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Abstract

Generating 3D dances from music is an emerged research
task that benefits a lot of applications in vision and graphics.
Previous works treat this task as sequence generation, how-
ever, it is challenging to render a music-aligned long-term se-
quence with high kinematic complexity and coherent move-
ments. In this paper, we reformulate it by a two-stage process,
i.e., a key pose generation and then an in-between parametric
motion curve prediction, where the key poses are easier to be
synchronized with the music beats and the parametric curves
can be efficiently regressed to render fluent rhythm-aligned
movements. We named the proposed method as Dance-
Former, which includes two cascading kinematics-enhanced
transformer-guided networks (called DanTrans) that tackle
each stage, respectively. Furthermore, we propose a large-
scale music conditioned 3D dance dataset, called Phantom-
Dance, that is accurately labeled by experienced animators
rather than reconstruction or motion capture. This dataset
also encodes dances as key poses and parametric motion
curves apart from pose sequences, thus benefiting the train-
ing of our DanceFormer. Extensive experiments demonstrate
that the proposed method, even trained by existing datasets,
can generate fluent, performative, and music-matched 3D
dances that surpass previous works quantitatively and quali-
tatively. Moreover, the proposed DanceFormer, together with
the PhantomDance dataset, are seamlessly compatible with
industrial animation software, thus facilitating the adaptation
for various downstream applications.

Introduction
Automatically generating music conditioned 3D dances is an
appealing but challenging task that emerged in the research
community of vision and graphics, which can significantly
benefit various downstream applications in AR/VR, games,
films, and even the social networks. Beyond human actions
like walking, jumping, and sitting with atomic functionali-
ties, dancing is a type of artistic performance that focuses
more on its choreography, i.e., sequential steps and move-
ments with high kinematic complexity that are synchronized
with the beats and rhythms of the music. It is challenging
for humans with professional training to generate expressive
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choreographies, no matter how hard a machine is to generate
visually plausible dances that accompanied by the music.

Most of the prior works (Lee et al. 2019; Li et al. 2021;
Lee, Kim, and Lee 2018; Tang, Jia, and Mao 2018; Li et al.
2020; Zhuang et al. 2020; Alemi, Françoise, and Pasquier
2017) formulated the music conditioned 3D dance genera-
tion as a sequence generation problem, where each frame
in the sequence describes the human pose by the joint-level
rotations and translations. However, rendering a long-term
pose sequence with high kinematic complexity and coherent
movements is still an open question.

In this paper, we would like to exploit a popular anima-
tion strategy (Lasseter 1987; Thomas, Johnston, and Thomas
1995) in the field of computer graphics, where the motion
of characters is efficiently rendered by interpolating poses
in keyframes through parametric curves. This coarse-to-fine
strategy is especially beneficial in our task since it both en-
sures kinematic complexity and motion coherency in the
generated dances, where the poses in the keyframes can be
generated and synchronized with the music beats due to their
co-occurrence (Lee et al. 2019; Li et al. 2021), and the para-
metric curves can be efficiently regressed so as to produce
diverse motion patterns that are consistent with the rhythms
of the music. It also allows user-controlled temporal reso-
lutions, and generates smooth sequences with fewer tempo-
ral flickers (Williams 2012). Moreover, formulating dances
as a sequence of key poses and parametric motion curves
would be seamlessly compatible with industrial animation
pipelines. Therefore, we would like to tackle the music con-
ditioned 3D dance generation from this new perspective, and
decompose this task into two easier sub-tasks, namely, the
key pose generation and the subsequent parametric motion
curve regression.

To this end, we propose DanceFormer, a two-stage music
conditioned 3D dance generation framework that consists of
two cascaded Transformer-like (Vaswani et al. 2017) net-
works (called DanTrans), where the first one is to generate
key poses and the second one is to regress the parameters
of the motion curves between adjacent key poses. At first,
we employ an off-the-shelf beat track algorithm (Ellis 2007)
to detect beats from the input music (e.g., around 30 sec-
onds). The DanTrans for the key pose generation takes a se-
quence of music spectrum features centered at each beat as
the input, and then generates a sequence of key poses that
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synchronizes with the sequence of the music beats. And the
DanTrans for the parametric motion curve regression em-
ploys a different sequence of music spectrum features that
are extracted between adjacent beats and feeds the generated
key poses as well to regress the sequence of the parameters
for each motion curve. In our implementation, we employ
the Kochanek-Bartels splines (Kochanek and Bartels 1984)
to model motion curves, which benefits rendering various
movements from a small set of control parameters.

Each DanTrans contains a Wave Encoder as a stack of
transformer encoders to extract audio features, and a Mo-
tion Decoder constructed by a stack of transformer decoders
to auto-regressively predict key poses or parameters of the
motion curves. To be specific, the Motion Decoder contains
a new Kinematic Propagation Module (KPM) and a Struc-
tured Multi-head Attention Module (SMAM) to enhance the
spatial correlation for the dance generation process based on
the Kinematic topological relations of the human body. This
motion decoder increases the physical significance and thus
alleviates unreasonable predictions seldom appeared in real
dances. These DanTrans networks are adversarially trained
in accompany with `2 reconstruction losses.

In order to train the proposed DanceFormer, we also
propose a new PhantomDance dataset that is produced by
professional animators rather than reconstruction from 2D
videos (Lee et al. 2019; Li et al. 2021; Lee, Kim, and Lee
2018) or by motion capture (Zhuang et al. 2020; Tang, Jia,
and Mao 2018). The reconstructed data can not ensure the
accuracy due to the limitation of recent 3D reconstruction
algorithms. The motion capture methods are more accurate
but still suffer from noise, such as limb flickers and joint
mismatches. In contrast, our PhantomDance dataset is pro-
duced by a team of experienced animators instructed by
professional dancers. The animated dances are encoded by
poses from keyframes and motion curve parameters, which
thus can produce more fluent and expressive human pose se-
quences that match the input music.

Extensive experiments are conducted on PhantomDance
and AIST++ (Li et al. 2021), demonstrating that Dance-
Former attains state-of-the-art results and significantly sur-
passes other works both qualitatively and quantitatively.

Above all, the contributions are summarized as follows:
(1) A new perspective to model the music conditioned 3D

dance generation as key pose generation and parametric mo-
tion curve regression, which follows the animation princi-
ples and simultaneously ensures kinematic complexity and
motion coherency.

(2) A novel framework named DanceFormer that consists
of two Transformer-like networks called DanTrans, where
the first network generates key poses and the second one
regresses the parameters of the motion curves. More impor-
tantly, the DanTrans networks calculate attentions in adap-
tive temporal ranges and explicitly enhance the kinematic
correlation among the outputs.

(3) The PhantomDance dataset, as the first dance dataset
crafted by professional animators instead of 3D reconstruc-
tion or motion capture, provides more smooth and expres-
sive dances that are synchronized with music, and directly
compatible with industrial animation pipelines.

Related Works
3D Dance Synthesis 3D dance synthesis has been ad-
dressed in many ways. The traditional methods were based
on retrieval from the dance dataset (Takano, Yamane, and
Nakamura 2010; Chao et al. 2004). Recently, deep learn-
ing models have been widely employed in this task, attain-
ing visually pleasing results, such as those using convolu-
tional neural networks (Lee, Kim, and Lee 2018; Zhuang
et al. 2020), recurrent neural networks (Tang, Jia, and Mao
2018), or using variational auto-encoders (Lee et al. 2019) to
enhance the diversity of the generated dances. CSGN (Yan
et al. 2019) generates the dance sequences by enhancing
the skeleton-level relations with a graph neural network
(GNN), but the proposed Kinematic Propagation Module
(KPM) used in our DanceFormer adopts forward and inverse
kinematic message passing to better involve the kinematic
correlations. ChoreoMaster (Chen et al. 2021) introduces
a choreography-oriented choreomusical embedding frame-
work, and uses the embedding to retrieve dance snippets in
the motion graph for the input music. Because it doesn’t
generate new dances, we don’t compare our method with
it. As the Transformer (Vaswani et al. 2017) achieves great
success in sequence-to-sequence generation tasks in NLPs,
some of the most recent works on the dance generation also
bring it into use. Li et al. (2020) presented a two-stream
motion transformer generative model. AI Choreographer (Li
et al. 2021) presents a cross-model transformer with future-
N supervision for auto-regressive motion prediction. These
works directly generate the sequence of human poses, while
the proposed DanceFormer generates a series of key poses
and accompanied parameters of the motion curves, which
ensures necessary kinematic complexity, motion coherency,
adaptive temporal resolutions in the generated dances, and
compatible with the industrial animation software, such as
Maya, Unity and etc.

3D Dance Dataset The widely used motion datasets, such
as Human3.6M (Ionescu et al. 2013) and AMASS (Mah-
mood et al. 2019), collected common actions like walking,
running, jumping and sitting. However, these datasets are
hard to adapt for the dance generation task due to the huge
distribution gap between daily motions and the dance move-
ments, as well as the absence of carefully aligned music-
dance pairs. In fact, high-quality 3D dance movements with
synchronized music are extremely hard to collect. Many ex-
isting datasets are limited by the quantity or quality of data.
Some of them just use sequences of 2D keypoints to rep-
resent dances (Lee et al. 2019; Lee, Kim, and Lee 2018).
AIST++ (Li et al. 2021), as the largest dataset up to date,
presented a 5-hours 3D dance set. But it gathered dances by
reconstructing 3D poses from 2D multi-view videos, thus
the accuracy of pose parameters may not be guaranteed.
The other works use motion capture to build dataset (Alemi,
Françoise, and Pasquier 2017; Tang, Jia, and Mao 2018;
Zhuang et al. 2020), in which the pose reliability is better but
misalignment between the dance-music pair is inevitable.
On the contrary, the proposed PhantomDance is the largest
public 3D dance dataset up to date and its data quality is
much higher than existing datasets thanks to careful labels
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from experienced animators with the help of professional
dancers. The stored key poses and parametric motion curves
also benefit animations by industrial software.

The PhantomDance Dataset
Data Collection
We collect 260 popular dance videos from more than 13 gen-
res from over 100 different subjects (dancers) on YouTube,
NicoNico and Bilibili, which have 9.6 hours in total. Then
a team of experienced animators produced the 3D dance an-
imations, as sequences of key poses and parametric motion
curves. An expert dancer provided professional instructions
to teach the animators, thus improving the holistic expres-
siveness and detail richness of the animated dances, as well
as the synchronization with beats and rhythms of the accom-
panied music. This dataset is named PhantomDance, and we
will make it publicly available to facilitate future research.

Data Formatting
In our PhantomDance dataset, the dances can be ani-
mated in industrial animation software, such as Maya (De-
rakhshani 2012), on a standard SMPL (Loper et al. 2015)
character model with 24 body joints. We followed Hu-
man3.6M (Ionescu et al. 2013) and provided a subject-
invariant 3D human skeleton representation for all the 260
motion files, with unified limb lengths. The motion is param-
eterized as the parametric curves of the root (the hip joint)
position and the rotations of the 24 skeleton joints. For each
sequence, we take the root position on the first frame as the
origin of the 3D coordinate. And the rotations are expressed
with quaternions. That is, there are 3 + 4× 24 = 99 curves
in each motion file. Each parametric motion curve is rep-
resented as the Kochanek-Bartels Spline interpolated from
labeled key poses synchronized with extracted music beats,
where the curve segment between adjacent two key poses
can be controlled by a fixed set of parameters.

We use the parametric motion curves to represent dance
movements because (1) its formulation is analytical and
can be densely sampled with various temporal resolutions,
which is very useful for real-time rendering; (2) its shape is
in nature continuous and thus consistent with the aesthetic
principles when evaluating dances.

In Comparison to Previous Datasets
Table 1 shows the comparison between our PhantomDance
dataset with the other public music-conditioned 3D Dance
Datasets. The collected dances in PhantomDance mainly
cover 13 genres, ranging from Urban Dance to Chinese Clas-
sical Dance, with extra genres from animes or idol groups
that are hard to classify. The beats per minute (BPM) of
these dances range from 75 to 178. Apart from labeling the
detailed 3D positions and rotations of each pose, our dataset
also provides the ground-truth music beats and parameters
of each motion curve, thus directly facilitating animation or
model learning that is compatible with industrial software.

Besides the aspect of dataset scale, the PhantomDance
dataset also has high quality. Motion data in the other

Dataset Pos/Rot Genres Music Seconds
GrooveNet X/× 1 3 1380
EA-MUD X/× 6 23 1849

Dance w/ Melody X/× 4 61 5640
AIST++ X/X 10 60 18694

PhantomDance X/X 13+ 260 34667

Table 1: Our PhantomDance dataset v.s. the other datasets,
namely GrooveNet (Alemi, Françoise, and Pasquier 2017),
EA-MUD (Sun et al. 2020), Dance with Melody (Tang, Jia,
and Mao 2018) and AIST++ (Li et al. 2021).

datasets are collected from optical motion capture sys-
tem (Alemi, Françoise, and Pasquier 2017; Tang, Jia, and
Mao 2018; Sun et al. 2020) or 3D reconstruction from multi-
view videos (Li et al. 2021). Motion capture systems can not
totally avoid data noise like limb flicker and joint mismatch.
And video-based 3D reconstruction suffers from more seri-
ous noise like foot slippery and limb twists due to the limita-
tion of reconstruction algorithms. Thus professional anima-
tors are needed for data correction. In contrast, motion data
in PhantomDance are produced by expert animators from
scratch with the guidance of a professional dancer. And we
have a strict quality checking process so that it costs about
15 months to finish the dance labeling. More details of our
PhantomDance dataset and the qualitative comparison with
the other datasets can be seen on our project page1.

DanceFormer
As illustrated in Figure 1, we propose the DanceFormer, a
two-stage music conditioned 3D dance generation frame-
work that consists of two cascaded transformer-like net-
works. Each network is named DanTrans, where the first one
generates key poses, and the second one predicts the param-
eters of the motion curves between adjacent key poses. Each
DanTrans network contains a wave encoder that is similar
to the standard transformer encoder (Vaswani et al. 2017),
and a motion decoder with a Kinematic Propagation Mod-
ule (KPM) and a Structured Multi-head Attention Module
(SMAM), which enhances the kinematic correlation for the
dance generation process based on the Kinematic topologi-
cal relations of the human body. Adversarial learning is ap-
plied during the training in both stages.

Stage 1: Key Pose Generation
Following the rhythm (beats) is a basic principle in dance
theory (Goodridge 1999), and previous studies also show
that music beats and kinematic inflections have strong con-
sistency in time (Lee et al. 2019; Li et al. 2021). Thus we
define the key poses directly as the poses on the beats, which
are represented as the position and rotation (in quaternion)
of each skeleton joint, with the dimension of (3 + 4) ×
24 = 168. We first leverage the dynamic programming algo-
rithm (Ellis 2007) to track the time of each beat in the music.
Our target in stage 1 is to generate a sequence of key poses
to match these extracted beats.

1https://huiye-tech.github.io/post/danceformer/
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Figure 1: Overview of the workflow of DanceFormer. The networks in stage 1 take as input the music wave features in the
neighborhood of each beat and output a sequence of key poses. Then the networks in stage 2 utilize the generated key poses
and the music wave features between every two key poses to predict the motion curve in between. Each network adopts the
proposed transformer-like network, called DanTrans. The DanTrans has a new transformer decoder, which uses the proposed
Kinematic Propagation Module (KPM). Note that the attention module (Att. in the figure) is a structured multi-head attention.
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Figure 2: Motion Curves. The figure shows an example of
4-knot TCB spline parameterization for motion curves.

The input sequential music features are music spectrum
features between a window centered at each beat. We use a
window of size 0.8 seconds in our implementation since the
lowest beat per-minus (BPM) is 75 in common dance music
(which is validated in our PhantomDance dataset, and also
valid in other datasets). We choose the Hamming window
to tackle the window overlap in music with higher BPMs.
In each window, we calculate the 40-dimensional form of
MFCC (Logan et al. 2000) that has 13 coefficients of Mel
filters cepstrum coefficients with the first and second order
differences (13 × 2 dimensions) and the energy sum (1 di-
mension). We further append a 12-dimension chroma fea-
ture to the feature of every beat and finally attain the inputs
to the wave encoder. And the motion decoder combines the
encoded features with the right-shifted outputs and sequen-
tially predict the key poses, as indicated by the sequence-
to-sequence prediction strategy based on the standard trans-
former (Vaswani et al. 2017).

Stage 2: Parametric Motion Curve Prediction
Based on the generated key poses, the DanTrans in stage 2
is targeted to generate the motion curves in between.

The motion curves are defined as the values of trans-
formation parameters with regard to time. The transfor-
mation parameters are translation (x, y, z) and rotation
(rx, ry, rz, rw) in quaternion of each joint. We use a

multi-knots Kochanek-Bartels splines (Kochanek and Bar-
tels 1984) to model each curve. It is a sort of cubic Her-
mite spline that is used in animation editing software. The
Kochanek-Bartels spline is also named TCB spline because
it has 3 parameters: t for tension, b for bias and c for con-
tinuity. While for a multi-knot TCB spline, we should also
determine the intermediate knots and their tangents. Figure 2
shows a example of motion curve parameterization.

In our implementation, we use one 4-knot TCB spline to
fit one motion curve between two adjacent key poses, as an
optimal tradeoff between fitting accuracy and representation
compactness. Since the endpoints in the curve are just on the
key poses, we have 7 control parameters to predict, namely
the t, c, b and the position of the two intermediate knots.

Similar to the DanTrans in stage 1, we extract the se-
quence of the MFCC features from the music between every
two adjacent beats as the input for the wave encoder, and
the motion decoder auto-regressively outputs the 7 control
parameters that are aligned with each MFCC feature. Note
that the motion decoder requires the right-shifted output se-
quences as its input, which should be additionally concate-
nated with the two key poses at the beginning and the end of
the curve, which are generated in stage 1.

Network Structure of DanTrans
DanTrans has a similar Network structure to the standard
transformer (Vaswani et al. 2017) as illustrated on the right
of Figure 1, except that the motion decoder employs the pro-
posed Kinematic Propagation Module (KPM) and the Struc-
tured Multi-head Attention Module (SMAM) in each trans-
former decoder layer. We employ a stack of N = 6 trans-
former decoders in the motion decoder of each DanTrans.
Note that an additional KPM is applied at the beginning of
the motion decoder for output embedding.

Kinematic Propagation Module The Kinematic Propa-
gation Module (KPM) is constructed on the basis of human
body structure, i.e., the 24 skeleton joint nodes with a tree
topology. The networks consist of a stack of so-called FK-
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Figure 3: The Kninematic Propagation Module (KPM) and
the Structured Multi-head Attention. Features are embedded
and passed along the kinematic chains forward and inversely
with fusion operations. Note that the endpoints of feature
passing are root and leaf nodes, and we just show a part of
them for clearer view.

IK blocks as illustrated in Figure 3. Note that the fully con-
nected layer (FC) represents the complete BN-Linear-ReLU
module, while we use FC to represent it for simplicity.

The FK-IK block has two steps, i.e., the forward kine-
matic (FK) feature passing and then the inverse kinematic
(IK) feature passing, respectively. The forward kinematic
feature passing step firstly performs a feature embedding
on the root node and passes it to the neighbor child nodes
along the kinematic chain. After receiving the features from
the parent node, the child node performs feature fusion and
then conducts feature embedding by linear projection. The
FC layers are utilized for feature embedding and the fusion
adopts the addition operation. The backward kinematic fea-
ture passing step has a similar feature embedding and the
passing process is performed from the leaf nodes to the root.
These procedures are similar to the operations of forward
kinematics (FK) and inverse kinematics (IK) in computer
graphics and robotics. The FK-IK block attempts to encode
features into the motion controlling parameter space and to
bring physics constraints into the model.

For the output embedding process at the beginning of the
motion decoder, we use a KPM with one FK-IK block. And
for feed-forward process in the intermediate layers, we adopt
a stack of 2 FK-IK blocks for each KPM. All the KPMs have
the same output feature size of 64.

Structured Multi-Head Attention The features out-
putted by KPM are arranged as the joint nodes, they nat-
urally act as heads in the multi-head attention mechanism
used in common transformers (Vaswani et al. 2017). In the
multi-head cross-attention, the encoded features from the in-
put music are processed by two sets of 24 paralleled FC lay-
ers with the output size of 64, which then act as the values
and keys. Note that no concatenation is needed after atten-
tion calculation since the features should maintain the body
structure, and directly fed into the succeeding KPM module.
Thus this process saves computation compared to the typi-
cal multi-head attention that concatenates features from each
head and uses a big linear layer for feature embedding. The
structured multi-head attention module, also shown in the
right of Figure 3, defines the head as the node in the body
structure, which has explicit physical significance. To some
degree this design is more reasonable than the multi-heads
in the original transformer.

Training Objective
We adopt an adversarial training strategy that regards each
DanTrans network as an individual generator, and learns two
discriminators to judge whether distributions of the gener-
ated sequences and the groundtruth ones are aligned or not.
Each discriminator consists of two modules to process the
music feature and the output/groundtruth key pose sequence
(in stage 1) or the parameters of the motion curves (in stage
2), and the processed features are combined and fed into
the binary classifier to predict the authenticity of the out-
puts conditioned on the input music. All modules in the dis-
criminator are 3-layer MLPs. Moreover, when updating the
generator, we also include an `2 reconstruction loss to avoid
unwanted solutions that are far away from real data.

Experiments
Implementation Details
Since most music in PhantomDance has the verse-chorus
form, we divide the 260 dance animations into 1000 se-
quences. Among them 900 pieces of music-dance pairs are
used for model training, and the other 100 are split into
the test set. We carefully pick the test set to ensure it cov-
ers 13 genres and the BPM range from 80 to 180. We fol-
low the official training/testing splits in AIST++ (Li et al.
2021). To gather the ground-truth labels for the training of
the DanceFormer, we use the beat track algorithm (Ellis
2007) to extract beats and fit the parameter motion curves
from the provided pose sequences. The DanceFormer is end-
to-end trained using 4 TITAN Xp GPUs with a batch size
of 8 on each GPU. We use the Adam optimizer with be-
tas {0.5, 0.999} and a learning rate of 0.0002. The learning
rate drops to 2e−5, 2e−6 after 100k, 200k steps. The model
is trained with 300k steps for AIST++ and 400k steps for
PhantomDance. The dimension of features in DanceFormer
is 256 unless otherwise specified.

Evaluation Metrics
Normalized Power Spectrum Simularity (NPSS) It is an
evaluation metric for long-term motion synthesis compared
to Mean Square Error (MSE). We just follow its official
implementation (Gopalakrishnan et al. 2019) and compute
NPSS in the joint motion space RT×N×7 (4 for joint rota-
tion represented as quaternion and 3 for joint position).

Frechet Distance (FD) It is proposed by AIST++ (Li et al.
2021) that has two metrics, namely PFD for position and
VFD for velocity. We also employ it to calculate the distri-
bution distance of joints.

Position Variance (PVar) It evaluates the diversity of the
generated dance. In AIST++, a piece of music corresponds
to more than one dance, but only one in PhantomDance. So
we make a modification to the metric PVar in the experi-
ments on PhantomDance where we compute it along differ-
ent music pieces which have identical length.

Beat Consistency Score (BC) It is a metric for motion-
music correlation. We follow (Li et al. 2021) to define kine-
matic beats as the local minima of the kinetic velocity. BC
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Component NPSS PFD VFD PVar BC
DanceFormer 8.03 114.03 0.55 0.912 0.785

Curve to Frames 14.55 1132.4 1.06 0.233 0.317
KPM to Linear 10.54 162.44 0.79 0.592 0.637
KPM to GNN 10.34 146.43 0.69 0.647 0.692

Table 2: Ablation study about our DanceFormer on the
PhantomDance dataset.

Attention NPSS PFD VFD PVar BC
Global 9.73 151.53 0.72 0.649 0.737
Local 9.01 125.59 0.68 0.744 0.763

Gaussian Loc. 8.93 117.14 0.64 0.753 0.764
Learned Loc. 8.03 114.03 0.55 0.912 0.785

Table 3: The comparison of different Attention mechanisms.

computes the average distance between every music beat and
its nearest kinematic beat with the following equation:

BC =
1

|Bx|

|Bx|∑
i=1

exp

(
−
min∀txj∈Bx ||txj − t

y
i ||2

2σ2

)
(1)

where Bx = {txj },By = {tyi } are kinematic beats and mu-
sic beats respectively and σ = 3. Note that BC has a similar
form to Beat Alignment Score (BA) proposed in (Li et al.
2021), but they are different in essence. BA forces every
kinematic beat to match a music beat, but a dance usually
has many small kinematic beats that occur between mu-
sic beats. Moreover, a music synchronized dance just needs
to ensure the most salient music beats are accompanied by
the action emphasis (kinematic beats). So our proposed BC,
which finds matched kinematic beat for each music beat, is
more appropriate in this case.

Ablation Study
To validate the effectiveness of our DanceFormer, we con-
duct the ablation study on our PhantomDance dataset.

Effectiveness of Curve Prediction To evaluate the effec-
tiveness of our curve prediction, we sample 60-FPS poses
from the data and use a standard transformer to directly pre-
dict the sequence. The input sequences are extracted from a
0.5s sliding window with a step of 1/60 second on the music
waves. Its result is the second line of Table 2 as “Curve to
Frame”. The experimental result demonstrates the advantage
of our pose-to-curve two stage generation framework.

Effectiveness of KPM To study the impact of the KPM
component, we first replace it with the standard feed-
forward (linear layers) modules in vanilla transformer
(Vaswani et al. 2017). And the multi-head attention also
comes back to the common form. The third line in Table 2
shows that the KPM has significant improvement in mo-
tion generation quality. To further study the FK-IK process-
ing, we introduce a comparison architecture which substi-
tutes the FK-IK block with a 2-layer graph neural network
(GNN) (Scarselli et al. 2008). This GNN fuses the joint fea-
tures according to the adjacency matrix of undirected graph
defined by the joint structure. The experimental result shows
that GNN has better performances compared to the base-
line (“KPM to Linear”), which proves that introducing spa-
tial correlations benefits the representation of the learning

model. While the proposed KPM surpasses the trivial GNN
by a large margin, validating that involving spatial correla-
tion and physics constraints into the network brings in sig-
nificant improvements in the generation quality that is eval-
uated by NPSS, PFD and VFD.

Variants of Attention In our implementation, we find
that local attention (Luong, Pham, and Manning 2015) is
more proper for the motion sequence generation task than
the global attention in standard transformers. It can be ex-
plained by the temporal locality of motions. That is, the
pose several seconds ago has no direct influence on the cur-
rent pose. Moreover relationship between motion states is
stronger with as time goes closer. So we further compare
several attention algorithms and the results are shown in Ta-
ble 3. We use a sequence length of 17 in the simple local
attention experiment shown on the second line. And we add
a Gaussian mask on the attention results before softmax
with a standard variance of 4. The result is on the third line
and it has a slight improvement. Finally we use a learned
mask to be optimized with the networks and obtain the best
result. The trained mask has a triangle shape on the whole
with some humps. Our DanceFormer employs this learnable
local attention in our implementation.

Comparison with Other Methods
We mainly compare our method with AI Choreographer (Li
et al. 2021), which to our knowledge obtains the state-of-
the-art results for music-conditioned dance generation. The
other two most related works, namely Li et al. (Li et al.
2020) and Music2Dance (Zhuang et al. 2020) are also com-
pared. The experimental comparisons are performed on both
the AIST++ and our PhantomDance datasets.

Quantitative Comparisons The results are viewed in Ta-
ble 4. Our method outperforms Li et al. (Li et al. 2020) and
Music2Dance (Zhuang et al. 2020) by a considerably large
margin. And it also surpasses AI Choreographer (Li et al.
2021) significantly in the quality related metrics (a 30% gain
of NPSS, a 28% gain of PFD and a 27% gain of VFD), di-
versity metrics (a 46% gain of PVar) and beat consistency
metrics (a 93% gain of BC). The promising results on the
dance quality metrics are mainly owing to the network struc-
ture of KPM that enhances the kinematic correlations. The
generation diversity is ensured by the adversarial learning
scheme. Note that the upper bound of the metric BC is 1,
which means there exactly exists a kinematic beat at the time
of each music beat. So our results have relatively high beat
consistency score, which is due to the proposed two-stage
framework of our DanceFormer. Since no metric emphasizes
the fluency of the dance performance, the advantages of mo-
tion curve formulation can only be well revealed in qualita-
tive results, as shown in Figure 4.

Qualitative Results and User Study Figure 4 provides
a sequence of frames about the generated dances by our
DanceFormer. These results show that the proposed method
can provide diverse movements with high kinematic com-
plexity. Video results accompanied with music, including
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Figure 4: Visualization of generated results of DanceFormer.

Method AIST++ PhantomDance
NPSS ↓ PFD ↓ VFD ↓ PVar ↑ BC ↑ NPSS ↓ PFD ↓ VFD ↓ PVar ↑ BC ↑

Li et al. (Li et al. 2020) 16.31 5595.91 3.40 0.019 0.359 18.34 7944.78 5.84 0.014 0.175
M2D (Zhuang et al. 2020) 14.74 2367.26 1.13 0.215 0.378 15.94 3147.89 3.74 0.267 0.223
AI Chore. (Li et al. 2021) 8.29 113.56 0.45 0.509 0.452 10.62 164.33 0.73 0.624 0.388

DanceFormer 6.01 84.32 0.34 0.734 0.782 8.03 114.03 0.55 0.912 0.785

Table 4: Dance generation evaluation on the AIST++ and the PhantomDance datasets. M2D and AI Chore. represent Mu-
sic2Dance and AI Choreographer respectively. Our method outperforms other baselines in terms of quality, diversity and beat
consistency. Especially, due to our two-stage prediction schema, our model has superior performance in term of BC indicating
that our model can generate dances which better match the given music. ↓means that lower results indicate better methods, and
↑ vice versa.

0.03
0.22

0.39

0.86
0.97

0.78
0.61

0.14

Performance Quality

0.02 0.12

0.33

0.82

0.98
0.88

0.67

0.18

Matching the Music

Music2Dance AI Choreographer OursGround-truthLi et al.

Figure 5: Results of the user study. We conduct a user study
to ask participants to choose the better dances from pairwise
comparisons. The criteria includes the performance quality
and matching the music. The number denotes the percentage
of preference on the comparison pairs.

the comparisons with the other works can be found on the
project page2.

We also conducted a user study to evaluate the quality
of the generated music-conditioned dances. All the 100 se-
quences of the validation set of PhantomDance were used
for the study. And then we collect the generated dances
by our method and the compared baselines (Li et al. 2021,
2020; Zhuang et al. 2020). In addition, the ground-truth
dances are also included. The user study was conducted us-
ing a pairwise comparison scheme. For each of the 100 mu-
sic, we provide 4 pairs in which our results occur with the
results from the baseline methods or the ground truth. Thus
400 pairs were provided to the participants, and they were

2https://huiye-tech.github.io/post/danceformer/

asked to make two choices for each pair: “Which dance is
a better performance (more fluent, graceful and pleasing)?”
and “Which dance matches the music better?”. There are
100 participants in the user study. Figure 5 shows the user
study results, where our DanceFormer outperforms the other
methods on both criteria. Most of the participants rated that
our method generates better dances in performance quality
compared with other works, and even more participants held
the opinion that the dances generated by our model better
match the music.

Conclusion
In this work, we propose a new perspective to model the
music-conditioned 3D dance generation task. Different from
previous works that define the outputs as sequences of poses,
we formulate them as key poses and in-between motion
curves. The curve representation makes the generated re-
sults more fluent and graceful. Based on this formulation, we
propose the transformer-based DanceFormer with the novel
DanTrans architecture consisting of the KPM module for
better modeling kinematic correlations. DanceFormer thus
yields high-quality results in the experimental comparisons.
Moreover, we propose the PhantomDance Dataset, the first
music-conditioned 3D dance dataset that uses curves to rep-
resent body motion, and it is the largest 3D dance dataset
with the best visual quality up to date.
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