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Abstract

Spatiotemporal modeling in an unified architecture is key for
video action recognition. This paper proposes a Shrinking
Temporal Attention Transformer (STAT), which efficiently
builts spatiotemporal attention maps considering the attenua-
tion of spatial attention in short and long temporal sequences.
Specifically, for short-term temporal tokens, query token in-
teracts with them in a fine-grained manner in dealing with
short-range motion. It then shrinks to a coarse attention in
neighborhood for long-term tokens, to provide larger recep-
tive field for long-range spatial aggregation. Both of them
are composed in a short-long temporal integrated block to
build visual appearances and temporal structure concurrently
with lower costly in computation. We conduct thorough ab-
lation studies, and achieve state-of-the-art results on multi-
ple action recognition benchmarks including Kinetics400 and
Something-Something v2, outperforming prior methods with
50% less FLOPs and without any pretrained model.

Introduction
Action recognition is a fundamental problem in video un-
derstanding tasks. Following the rapid development of on-
line video, it becomes increasingly demanding applications
with the rapid development of online video, in the fields of
daily life, traffic surveillance, autonomous driving and so on.
For most such applications, how to effectively build tempo-
ral structure and spatial appearances concurrently under dif-
ferent time length videos is a critical problem.

In recent years, end-to-end learning of transformer net-
works (Li et al. 2021; Arnab et al. 2021; Fan et al. 2021;
Bertasius, Wang, and Torresani 2021; Liu et al. 2021a,b)
has emerged as the prominent paradigm for video classifi-
cation and action recognition, due to their excellent capabil-
ities at capturing long-range temporal relationships. Though
temporal structure is important for action recognition, it is
also important to model the visual appearances under an uni-
fied architecture. The previous works propose several pure-
transformer architectures which factorise different compo-
nents of the transformer encoder over the space and time di-
mensions. Both the spatial and temporal features are divided
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Figure 1: Top-1 accuracy and GFLOPs comparisons on Ki-
netics400. Results of existing state-of-the-art transformer-
based models(MViT (Fan et al. 2021), TimeSformer (Berta-
sius, Wang, and Torresani 2021), ViViT (Arnab et al. 2021),
VidTr (Li et al. 2021)) and CNN-based models(TEA (Li
et al. 2020b), TDN (Wang et al. 2021)) are compared. Our
proposed STAT outperforms all previous models with less
FLOPs and without any pretrained models.

.

into frame-level tokens to incorporate cross self-attention on
spatiotemporal neighborhood in joint, mixed, divided, and
interactive manners. However, dense dual attention brings
huge computational overhead due to quadratic computa-
tional in time and space, while progressive self-attention
lead model lack the ability to modelling long range spatial
contextual relationships. It remains unclear how to model
the spatiotemporal structure in an unified architecture effec-
tively and efficiently.

Commonly, spatiotemporal modeling can be separated
two parts: short-range motion between adjacent frames and
long-range visual aggregation. When dealing with short-
range motion, fine grained details need to be considered.
On the contrary, while in the long-term sequence, the influ-
ence of motion becomes smaller, and a larger receptive field
is needed to obtain spatial aggregation. Motivated by this,
we propose a Shrinking Temporal Attention Transformer
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Figure 2: Overview of the Shrinking Temporal Attention Transformer. The main Shrinking Temporal Attention Block are
adopted in a general transformer framework.

(STAT) to incorporate multi-level temporal structure into en-
coded features.

In detail, the proposed STAT contains three different self-
attention modules: Current Attention, Short-term Attention
and Long-term Attention. For Current Attention, we model
interactions between tokens located at the same temporal in-
dex to capture rich spatial semantic information. In particu-
lar, we add an additional spatial class token to each frame to
efficiently aggregate global spatial information. For Short-
term Attention, the token is expected to focus on the object
with actions in adjacent frames. To this end, a window based
method is applied to obtain the tokens of adjacent frames
and then we pool them along spatial dimension to ignore
action independent information. Finally, for Long-term At-
tention, we use spatial class tokens of long-range frames as
attending tokens, thus aggregating the visual information of
the whole video. We test the proposed STAT on two stan-
dard benchmarks, Kinetics400 and Something-Something
V2. STAT achieves 81.3 Top-1 accuracy with 2172 GFLOPs.
While implemented with less frames, the accuracy still stays
in 78.6 with only 296 GFLOPs, better than most of the state-
of-the-art action recognition methods with 50% less FLOPs
and higher performance, as shown in Figure 1.

Our main contributions are summarized as follows: (1)
A new Shrinking Temporal Attention module (STA) is de-
signed to encode the complementary spatiotemporal features
in an unified framework, and it can be easily inserted into ex-
isting transformer architecture. (2) Two attention modules,
short-term attention and long-term attention are presented
respectively to provide different temporal token attentions.
(3) We propose a simple yet effective network referred as
STAT with our STA blocks with limited computation cost,
and present a new record on action recognition benchmarks.

Related Work
Action Recognition Current solutions can be broadly
classified into two categories: CNN- and Transformer-based
approaches. Early CNN-based approaches (Simonyan and
Zisserman 2014; Feichtenhofer, Pinz, and Wildes 2017;
Karpathy et al. 2014; Ji et al. 2012; Tran et al. 2015; Wang
et al. 2018) adopt 3D convolution to joint modeling spa-
tio and temporal information. SlowFast (Feichtenhofer et al.

2019) uses two pathways to focus on learning spatial se-
mantics information and capturing rapidly changing motion,
respectively. Transformer-based approaches (Li et al. 2021;
Bertasius, Wang, and Torresani 2021; Arnab et al. 2021) are
considered the current state-of-the-art as they can typically
capture long-term information via self-attention mechanism.
ViViT (Arnab et al. 2021) firstly uses spatial encoder to
model interactions within the same frames and then to fuse
temporal information with temporal encoder. Others explore
different variants of joint space-time attentions. These meth-
ods are proved effective but often not efficient due to huge
computational overhead.

Video Transformer Recently ViT (Dosovitskiy et al.
2020) achieves state-of-the-art results by replacing convolu-
tions blocks with transformer blocks in image classification.
Hence, many variants of transformer (Li et al. 2021; Berta-
sius, Wang, and Torresani 2021; Girdhar et al. 2019) have
also been proposed to efficiently fuse long-term spatialtem-
poral information in video via self-attention mechanism. Al-
though these models obtain the current state-of-the-art per-
formance, they strongly rely on the vanilla ViT pretrained
on large-scale datasets such as ImageNet (Deng et al. 2009).

Efficient Action Recognition In order to reduce the com-
plexity of 3D CNN models, recent works (Feichtenhofer
2020; Sun et al. 2015; Tran et al. 2019; Xie et al. 2018;
Wang et al. 2020; Zhou et al. 2018) attempt to factory con-
volutions across spatial and temporal dimensions with group
convolutions. Another typical efficient video action recogni-
tion approach is based on (2+1)D CNN (Jiang et al. 2019;
Lin, Gan, and Han 2019; Li et al. 2020b; Wang et al. 2021)
which can reduce the heavy computations. STM (Jiang et al.
2019) learns feature-level motion features and spatiotempo-
ral features with two separate blocks. Recently, a lightweight
Transformer MViT (Fan et al. 2021) has also been proposed
which is using multiscale hierarchies to learn the feature at
distinct level. However, the quadratic attention complexity
along time and space is still high.

Shrinking Temporal Attention Transformer
In this section, we start by describing Shrinking Temporal
Attention (STA) which is the core component of Shrinking
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Figure 3: Overview of the Shrinking Temporal Attention.

Temporal Attention Transformer (STAT). The key idea of
STA is to interact with frames at different temporal terms
through Current Attention, Short-term Attention and Long-
term Attention, respectively. Then, the implementation of
STAT will be explained in details and Figure 2 is the dia-
gram of our network.

Shrinking Temporal Attention Module
Shrinking Temporal Attention is an “factor” attention opera-
tor that focuses on current, short-term and long-term frames
at distinct granularities, as shown in Figure 3.

Current Attention Semantic information is the basis of
capturing motion, so we use fine-grained to learn spatial
features of current frame. Concretely, given a video tensor
X ∈ Rnt×(nhnw+1)×nc , where nt denotes the video length,
nh and nw denotes the feature map height and width, and
nc denotes the number of channel. It is worth noting that
an extra spatial class token X(:,0,:) for each temporal index
is introduced to represent global spatio information. Follow-
ing Multi-Headed Self Attention(MHSA) (Dosovitskiy et al.
2020), three linear projectors are applied to generate query
tensor Qnt×(nhnw+1)×nc , key tensor Knt×(nhnw+1)×nc

and value tensor V nt×(nhnw+1)×nc .

Q = Fq(X) K = Fk(X) V = Fv(X) (1)
where Fq(·), Fk(·) and Fv(·) denote projection layers with
weights of dimensions nc × nc.

High resolution feature maps often result in unaccept-
able computational overhead that are difficult to apply to
real-world scenarios. We pool Q(:,1:,:), K(:,1:,:), V (:,1:,:)

with pooling operator to obtain tensors Q̂nt×ñhñw×nc ,
Knt×n̄hn̄w×nc

CA , V nt×n̄hn̄w×nc

CA .

Q̂ = PCA(Q; θQ)KCA = PCA(K; θK) VCA = PCA(V ; θV )
(2)

where PCA(; θ) is the pooling operator and we implement it
with convolution. θ is the hyperparameter required for con-
volution, such as kernel, padding and stride. It should be em-
phasized that Q will be pooled only when we need to down-
sample the feature map. For K and V , we pool them at each
STA layer and make θK = θV . In addition, the clip length
and feature dimension remain the same.

Short-Term Attention Compared to long range frames,
continuous frames in short ranges tend to be highly cor-
related and can provide rich action cues. However, overly
complex interactions between frames would prevent the
model from focusing on learning semantic information, so
we generate sub-fine grained tokens with short-term block
for local motion modeling in short-term frames. Specifi-
cally, we perform secondary down sampling on KCA, VCA

to obtain Knt×ňhňw×nc

SA , V nt×ňhňw×nc

SA with pooling oper-
ator PSA(; θ).

KSA = PSA(KCA; θKCA
) VSA = PSA(VCA; θVCA

) (3)

In order to control the amount of parameters and compu-
tation, we use 2D-Avgpooling to realize PSA(; θ). To ob-
tain short-term continuous frames, we set a local temporal
window with size equal to to and it slides along temporal
axis. When the query token located in ith frame, we propose

to calculate attention with K
({i−b to2 c:i;i+1:i+b to2 c+1},:,:)
SA ,

V
({i−b to2 c:i;i+1:i+b to2 c+1},:,:)
SA . It is not difficult to find that
K

(i,:,:)
SA is not used as attending tokens. This design can bring
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two benefits: (1) reducing the computational effort. (2) re-
ducing the risk of over-fitting to spatial information.

Long-Term Attention To fully capture temporal informa-
tion over the entire video, we also introduce token for long-
term motion modeling. Naturally, the correlation between
two frames decreases with increasing interval. Therefore,
the coarse grained tokens are applied to perform Long-term
Attention. Here, instead of using global pooling in width
and height, spatial class tokens X(:,0,:) are adopted to rep-
resent global information. The motivation for this is that
pooling can not retain the position information related to
the motion, while spatial class token can keep the multi-
dimensional attribute of motion through continuous opti-
mization. By employing long-term block, the spatial class
tensors are firstly extracted fromK, V asK(:,0,:) ∈ Rnt×nc ,
V (:,0,:) ∈ Rnt×nc . After that, we expand an additional di-
mension on them and replicate T times on this dimension.
Assuming xnt×nc ,

xe = Expand(x) ∈ R1×nt×nc (4)

xr = Repeat(xe) ∈ Rnt×nt×nc (5)
where Expand(·) and Repeat(·) denote expand and repeat
operations respectively. According Equation 4 and Equa-
tion 5, the key and value tensors for Long-term Attention
can be obtained by following:

KLA = Repeat(Expand(K(:,0,:)))
VLA = Repeat(Expand(V (:,0,:)))

(6)

For convenience, Short-term Attention and Long-term At-
tention are named as Short-Long Integrated Attention. As
such, we got all attending tokens at Current Attention, Short-
term Attention and Long-term Attention. In the following,
we elaborate the attention computation of STA.

Attention Computation Before describing the attention
calculation method, we clarify the query tensor of query to-
kens and the key/value tensor of attending tokens again.

Q̂ = Concat(Q(:,0:1,:), Q̂)

K̂ = Concat(KCA,KSA,KLA)

V̂ = Concat(VCA, VSA, VLA)

(7)

where Q̂ ∈ Rnt×(ñhñw+1)×nc and K̂, V̂ ∈
Rnt×(n̄hn̄w+(to−1)ňhňw+nt)×nc . Concat(·) denotes
operator which can concatenate the given sequence of
tensors in 2th dimension. Attention is now computed on
these tensors, with the following operation:

Attention(Q̂, K̂, V̂ ) = Softmax(
Q̂K̂T

√
nc

)V̂ (8)

where
√
nc is the normalization factor and the output of

Attention(·) has the same shape with Q̂nt×(ñhñw+1)×nc .

Shrinking Temporal Attention Transformer
Our whole model builds upon three components: Token Em-
bedding Block, Shrinking Temporal Attention Block and
Temporal Aggregation Block. Token Embedding Block is

Modules GFLOPs Top-1 Top-5
CA 58.2 77.3 92.9
CA + SA 59.0 77.8 93.3
CA + LA 58.4 78.3 93.5
CA + SA + LA 59.1 78.6 93.8

Table 1: Effect of different attention components in STA. CA
denotes current attention, SA denotes short-term attention
and LA denotes long-term attention.

used to dice the video to tokens and STA Blocks are applied
to efficiently learn spatiotemporal information. In addition,
we adopt a light Temporal Aggregation Block to fuse global
temporal features.

Token Embedding Block By given a video V i ∈
RT×H×W×D, different from simple tokenization in ViT, we
propose to decompose it into ntnhnw overlapping tokens
x ∈ R1×nc with multiple consecutive 3D-convolutional lay-
ers. Some concurrently proposed works (Wu et al. 2021;
Guo et al. 2021) also attempt to use this method to initial-
ize the token and refer to it as conv-stem. However, unlike
existing work, our motivation is mainly based on the fol-
lowing two points: (1) convolution operation is more ad-
vantageous in extracting local features. (2) no need to fo-
cus on long-term temporal features when extracting the un-
derlying features. In the model implementation, instead us-
ing residual block, three vanilla 3D-convolutional layers are
used to continuously downsample the input video and make
nt = T

2 , nh = H
8 , nw = W

8 , nc = 192. Perhaps even bet-
ter performance can be obtained using new operators, such
as T2T (Yuan et al. 2021a) and VOLO (Yuan et al. 2021b),
but this is not the concern of this paper. Then, we intro-
duce an additional spatial class token for each frame to indi-
cate global spatial information. Therefore, token embedding
block actually outputs a total of nt(nhnw+1) tokens to next
block. Finally, we add two positional embeddings to initial
visual tokens for spatial and temporal, respectively.

Shrinking Temporal Attention Block Shrinking Tempo-
ral Attention Block is the core module of STAT, which is
based on STA. ConsideringXin to be the input of this block,
the outputXout of this single transformer block can be com-
puted by following:

Xa = STA(LN(Xin)) +Xin (9)

Xout =MLP (LN(Xa)) +Xa (10)

where STA(·) denotes shrinking temporal attention, LN(·)
denotes Layer Normalization and MLP (·) denotes Multi-
layer Perceptron. By default, we set the dimension of MLP
hidden layer as 4nc.

We realize the main part of STAT by stacking multiple
STA blocks. Blocks are split into multiple stages and the
blocks in the same stage are operated on the same scale. As
the index of the stages increases, the feature map resolu-
tion decreases and the channel dimension increases gradu-
ally. Concretely, we set 15 STA blocks and assign them to
3 stages. When transitioning from one stage to the next, we
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WinSize (to) GFLOPs Top-1 Top-5
SA 3 118.6 79.9 94.3
SA 5 120.1 80.4 94.6
SA 7 121.5 80.4 94.4
SA 9 123.0 80.2 94.4

Table 2: Effect of various window size in short-term atten-
tion. The input cliplength is set to 32 in order to perform
multiple comparison experiments.

Global spatial embedding Top-1 Top-5
spatial avg-pooling 77.4 93.2
spatial class token 78.6 93.8

Table 3: Different strategies of global spatial embedding.

expand the dimension to 2× through MLP, and use pooling
operator to down sample the resolution of feature map to 4×.
For clarity, we list the details of our network in appendix.

Temporal Aggregation Block Simply averaging spatial
class tokens across frames and using it for final classification
would seriously ignore the clues from temporal information.
Here, a light temporal aggregation block is proposed to fuse
temporal information. In particular, a learnable xcls token is
introduced to the whole video and interacts with all spatial
class tokens using lta Multi-Headed Self Attention layers.
Afterwards, we feed xcls into classifier and calculate loss
with cross-entropy.

Experiment
Datasets and Experiment Setting
Datasets The proposed model is trained and evaluated on
the two public large-scale action recognition datasets, Kinet-
ics 400 and Something-Something V2(SSv2). Kinetics400
(Kay et al. 2017) consists of 240k training videos and 20k
validation 10 second videos sampled at 25fps and labeled
using 400 classes. As small fraction of the download URLs
is no longer valid, we note the versions of the datasets
used in this paper consist of approximately 260k samples.
Something-Something V2(SSv2) (Goyal et al. 2017) dataset
consists about 220K 2 ∼ 6 second short videos collected by
performing the same action with different objects. In con-
stract to Kinetics400, SSv2 is a temporal-related datasets
that focus on the motion property than scene context. For
both of these two datasets, the methods are learned on the
training set and evaluated on the validation set. And all of
our ablation experiments are performed on Kinetics400.

Implementation Details In our experiment, we initialize
the network weights from the random initialization without
any pretrained model and train it with AdamW optimizer as
the recipe following (Touvron et al. 2021). For the temporal
domain, we randomly sample a frame from each segment to
obtain one input sequence with T = 16, T = 32 or T = 64
frames. Meanwhile, we fix the short side of these frames to
256 and perform data argumentation following MViT (Fan

Temporal aggregation 0 1 2 4
Top-1 75.7 78.6 78.6 78.5
Top-5 92.2 93.8 93.9 93.8

Table 4: The effect of varying the number of temporal ag-
gregation layers. Note that lta = 0 demonstrates the result
of average pooling method.

Conv layers Kernel Stride Top-1
1 [3, 7, 7] [2, 4, 4] 78.2

3
[3, 3, 3] [2, 2, 2]
[3, 3, 3] [1, 2, 2] 78.6
[3, 3, 3] [1, 2, 2]

5

[3, 3, 3] [2, 2, 2]
[3, 3, 3] [1, 2, 2]
[3, 3, 3] [1, 2, 2] 78.3
[3, 3, 3] [2, 2, 2]
[3, 3, 3] [1, 2, 2]

Table 5: The effect of progressively adding convolutional
layers in token embedding block.

et al. 2021) to obtain the data with size 224×224 for the spa-
tial domain. Specific implementation details can be found in
the appendix.

During the test, different from common practice, we per-
form less sampling along spatial and temporal axis be-
cause STAT has high efficiency in spatio-temporal model-
ing. Specifically, for Kinetics400, we report average results
for 5 × 1 views (5 temporal clips and 1 spatial crops) when
T = 16, 32 and 3 × 3 views (3 temporal clips and 3 spatial
crops) when T = 64. For SSv2, we report average results
for 1 × 3 views (1 temporal clip and 3 spatial crops) for all
setting.

Ablation of Shrinking Temporal Attention
Effect of Various Attention For this first set of experi-
ments, the ablation study is conducted to evaluate the ef-
fectiveness of each of the attention components individually
and in combination on Kinetics400. In Table 1, we present
the results of four settings while the computational complex-
ity measured in one clip with T = 16. It can be observed that
both CA+SA and CA+LA obtain a better performance than
CA, which can be attributed to the fact that the temporal in-
formation allows the network to focus on learning objects
with motions. Meanwhile, long-term information brings 1%
performance increase, which indicates that global temporal
information is crucial for action recognition task. Naturally,
CA+SA+LA yields the best results.

Effect of Window Size The ablation in Table 2 analyzes
the Top-1 accuracy of STAT by varying the window size
to introduced in short-term attention. Here, the input clip
length is set to 32 in order to perform multiple comparison
experiments. We find that the accuracy initially increases
with increasing window size until it achieves its peak ac-
curacy of 80.4% at to = 5 and flattens until to = 7 after
which it declines upon further increase of the window size.
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Method Backbone Pre-train Frames×Clips×Crops GFLOPs Top-1 Top-5
2D+3D CNNs:

SlowFast ResNet-50 - (8+32)×10×3 1971 77.0 92.6
SlowFast ResNet-101 - (16+64)×10×3 6390 78.9 93.5

X3D ResNet-50 - 16×10×3 1452 79.1 93.9
X3D ResNet-101 - 16×10×3 5823 80.4 94.6

ip-CSN - Sports1M 32×10×3 3264 79.2 93.8
I3D NL ResNet-50 ImageNet 128×10×3 8,460 76.5 92.6
I3D NL ResNet-101 ImageNet 128×10×3 10,800 77.7 93.3

(2+1)D CNNs:
TSM ResNet-50 ImageNet 16×10×3 650 74.7 -

MSNet ResNet-50 ImageNet 16×10×1 670 76.4 -
bLVNet bLResNet-50 ImageNet 24×3×3 840 73.5 91.2

TEA ResNet-50 ImageNet 8×10×3 1050 75.0 91.8
TEA ResNet-50 ImageNet 16×10×3 2100 76.1 92.5
TDN ResNet-101 ImageNet 8×10×3 1980 77.5 93.6
TDN ResNet-101 ImageNet 16×10×3 3960 78.5 93.9
STM ResNet-50 ImageNet 16×10×3 2010 73.7 91.6

Transformers:
MViT - - 16×5×1 353 78.4 93.5
MViT - - 32×5×1 850 80.2 94.4
MViT - - 64×3×3 4,095 81.2 95.1
VidTr ViT-L ImageNet 16×10×3 5370 78.6 93.5
VidTr ViT-L ImageNet 32×10×3 10530 79.1 93.9

TimeSformer ViT-L ImageNet 96×1×3 7140 80.7 94.7
ViViT ViT-L ImageNet 16×4×3 17352 80.6 94.7

STAT - - 16×5×1 296 78.6 93.8
STAT - - 32×5×1 601 80.4 94.6
STAT - - 64×3×3 2172 81.3 95.1

Table 6: Comparison results of STAT with previous methods on Kinetics400(Kay et al. 2017) validation set. The state-of-the-art
methods SlowFast (Feichtenhofer et al. 2019), X3D (Feichtenhofer 2020), ip-CSN (Tran et al. 2019), I3D (Wang et al. 2018),
TSM (Lin, Gan, and Han 2019), bLVNet (Fan et al. 2019), TEA (Li et al. 2020b), STM (Jiang et al. 2019), MSNet (Kwon et al.
2020) TDN (Wang et al. 2021), MViT (Fan et al. 2021), VidTr (Li et al. 2021), TimeSformer (Bertasius, Wang, and Torresani
2021), ViViT (Arnab et al. 2021) are adopted.

These suggest that the introduction of short-term informa-
tion would be beneficial to the network for capturing fast
motions. However, a lager window can lead to an inability to
focus on learning spatial semantic information. Hence, con-
sidering both computational complexity and performance,
we set to = 3, 5, 7 when T = 16, 32, 64, respectively.

Importance of Spatial Class Token For shrinking tempo-
ral attention, the global spatio information is the key to im-
plement long-term attention. Herein, we compare two strate-
gies to generate global spatio embedding in Table 3. Our re-
sults show that the an extra spatio class token outperform
the embedding obtained by spatio avg-pooling 1.2% and
0.6% for Top-1 and Top-5, respectively. This phenomenon
is in line with our expectation, since global averaging pool-
ing in the spatial dimension would ignore the essential loca-
tion information. In contrast, spatial class token can retain
the position information related to the motion while keep
the multi-dimensional attribute of motion through attention
mechanism. In addition, adding an extra token to each frame
only bring minor computational overhead.

Ablation of Other Modules
Token Embedding Block Design As mentioned in the
section above, we maintain that using more convolutional
layers could effectively learning low-level features. We vary
the number of 3D-convolutional layers in token embedding
block from 1 to 5 in Table 5. Specifically, we replace part
of previous transformer blocks with convolutional blocks
while ensuring that computational overhead and numbers
of parameters remain approximately the same. As expected,
increasing the number of convolutional layers from 1 to 3
yields the performance gain of 0.4%. Meanwhile, we note
that too many convolutional layers would lead to accuracy
degradation. One possible reason is that too many convolu-
tion layers lead the model have unsufficient capacity to learn
temporal information.

Varying the Number of Temporal Aggregation Layers
Temporal aggregation Block is used in the final stage to
fuse global spatio-temporal information. To investigate the
importance of this block, we first average the final spatial
class tokens of each frame and then feed it to classification
head. As shown in Table 4, replacing temporal averaging
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Method Backbone Pre-train Frames×Clips×Crops GFLOPs Top-1 Top-5
(2+1)D CNNs:

bLVNet ResNet-101 ImageNet 8×1×1 32 60.2 87.1
TSM ResNet-50 ImageNet 16×2×3 390 63.4 88.5

SmallBigNet ResNet-50 ImageNet 16×2×3 - 63.8 88.9
MSNet ResNet-50 ImageNet (16+8)×10×1 1010 67.1 91.0
STM ResNet-50 ImageNet 16×10×3 2,010 64.2 89.8

Transformers:
MViT - K400 16×1×3 212 64.7 89.2
MViT - K400 32×1×3 510 67.1 90.8
MViT - K400 64×1×3 1365 67.7 90.9

TimeSformer ViT-L ImageNet 96×1×3 7,140 62.4 -
ViViT ViT-L ImageNet 16×4×3 11,892 65.4 89.8

STAT - K400 16×1×3 178 65.1 89.4
STAT - K400 32×1×3 361 67.3 90.8
STAT - K400 64×1×3 724 67.6 90.9

Table 7: Comparison results of STAT with previous methods on Something-Something V2(SSv2) (Goyal et al. 2017) validation
set. The state-of-the-art methods bLVNet (Fan et al. 2019), TSM (Lin, Gan, and Han 2019), SmallBigNet (Li et al. 2020a),
MSNet (Kwon et al. 2020), STM (Jiang et al. 2019), MViT (Fan et al. 2021), TimeSformer (Bertasius, Wang, and Torresani
2021), ViViT (Arnab et al. 2021) are adopted.

with one temporal aggregation layer improves the Top-1 ac-
curacy from 75.7% to 78.6%. We attribute this performance
gain to the fact that temporal aggregation block can effi-
ciently fuse temporal information, whereas the average pool-
ing approach loses valid information from temporal cues.
However, there is no significant change in accuracy when
the number of layers is further increased. Consequently, we
set lta = 1 for all experiments.

Comparisons with the State-of-the-Arts
In this section, we compare STAT with the existing
state-of-the-art action recognition methods on Kinetics400
and Something-Something V2(SSv2). The comprehensive
statistics, include classification results, inference protocols,
and the corresponding FLOPs.

Kinetics Table 6 presents that our proposed STAT out-
perform the state-of-the-art methods on Kinetics400. We
take 1 spatial crops for 5 temporal view following stan-
dard practice in (Fan et al. 2021). Three types of meth-
ods based on 3D CNNs, (2+1)D CNNs and Transform-
ers are compared respectively. Due to the high compu-
tation costs of 3D CNNs, the FLOPs of methods in the
first compartment are typically higher than others. Among
all these existing methods, the most effective and accu-
rate one is X3D(Feichtenhofer 2020), with 5823 GFLOPs
and 80.4 Top-1 accuracy. Compared with it, our proposed
STAT achieves the same accuracy with only 601 GFLOPs
(0.1X), and better accuracy (81.3 vs 80.4) with half FLOPs.
In the cluster of (2+1)D CNNs, although they has made
optimizations in the amount of calculation, the accuracy
also decreases. TDN(Wang et al. 2021) achieves balance
between FLOPs and accuracy. The calculation of TDN is
1980 FLOPs and the Top-1 accuracy is only 77.5, which is
about 6x FLOPs of STAT while similar performance is ob-
tained. The same conclusion can be reflected in the results

of transformer based models. Limited by transformer struc-
ture, VidTr(Li et al. 2021), TimeSformer(Bertasius, Wang,
and Torresani 2021) and ViViT(Arnab et al. 2021) adopt
very complicated networks to achieve state-of-the-art per-
formance. MViT(Fan et al. 2021) has made many improve-
ments. Nevertheless, the quadratic computational in time
and space still brings huge computation. Compared with
MViT, the proposed STAT achieves a little higher accuracy
with 50% less FLOPs (2172 vs 4095). Furthermore, While
implemented with less frames, the Top-1 accuracy decreases
from 81.3 to 78.6, which is still a competitive result com-
pared with different structure of previous models.

SSv2 The similar conclusion is presented in Table 7 on
Something-Something V2 dataset. SSv2 differs from other
datasets. The backgrounds and objects are quite similar in
that. It needs the highly effective model to recognise fine-
grained motion patterns across different classes. However,
STAT still achieves state-of-the-art Top-1 accuracies with
different frames, especially compared with MViT(Fan et al.
2021) and MSNet(Kwon et al. 2020). The results suggest
that Shrinking Temporal Attention is an effective approach
for modeling the short-range motion and long-range visual
aggregation in an unified network.

Conclusion
This paper proposes an unified network STAT to build spa-
tiotemporal attention considering both the short-term motion
and long-term aggregation. It adopts an Shrinking Tempo-
ral Attention manner to separately handle with the variety
of short-range and long-range videos. It greatly reduces the
huge computational overhead of quadratic computational in
time and space, and obtaines compact spatiotemporal feature
representation. Experiments show that, STAT achieves state-
of-the-art results on multiple action recognition benchmarks
with 50% less FLOPs and without any pretrained model.
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