al. 2020b), the method of (Weng, Yuan, and Ki-
tani 2020), and PC-TCNN (Wu et al. 2021). These 3D MOT
methods adopt different 3D detectors. Thus, as shown in Ta-
ble 1, we also evaluate the performance of mmMOT (Zhang
et al. 2019) and AB3DMOT (Weng et al. 2020a) combined
with the vanilla 3D-CVF to compare the ability of the track-
ers only. Table 1 shows that the proposed method outper-
forms the existing 3D MOT methods by a significant mar-
gin for all MOT metrics considered. In particular, our 3D
DetecTrack performs better than the current state-of-the-
art method, PC-TCNN. The proposed 3D DetecTrack also
achieves better performance than AB3DMOT (Weng et al.
2020a) and mmMOT (Zhang et al. 2019) when 3D-CVF is
used as a 3D detector.

We also evaluate the 2D MOT performance on the KITTI
object tracking test set (refer to the official evaluation bench-
mark on the KITTI leaderboard). Due to space concerns,
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SG-GNN Trk-RPN Trk-RefNet SFANet APeasy APmod. APhard sAMOTA(%)
Baseline 90.32 89.37 88.89 92.15

Ours
✓ 90.32 89.37 88.89 94.97
✓ ✓ 97.56 89.96 89.35 95.56
✓ ✓ ✓ 98.41 90.32 90.08 96.02
✓ ✓ ✓ ✓ 99.27 91.01 90.83 96.49

Table 3: The ablation study is conducted on KITTI valid set for Car class to validate the components of detection stage.

SFANet Rule-based Attention-based Runtime sAMOTA AMOTA AMOTP MOTA MOTP+ Trk-RPN edge-pruning edge gating (ms) (%) (%) (%) (%) (%)+ Trk-RefNet
Baseline - 92.15 45.23 77.46 86.72 79.52

Ours
✓ 41 94.02 46.79 78.81 88.45 79.99
✓ ✓ 34 95.50 48.04 81.03 90.21 81.98
✓ ✓ ✓ 37 96.49 48.87 81.56 91.46 82.24

Table 4: The ablation study is conducted on KITTI valid set for Car class to validate the components of SG-GNN.

we provide the 2D MOT performance in the Appendix. 2D
MOT results are obtained by projecting 3D bounding boxes
to the camera domain and generating 2D bounding boxes
enclosing the projected coordinates. Although the proposed
3D DetecTrack is not originally designed for 2D MOT task,
it achieves comparable performance to that of the current
state-of-the-art 2D MOT methods. Note that the runtime of
the tracker in the proposed method (37ms) is comparable to
that of the existing tracking methods.

Performance on nuScenes. Table 2 presents the 3D MOT
performance on nuScenes validation set. The baseline al-
gorithm uses the original 3D-CVF and the vanilla fully-
connected GNN. The proposed approach improves on the
baseline by 3.74% in mAP and 6.12%, 2.44% and 3.52%
in sAMOTA, AMOTA, and AMOTP, respectively. The 3D
DetecTrack achieves the best performance among the can-
didates in the sAMOTA, AMOTA, and MOTA metrics. The
per-class performance on both 3D detection and MOT tasks
is provided in the Appendix. This shows that the proposed
method achieves a particularly remarkable performance gain
on bicycle, motorcycle, bus, and truck categories.

Ablation Study
In this section, we present an ablation study conducted to
validate the contributions of the proposed design to our
3D DetecTrack. Experiments were conducted on the KITTI
valid set. Our baseline was chosen as a combination of the
original 3D-CVF and the baseline GNN. Table 3 presents
how much the components of the 3D DetecTrack, SG-
GNN, SFANet, Trk-RPN, and Trk-RefNet improve the per-
formance on both 3D detection and MOT tasks. When the
SG-GNN is added to the baseline, both temporal and spatial
object context is exploited for object association, improving
the sAMOTA performance by 2.82%. Both Trk-RPN and
Trk-RefNet improve both the detection and MOT perfor-
mance by utilizing the information from the tracklets. Trk-
RPN yields a 0.59% gain in APmod. detection performance
and a 0.59% gain in sAMOTA. Trk-RefNet achieves a 0.36%
gain in APmod. and a 0.46% gain in sAMOTA. Totally, both
Trk-RPN and Trk-RefNet achieve 0.95% and 1.05% gains

in APmod. and sAMOTA metrics, respectively. SFANet also
improves the performance by 0.69% in APmod. and 0.47%
in sAMOTA by aggregating adjacent feature maps over time.
Combining all the ideas, the proposed method improves
APmod. performance by 1.64% and sAMOTA performance
by 4.34% over the baseline, which appears to be substantial.

Table 4 analyzes the performance gains achieved by the
rule-based edge pruning and attention-based edge gating.
We evaluate the performance gains achieved by adding each
idea to a fully-connected GNN. The rule-based edge pruning
offers a 1.48% improvement in sAMOTA by removing un-
necessary connections from the fully-connected graph. The
attention-based edge gating weights the GNN features ac-
cording to their importance, which offers additional gain of
0.88% in sAMOTA. Totally, the combination of the two in-
creases sAMOTA by 2.36% over the baseline GNN. We also
analyze the runtime of the SG-GNN. While the rule-based
pruning method reduces the computation time, the attention-
based gating method increases the computation time for bet-
ter performance. Overall, the SG-GNN reduces the runtime
of the baseline GNN by 10%.

Conclusions
In this paper, we proposed a novel 3D JoDT method based
on camera and LiDAR sensor fusion. In our framework, the
detector and tracker work together to jointly optimize detec-
tion and object association tasks using spatio-temporal fea-
tures. The detector enhances the object features by apply-
ing the weighted temporal feature aggregation to both the
camera and LiDAR features. The detector uses the tracklet
obtained by the tracker to reconfigure the initial outputs of
the detector. The tracker uses the spatio-temporal features
delivered by the detector for object association. We also de-
vised the SG-GNN, which efficiently matches the objects on
the spatio-temporal graph using a combination of rule-based
edge pruning and attention-based edge gating. Our evalua-
tion conducted on the KITTI and nuScenes datasets demon-
strated that the 3D DetecTrack achieved a significant perfor-
mance gain over the baseline and achieved state-of-the-art
performance in some MOT evaluation categories.
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