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Abstract
We propose a novel scene flow estimation approach to cap-
ture and infer 3D motions from point clouds. Estimating 3D
motions for point clouds is challenging, since a point cloud is
unordered and its density is significantly non-uniform. Such
unstructured data poses difficulties in matching correspond-
ing points between point clouds, leading to inaccurate flow
estimation. We propose a novel architecture named Sparse
Convolution-Transformer Network (SCTN) that equips the
sparse convolution with the transformer. Specifically, by
leveraging the sparse convolution, SCTN transfers irregular
point cloud into locally consistent flow features for estimat-
ing continuous and consistent motions within an object/local
object part. We further propose to explicitly learn point rela-
tions using a point transformer module, different from exiting
methods. We show that the learned relation-based contextual
information is rich and helpful for matching corresponding
points, benefiting scene flow estimation. In addition, a novel
loss function is proposed to adaptively encourage flow consis-
tency according to feature similarity. Extensive experiments
demonstrate that our proposed approach achieves a new state
of the art in scene flow estimation. Our approach achieves an
error of 0.038 and 0.037 (EPE3D) on FlyingThings3D and
KITTI Scene Flow respectively, which significantly outper-
forms previous methods by large margins.

Introduction
Understanding 3D dynamic scenes is critical to many real-
world applications such as autonomous driving and robotics.
Scene flow is the 3D motion of points in a dynamic scene,
which provides low-level information for scene understand-
ing (Vedula et al. 1999; Liu, Qi, and Guibas 2019; Geiger
et al. 2013). The estimation of the scene flow can be a build-
ing block for more complex applications and tasks such as
3D object detection (Shi et al. 2020), segmentation (Thomas
et al. 2019) and tracking (Qi et al. 2020). However, many
previous scene flow methods estimate the 3D motion from
stereo or RGB-D images. With the increasing popularity of
point cloud data, it is desirable to estimate 3D motions di-
rectly from 3D point clouds.

Recent methods e.g.,(Wu et al. 2020; Liu, Qi, and Guibas
2019; Wei et al. 2021; Puy, Boulch, and Marlet 2020; Wang
et al. 2021; Li et al. 2021) propose deep neural networks to
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Figure 1: Illustrating the advantage of our SCTN in fea-
ture extraction, where first and second rows indicate the two
point clouds, (b) and (c) visualize their features extracted by
FLOT and our SCTN, respectively. Circles© or triangles4
in (b)(c) indicate a pair of corresponding points between the
point clouds, respectively. © and 4 are not corresponding
to each other, however, their features extracted by FLOT are
improperly similar, which are less discriminative and would
lead to inaccurate predicted flows. In contrast, our SCTN
extracts locally consistent while discriminative features.

learn scene flow from point clouds in an end-to-end way,
which achieves promising estimation performance. How-
ever, estimating scene flow from point clouds is still chal-
lenging. In particular, existing methods (Liu, Qi, and Guibas
2019; Puy, Boulch, and Marlet 2020) extract feature for each
point by aggregating information from its local neighbor-
hood. However, such extracted features are not discrimina-
tive enough to matching corresponding points between point
clouds (see Figure 1), leading to inaccurate flow estima-
tion, since the feature extraction of these methods ignore two
facts. First, the density of points is significantly non-uniform
within a point cloud. It is non-trivial to learn point features
that are simultaneously favorable for both points from dense
regions and those from sparse regions. Second, due to Lidar
and object motions, the density of points within an object
often varies at the temporal dimension, leading that the ge-
ometry patterns of corresponding local regions are inconsis-
tent between consecutive point clouds. As a result, extracted
features, that are aggregated from only local regions with-
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out modeling point relations, is insufficient for scene flow
estimation.

Another challenge lies in that most previous methods have
to train a model on the synthetic dataset to estimate scene
flow for real-world data. However, there exists domain shift
between the synthetic dataset and the real-world one. For
example, most objects in the synthetic dataset are rigid and
undergo rigid motions, while real-world data contains many
non-rigid objects whose motions are consistent within local
object parts, rather than the whole object. Consequently, the
performance of the trained model is degraded when handling
real-world data. Yet, most recent work (Liu, Qi, and Guibas
2019; Puy, Boulch, and Marlet 2020; Wu et al. 2020) do not
explicitly constrain the estimated flows. We would like to
enforce the predicted flows in a local region of an object to
be consistent and smooth in 3D space.

In this work, we resort to feature representations and
loss functions to estimate accurate scene flow from point
clouds. In particular, we explore novel feature represen-
tations (information) that would help to infer an accurate
and locally consistent scene flows. We therefore propose
a Sparse Convolution-Transformer Network (SCTN) which
incorporates the merits of dual feature representations pro-
vided by our two proposed modules. In particular, to ad-
dress the issue of spatially non-uniform and temporally
varying density of dynamic point clouds, we propose a
Voxelization-Interpolation based Feature Extraction (VIFE)
module. VIFE extracts features from voxelized point clouds
rather than original ones, and then interpolates features for
each point, which encourages to generate locally consis-
tent flow features. To furture improve discriminability of ex-
tracted features from the VIFE module, we propose to ad-
ditionally model point relations in the feature space, such
that extracted features capture important contextual infor-
mation. Inspired by impressive performance of transformer
in object detection tasks (Carion et al. 2020), we propose a
Point Transformer-based Feature Extraction (PTFE) module
to explicitly learn point relations based on transformer for
capturing complementary information.

In addition, we propose a spatial consistency loss function
with a new architecture that equips stop-gradient for train-
ing. The loss adaptively controls the flow consistency ac-
cording to the similarity of point features. Our experiments
demonstrate that our method significantly outperforms state-
of-the art approaches on standard scene flow datasets: Fly-
ingThings3D (N.Mayer et al. 2016a) and KITTI Scene Flow
(Menze, Heipke, and Geiger 2018).

Contributions. Our contributions are fourfold:
1. Instead of designing convolution kernels, our VIFE mod-

ule leverages simple operators – voxelization and inter-
polation for feature extraction, showing such smoothing
operator is effective to extract local consistent while dis-
criminative features for scene flow estimation.

2. Our PTFE module shows that explicitly modeling point
relations can provide rich contextual information and
is helpful for matching corresponding points, benefiting
scene flow estimation. We are the first to introduce trans-
former for scene flow estimation.

3. We propose a new consistency loss equipping stop-
gradient-based architecture that helps the model trained
on synthetic dataset well adapt to real data, by controlling
spatial consistency of estimated flows.

4. We propose a novel network that outperforms the state-
of-the-art methods with remarkable margins on both Fly-
ingThings3D and KITTI Scene Flow benchmarks.

Related Work
Optical Flow. Optical flow estimation is defined as the task
of predicting the pixels motions between consecutive 2D
video frames. Optical flow is a fundamental tool for 2D
scene understanding, that have been extensively studied in
the literature. Traditional methods (Horn and Schunck 1981;
Black and Anandan 1993; Zach, Pock, and Bischof 2007;
Weinzaepfel et al. 2013; Brox, Bregler, and Malik 2009;
Ranftl, Bredies, and Pock 2014) address the problem of esti-
mating optical flow as an energy minimization problem, that
does not require any training data. Dosovitskiy et al. (Doso-
vitskiy et al. 2015) proposed a first attempt for an end-to-end
model to solve optical flow based on convolution neural net-
work (CNN). Inspired by this work, many CNN-based stud-
ies have explored data-driven approaches for optical flow
(Dosovitskiy et al. 2015; Mayer et al. 2016; Ilg et al. 2017;
Hui, Tang, and Loy 2018; Hui and Loy 2020; Sun et al. 2018;
Teed and Deng 2020b).

Scene Flow from Stereo and RGB-D Videos. Estimat-
ing scene flow from stereo videos have been studied for
years (Chen et al. 2020; Vogel, Schindler, and Roth 2013;
Wedel et al. 2008; Ilg et al. 2018; Jiang et al. 2019; Teed and
Deng 2020a). Many works estimate scene flow by jointly es-
timating stereo matching and optical flow from consecutive
stereo frames (N.Mayer et al. 2016b). Similar to optical flow,
traditional methods formulate scene flow estimation as an
energy minimization problem (Huguet and Devernay 2007;
Wedel et al. 2008). Recent works estimate scene flow from
stereo video using neural networks (Chen et al. 2020). For
example, networks for disparity estimation and optical flow
are combined in (Ilg et al. 2018; Ma et al. 2019). Similarly,
other works (Quiroga et al. 2014; Sun, Sudderth, and Pfister
2015) explore scene flow estimation from RGB-D video.

Scene Flow on Point Clouds. Inspired by
FlowNet (Dosovitskiy et al. 2015), FlowNet3D (Liu,
Qi, and Guibas 2019) propose an end-to-end network to
estimate 3D scene flow from raw point clouds. Different
from traditional methods (Dewan et al. 2016; Ushani et al.
2017), FlowNet3D (Liu, Qi, and Guibas 2019) is based on
PointNet++ (Qi et al. 2017b), and propose a flow embedding
layer to aggregate the information from consecutive point
clouds and extract scene flow with convolutional layers.
FlowNet3D++ (Wang et al. 2020) improves the accuracy
of FlowNet3D by incorporating geometric constraints.
HPLFlowNet (Gu et al. 2019) projects point clouds into
permutohedral lattices, and then estimates scene flow using
Bilateral Convolutional Layers. Inspired by the successful
optical flow method PWC-Net (Sun et al. 2018), PointPWC
(Wu et al. 2020) estimates scene flow in a coarse-to-fine
fashion, introducing cost volume, upsampling, and warping
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Figure 2: Overall framework of our SCTN approach. Given two consecutive point clouds, the Voxelization-Interpolation Feature
Extraction (VIFE) extracts features from voxelized point clouds and then projects back the voxel features into point features.
These point features are fed into the Point Transformer Feature Extraction (PTFE) module to explicitly learn point relations.
With fused features of VIFE and PTFE module, SCTN computes point correlations between the point clouds and predicts flows.

modules for the point cloud processing. The most related
recent work to our approach is FLOT (Puy, Boulch, and
Marlet 2020). FLOT addresses the scene flow as a matching
problem between corresponding points in the consecutive
clouds and solve it using optimal transport. Our method
differs from FLOT (Puy, Boulch, and Marlet 2020) in
two aspects. First, our method explicitly explores more
suitable feature representation that facilitate the scene flow
estimation. Second, our method is trained to enforce the
consistency of predicted flows for local-region points from
the same object, which is ignored in FLOT (Puy, Boulch,
and Marlet 2020). Recently, Gojcic et al. (Gojcic et al.
2021) explore weakly supervised learning for scene flow es-
timation using labels of ego motions as well as ground-truth
foreground and background masks. Other works (Wu et al.
2020; Kittenplon, Eldar, and Raviv 2021; Mittal, Okorn,
and Held 2020) study unsupervised/self-supervised learning
for scene flow estimation on point clouds, proposing
regularization losses that enforces local spatial smoothness
of predicted flows. These losses are directly constraining
points in a local region to have similar flows, but are not
feature-aware.

3D Deep Learning. Many works have introduced deep
representation for point cloud classification and segmenta-
tion (Qi et al. 2017b; Thomas et al. 2019; Zhang, Hua, and
Yeung 2019; Liu et al. 2020; Wu, Qi, and Fuxin 2019; Li
et al. 2018; Lei, Akhtar, and Mian 2020; Hu et al. 2022;
Zhao et al. 2021). Qi et al. (Qi et al. 2017a) propose PointNet
that learns point feature only from point positions. Point-
Net++ (Qi et al. 2017b) extends PointNet by aggregating
information from local regions. Motivated by PointNet++,
many works (Zhang, Hua, and Yeung 2019; Thomas et al.
2019; Lei, Akhtar, and Mian 2020; Li et al. 2018) design
various local aggregation functions for point cloud classifi-
cation and segmentation. Different from these point-based
convolutions, (Wu et al. 2015; Wang et al. 2017) transform
point cloud into voxels, such that typical 3D convolution can
be applied. However, such voxel-based convolution suffers
from expensive computational and memory cost as well as
information loss during voxelization. Liu et al. (Liu et al.
2019) combine PointNet (Qi et al. 2017a) with voxel-based

convolution to reduce the memory consumption. For the
sake of efficient learning, researchers have explored sparse
convolution for point cloud segmentation (Xie et al. 2020;
Choy, Gwak, and Savarese 2019) which shows impressive
performance. Tang et al. (Tang et al. 2020) propose to com-
bine PointNet with sparse convolution for large-scale point
cloud segmentation. Differently, we not only leverage vox-
elization and interpolation for feature extraction, but also
explicitly model point relations to provide complementary
information.

Methodology
Problem Definition. Given two consecutive point cloudsPt

and Pt+1, scene flow estimation is to predict the 3D motion
flow of each point from Pt to Pt+1. Let pti be the 3D coor-
dinates of i-th point in Pt = {pti}

nP
i=1. Like previous work

(Puy, Boulch, and Marlet 2020), we predict scene flow based
on the correlations of each point pair between Pt and Pt+1.
Given a pair of points pti ∈ Pt and pt+1

j ∈ Pt+1, the corre-
lation of the two points is computed as follows:

C(pti, p
t+1
j ) =

(Ft
i)

T · Ft+1
j

‖Ft
i‖2‖F

t+1
j ‖2

(1)

where Ft+1
j is the feature of pt+1

j , and ‖ · ‖2 is the L2 norm.
Point feature F is the key to computing the correlation

C(pti, p
t+1
j ) which further plays an important role in scene

flow estimation. Hence, it is desirable to extract effective
point features that enable point pairs in corresponding re-
gions to achieve higher correlation values between Pt and
Pt+1. However, different from point cloud segmentation and
classification that focus on static point cloud, scene flow es-
timation operates on dynamic ones, which poses new chal-
lenges for feature extraction in two aspects. For example,
the input point clouds of scene flow are not only irregular
and unordered, but also its density is spatially non-uniform
and temporally varying, as discussed in previous sections.

Our goal is to extract locally consistent while discrimina-
tive features for points, so as to achieve accurate flow esti-
mation. Different from exiting methods directly extracting
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point feature from the neighborhood in original point cloud,
we proposed two feature extraction modules for scene flow
estimation. The Voxelization-Interpolation based Feature
Extraction (VIFE) is proposed to address the issue of point
cloud’s non-uniform density. With the features extracted by
VIFE, Point Transformer based Feature Extraction (PTFE)
further enhance feature discriminability by modeling point
relations globally. Since the two kinds of features provide
complementary information, we fuse these features, such
that the fused features provide proper correspondences to
predict accurate scene flows.

Overview. Figure 2 illustrates the overall framework of
our approach, that takes two consecutive point cloudsPt and
Pt+1 as inputs and predict the scene flow from Pt to Pt+1.
First, the VIFE module extracts features for voxel points
from voxelized point clouds, and projects back the voxel
features into the original 3D points to obtain locally consis-
tent point features. Second, our PTFE module improves the
point feature representation by modeling relation between
points. Third, with features extracted by VIEF and PTFE
module, we calculate the correlations of points between Pt

and Pt+1, where a sinkhorn algorithm (Puy, Boulch, and
Marlet 2020; Cuturi 2013; Chizat et al. 2018) is leveraged to
predict the flows. We train our method with an extra regular-
izing loss to enforce spatial consistency of predicted flows.

Voxelization-Interpolation Based Feature
Extraction
As mentioned in previous sections, the density of consec-
utive point clouds is spatially non-uniform and temporally
varying, posing difficulties in feature extraction. To address
the issue, we propose the Voxelization-Interpolation based
Feature Extraction (VIFE) module. VIFE first voxelizes the
consecutive point clouds into voxels. As illustrated in Fig-
ure 2, the spatial non-uniform distributions and temporally
variations of points are reduced to some extent.

After that, VIFE conducts convolutions on voxel points
rather than all points of the point cloud, and then interpolate
features for each point. We argue that such simple operators
i.e.,voxelization and interpolation, ensure points in a local
neighborhood to have smoother features, ideally leading to
consistent flows in space.

Voxel feature extraction. We then leverage a U-Net
(Ronneberger, Fischer, and Brox 2015) architecture network
to extract feature from voxelized point clouds, where con-
volution can be many types of point cloud convolutions
such as pointnet++ used in FLOT (Puy, Boulch, and Marlet
2020). Here, we adopt sparse convolution e.g.,Minkowski
Engine (Choy, Gwak, and Savarese 2019) for efficiency.
More details are available in our supplementary material.

Point feature interpolation. We project back the voxel
features into point feature FS

i for point pi. In particular, we
interpolate the point features from the K closest voxels fol-
lowing equation (2). N v(pi) represents the set of K nearest
neighboring non-empty voxels for the point pi, vk ∈ RC

represents the feature of k-th closest non-empty voxel and
dik the Euclidian distance between the point pi and the cen-
ter of the k-th closest non-empty voxel.

FS
i =

∑
k∈Nv(pi)

d−1ik · vk∑
k∈Nv(pi)

d−1ik

(2)

We observed that close points are encouraged to have sim-
ilar features, which helps our method generate consistent
flows for these points. This is favorable for local object parts
or rigid objects with dense densities and consistent flows
(e.g.,LiDAR points on a car at close range).

Point Transformer Based Feature Extraction
Our VIFE module adopt aggressive downsampling to obtain
a large receptive field and low computation cost. However,
aggressive downsampling inevitably loses some important
information (Tang et al. 2020). In such case, the features of
points with large information loss are disadvantageous for
estimating their scene flow. To address this issue, we ex-
plicitly exploit point relations as a complementary informa-
tion on top of the point feature extracted with VIFE. Recent
work (Zhu et al. 2021; Zhao, Jia, and Koltun 2020; Carion
et al. 2020) employ transformer and self-attention to model
internal relation in the features, achieving impressive per-
formance in image tasks such as detection and recognition.
Similar trend appeared in point cloud classification and seg-
mentation (Guo et al. 2021; Zhao et al. 2021; Engel, Be-
lagiannis, and Dietmayer 2020) showing the effectiveness
of transformer in 3D. Inspired by these work, we resort to
transformer for capturing point relation information as the
point feature.

In an autonomous navigation scenario, point clouds rep-
resent complete scenes, with small object such as cars and
trucks, but also large structure such as buildings and walls.
The scene flows in such a large scene do not only depend on
the aggregation from a small region, but rather a large one.
As a results, we refrain in building a transformer for the lo-
cal neighborhood as it would restrict the receptive field or re-
quire deeper model (i.e.,increase the memory). Instead, our
transformer module learns the relation of each point to all
other points, such that the transformer can adaptively cap-
ture the rich contextual information from a complete scene.

Formally, given a point pi, we consider every points in P
as query and key elements. Our transformer module builds a
point feature representation for pi by adaptively aggregating
the features of all points based on self-attention:

FR
i =

nP∑
j=1

Ai,j · gv(FS
j ,Gj) (3)

where gv is the a learnable function (e.g.,linear function),
Ai,j is an attention defining a weight of pj to pi, Gj is the
positional encoding feature of pj .

As pointed in literature (Zhao, Jia, and Koltun 2020; Car-
ion et al. 2020), the positional encoding feature can pro-
vide important information for the transformer. The posi-
tion encoding in recent transformer work (Zhao et al. 2021)
encodes the relative point position to neighbors for point
cloud classification or segmentation. Different from those
tasks, the task of scene flow is to find correspondences be-
tween consecutive point clouds. Thus, we argue that an ab-
solute position provides sufficient information to estimate
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Figure 3: Details of our point transformer based feature ex-
traction module (PTFE).⊗ and⊕ correspond to matrix mul-
tiplication and addition operations, respectively.

the scene flow. Therefore, given a point p, our position en-
coding function encodes its absolute position pj :

Gj = φ(pj) (4)

where φ is a MLP layer. Using absolute positions reduce
computational cost, compared with using relative positions.

We calculate an attention Ai,j as the similarity between
the features of pi and pj in an embedding space. The simi-
larity is estimated using features and position information:

Ai,j ∝ exp(
(gq(F

S
i ,Gi))

T · gk(FS
j ,Gj)

ca
) (5)

where gq(·, ·) and gk(·, ·) are the learnable mapping func-
tions to project feature into an embedding space, and ca is
the output dimension of gq(·, ·) or gk(·, ·). Ai,j is further
normalized such that

∑
j Ai,j = 1. The architecture of our

transformer module is illustrated in Figure 3.

Flow Prediction
Since the point feature from our VIFE and PTFE modules
provide complementary information, we fuse the two kinds
of features through skip connection for each point, i.e.,Fi =
FS

i + FR
i . By feeding the fused point features into Eq. 1,

we compute the correlations of all pairs C(Pt,Pt+1) =
{C(pti, p

t+1
j )} between the two consecutive point clouds.

With the estimated point correlations, we adopt the
Sinkhorn algorithm to estimate soft correspondences and
predict flows for Pt, following FLOT.

Training Losses
We train our model to regress the scene flow in a supervised
fashion, on top of which we propose a Feature-aware Spatial
Consistency loss, named “FSC loss”, that enforces similar
features to have similar flow. The FSC loss provides a better
generalization and transfer capability between the training
and testing datasets.

Supervised loss. We define in Equation (6) our super-
vised loss Es that minimize the L1-norm difference be-
tween the estimated flow and the ground truth flow for the
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Figure 4: Stop gradient for the FSC loss. We extract the
flow from a neighboring point as well as the similarity be-
tween their features. We optimize the FSC loss without
back-propagating the gradients to the features from the sim-
ilarity branch to avoid degenerate cases.

non-occluded points. u∗i and ui are respectively the ground-
truth and predicted motion flow for the point pi ∈ P and
mi is a binary indicator for the non-occlusion of this point,
i.e.,mi = 0 if pi is occluded, otherwise mi = 1.

Es =

N∑
i

mi‖ui − u∗i ‖ (6)

Feature-aware Spatial Consistency (FSC) loss. Given a
local region, points from the same object usually has consis-
tent motions, resulting in similar flows. To model such phe-
nomena, we propose a consistency loss that ensures points
within an object/local object part to have similar predicted
flows. Yet, object annotations are not necessarily available.
Instead, we propose to control flow consistency according to
feature similarity. That is, given a local region, if two points
are of larger feature similarity, they are of the higher proba-
bility that belongs to the same object. In particular, given a
point pi with predicted flow ui and its local neighborhood
N (pi), we enforce the flow uj of pj ∈ N (pi) to be similar
to ui, if the feature Fi of pj is similar to Fj of pj . Formally,
we define the FSC loss as follows:

Ec =
N∑
i=1

1

K

∑
pj∈N (pi)

s(Fi,Fj) · ‖ui − uj‖2 (7)

where the similarity function s(Fi,Fj) of pi and pj is de-
fined as 1−exp(−(Fi)

T ·Fj/τ) with τ being a temperature
hyper-parameter, K is the number of points in N (pi).

A naive implementation of the FSC loss would inevitably
lead to degenerate cases. In particular, the FSC loss is a prod-
uct of two objectives: (i) a similarity s(Fi,Fj) between the
features Fi and Fj and (ii) a difference ‖ui−uj‖1 between
their flows. The scope of this loss is to train the flows to be
similar if they have similar features. However, to minimize
the FSC loss, the model would make the features Fj and Fi

be orthogonal (i.e.,Fj · Fi = 0), such that s(Fj ,Fi) = 0
(i.e.,Ec = 0). Obviously, it is against our aim.

To circumvent this limitation, we propose a stop-gradient
for the FSC loss, taking inspiration form recent advances in
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Dataset Method EPE3D(m) ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓

FlyingThings3D

FlowNet3D (Liu, Qi, and Guibas 2019) 0.114 0.412 0.771 0.602
HPLFlowNet (Gu et al. 2019) 0.080 0.614 0.855 0.429
PointPWC (Wu et al. 2020) 0.059 0.738 0.928 0.342
EgoFlow (Tishchenko et al. 2020) 0.069 0.670 0.879 0.404
FLOT (Puy, Boulch, and Marlet 2020) 0.052 0.732 0.927 0.357
SCTN (ours) 0.038 0.847 0.968 0.268

KITTI

FlowNet3D (Liu, Qi, and Guibas 2019) 0.177 0.374 0.668 0.527
HPLFlowNet (Gu et al. 2019) 0.117 0.478 0.778 0.410
PointPWC (Wu et al. 2020) 0.069 0.728 0.888 0.265
EgoFlow (Tishchenko et al. 2020) 0.103 0.488 0.822 0.394
FLOT (Puy, Boulch, and Marlet 2020) 0.056 0.755 0.908 0.242
SCTN (ours) 0.037 0.873 0.959 0.179

Table 1: Comparison with the state-of-the-art on FlyingThings3D and KITTI. Best results in bold. Our proposed model SCTN
reaches highest performances in all metrics.

(a) Input point clouds (b) Ground-truth flows (c) FLOT (d) Ours

Figure 5: Qualitative comparison results. Green points indicate the first point cloud in (a), and blue points indicate the second
point cloud in (a)(b)(c)(d). In (b)(c)(d), green points are the ones in the first point cloud warped by correctly predicted flows,
while red points are the ones warped by incorrect flows (the first point cloud + incorrect scene flow whose EPE3D >0.1m).

self-supervised learning (Chen and He 2020). As illustrated
in Figure 4, our architecture stops the propagation of the gra-
dient in the branch extracting the feature similarity. By such
architecture, our FSC loss avoids optimizing the features,
while optimizing solely the flows similarities ‖uj−ui‖1 for
neighboring points with similar features.

Experiments
Dataset. We conduct our experiments on two datasets
that are widely used to evaluate scene flow. FlyingTh-
ings3D (N.Mayer et al. 2016a) is a large-scale synthetic
stereo video datasets, where synthetic objects are selected
from ShapeNet (Chang et al. 2015) and randomly assigned
various motions. We generate 3D point clouds and ground
truth scene flows with their associated camera parameters
and disparities. Following the same preprocessing as in (Puy,
Boulch, and Marlet 2020; Gu et al. 2019; Wu et al. 2020), we
randomly sample 8192 points and remove points with cam-
era depth greater than 35 m. We use the same 19640/3824
pairs of point cloud (training/testing) used in the related
works (Puy, Boulch, and Marlet 2020; Gu et al. 2019; Wu
et al. 2020). KITTI Scene Flow (Menze, Heipke, and Geiger
2018; Choy, Gwak, and Savarese 2019) is a real-world Lidar
scan dataset for scene flow estimation from the KITTI au-
tonomous navigation suite. Following the preprocessing of
(Gu et al. 2019), we leverage 142 point cloud pairs of 8192

points for testing. For a fair comparison, we also remove
ground points by discarding points whose height is lower
than −1.4m, following the setting of existing methods (Puy,
Boulch, and Marlet 2020; Wu et al. 2020; Gu et al. 2019).

Evaluation Metrics. To evaluate the performance of our
approach, we adopt the standard evaluation metrics used in
the related methods (Puy, Boulch, and Marlet 2020; Wu et al.
2020), described as follows: The EPE3D (m) (3D end-point-
error) is calculated by computing the average L2 distance
between the predicted and GT scene flow, in meters. This is
our main metric. The Acc3DS is a strict version of the accu-
racy which estimated as the ratio of points whose EPE3D <
0.05 m or relative error<5%. The Acc3DR is a relaxed accu-
racy which is calculated as the ratio of points whose EPE3D
<0.10m or relative error <10%. The Outliers is the ratio of
points whose EPE3D >0.30m or relative error >10%.

Implementation Details. We implement our method in
PyTorch (Paszke et al. 2019). We train our method on Fly-
ingThing3D then evaluate on FlyingThing3D and KITTI.
We minimize a cumulative loss E = Es + λEc with λ =
0.30 a weight that scale the losses. We use the Adam opti-
mizer (Kingma and Ba 2014) with an initial learning rate of
10−3, which is dropped to 10−4 after the 50th epoch. First,
we train for 40 epochs only using the supervised loss. Then
we continue the training for 20 epochs with both the super-
vision loss and the FSC loss, for a total on 60 epochs. We
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VIFE PTFE FSC loss EPE3D(m) ↓ Acc3DS ↑
3 0.045 0.835
3 3 0.042 0.853
3 3 0.040 0.863
3 3 3 0.037 0.873

Table 2: Ablation for SCTN. We further analyse the perfor-
mances of our three components: VIFE, PTFE and FSC loss
on KITTI. We highlight in bold the best performances.

use a voxel size of resolution 0.07m.
Runtime. We evaluate the running time of our method.

Table 3 reports the evaluated time compared with recent
state-of-the-art methods. FLOT (Puy, Boulch, and Marlet
2020) is the most related work to our method, since we both
adopt point-wise correlations to generate predicted flows.
Our method consumes lower running time than FLOT, al-
though the transformer module is equipped.

Quantitative Evaluation
We compare our approach with recent deep-learning-based
methods including FlowNet3D (Liu, Qi, and Guibas 2019),
HPLFlowNet (Gu et al. 2019), PointPWC (Wu et al. 2020)
and FLOT (Puy, Boulch, and Marlet 2020). These methods
are state-of-the-art in scene flow estimation from point cloud
data and do not leverge any additional labels such as ground-
truth ego motions or instance segmentation.

Results on FlyingThings3D. We train and evaluate our
model on the FlyThings3D datasets. As shown in Table 1,
our method outperforms all methods in every metrics by a
significant margin. It is worth noting that our method obtains
an EPE3D metric below 4cm, with a relative improvement of
26.9% and 35.5% over the most recent methods FLOT (Puy,
Boulch, and Marlet 2020) and PointPWC (Wu et al. 2020),
respectively. The performance shows that our method is ef-
fective in predicting flows with high accuracy.

Results on KITTI without Fine-tune. Following the
common practice (Puy, Boulch, and Marlet 2020; Wu et al.
2020), we train our model on FlyingThings3D and directly
test the trained model on KITTI Scene Flow dataset, with-
out any fine-tuning, to evaluate the generalization capabil-
ity of our method. We report in Table 1 the highest accu-
racy of scene flow estimation on KITTI Scene Flow dataset
for our SCTN method. Again, we reduce the EPE3D met-
ric below 4cm, with a 33.9% relative improvement over
FLOT (Puy, Boulch, and Marlet 2020). In the Acc3DS met-
rics, our method outperforms both FLOT (Puy, Boulch, and
Marlet 2020) and PointPWC (Wu et al. 2020) by 13.5% and
16.6% respectively. These results highlight the capability of
our method to generalize well on real-world datasets.

Qualitative Evaluation
To qualitatively evaluate the quality of our scene flow pre-
dictions, we visualize the predicted scene flow and ground-
truth one in Figure 5. Since FLOT (Puy, Boulch, and Marlet
2020) is most related to our method, we compare the quali-
tative performances of our SCTN with FLOT (Puy, Boulch,

Method Runtime (ms)

FLOT (Puy, Boulch, and Marlet 2020) 389.3
SCTN (ours) 242.7

Table 3: Running time comparisons. The runtime of FLOT
and our SCTN are evaluated on a single GTX2080Ti GPU.
We used the official implementation of FLOT.

and Marlet 2020).
Points in a local region from the same object usually have

similar ground-truth flows. Yet, FLOT introduces predic-
tion errors in local regions, highlighting the inconsistency in
the scene flow predictions. For example, FLOT inaccurately
predicts scene flow for some regions in the background, even
though those points have similar flows, as shown in Figure 5.
In contrast, our method is more consistent in the prediction
for points in the same object, achieving better performance,
e.g.,for the background objects with complex structure.

Ablation Study
To study the roles of the proposed VIFE, PTFE and FSC
loss, we ablate each proposed component of our model and
evaluate their performance on KITTI. For all the experi-
ments, we follow the same training procedure than in the
main results. Table 2 reports the evaluation results.

VIFE module. Table 2 shows that our approach with
the sole VIEF convolution module already outperforms the
state-of-the-art methods listed in Table 1. Different from
existing methods directly applying convolution on origi-
nal point clouds, our VIFE extracts feature from voxelized
point cloud, which reduces the non-uniform density of point
cloud, while ensuring that points in a local region have con-
sistent features, to some extent. The results show that such
features are favorable for scene flow estimation.

PTFE module. Compared with only using VIFE module,
adding PTFE improves both metrics on KITTI as reported in
the third row in Table 2. For example, EPE3D is improved
by 11.1%, compared with only using the VIEF module. Our
PIFE module explicitly learns point relations, which pro-
vides rich contextual information and helps to match cor-
responding points even for objects with complex structures.

FSC loss. Table 2 shows that adding the FSC loss helps
to achieve better scene flow estimation on KITTI. Our FSC
loss improves the generalization capability of our method.

Conclusion
We present a Sparse Convolution-Transformer Network
(SCTN) for scene flow estimation. Our SCTN leverages the
VIFE module to transfer irregular point cloud into locally
smooth flow features for estimating spatially consistent mo-
tions in local regions. Our PTFE module learns rich con-
textual information via explicitly modeling point relations,
which is helpful for matching corresponding points and ben-
efits scene flow estimation. A novel FSC loss is also pro-
posed for training SCTN, improving the generalization abil-
ity of our method. Our approach achieves state-of-the-art
performances on FlyingThings3D and KITTI datasets.
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