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Abstract

Most metric learning techniques typically focus on sample
embedding learning, while implicitly assume a homogeneous
local neighborhood around each sample, based on the met-
rics used in training (e.g., hypersphere for Euclidean distance
or unit hyperspherical crown for cosine distance). As real-
world data often lies on a low-dimensional manifold curved
in a high-dimensional space, it is unlikely that everywhere
of the manifold shares the same local structures in the in-
put space. Besides, considering the non-linearity of neural
networks, the local structure in the output embedding space
may not be as homogeneous as assumed. Therefore, repre-
senting each sample simply with its embedding while ignor-
ing its individual neighborhood structure would have lim-
itations in Embedding-Based Retrieval (EBR). By exploit-
ing the heterogeneity of local structures in the embedding
space, we propose a Neighborhood-Adaptive Structure Aug-
mented metric learning framework (NASA), where the neigh-
borhood structure is realized as a structure embedding, and
learned along with the sample embedding in a self-supervised
manner. In this way, without any modifications, most index-
ing techniques can be used to support large-scale EBR with
NASA embeddings. Experiments on six standard benchmarks
with two kinds of embeddings, i.e., binary embeddings and
real-valued embeddings, show that our method significantly
improves and outperforms the state-of-the-art methods.

Introduction
With the recent success of deep learning, deep metric learn-
ing (DML) methods have demonstrated strong ability in var-
ious tasks (Ge et al. 2021; Liu et al. 2021; Peng et al. 2021;
Lin et al. 2021; Wang et al. 2020b), such as semantic search
(Huang et al. 2020; Li et al. 2021b; Min et al. 2020a,b)
and face recognition (Li et al. 2021a). Most existing ap-
proaches (Roth, Brattoli, and Ommer 2019; Wu et al. 2017)
take as input a sample (e.g., an image or a document), use
a trained neural network as an encoder and represent this
sample with the output embedding. Currently, almost all of
these methods focus on the encoder training, and various
objectives are formulated in terms of pairwise similarities
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Figure 1: Qualitative illustration of adaptive neighborhood:
neighbors of a cat can distribute in a wide range on the “tex-
ture” dimension, since cats can have very different texture
patterns, while neighbors of a tiger should distribute in a nar-
row range, since all tigers have similar texture patterns.

within a mini-batch (Wang et al. 2019) or similarities be-
tween samples and classification vectors (Deng et al. 2019).
Sampling strategies (Wu et al. 2017), memory bank (Wang
et al. 2020a) and examples generation (Ko and Gu 2020)
are proposed to mine informative samples in the training
process, and boost-like policies (Roth, Brattoli, and Ommer
2019) are used to improve the encoder. Generally, existing
methods concentrate on how to learn a good embedding for
each sample and represent each sample with its embedding.

The similarity of two samples are then measured by the
proximity between their embeddings, using a distance met-
ric predefined in encoder training, such as Euclidean dis-
tance (Wu et al. 2017), cosine similarity (Deng et al. 2019)
and Hamming distance (Yang et al. 2018). Therefore, DML
methods implicitly make an assumption about the manifold
structure around each sample: the local neighborhood of
each sample is homogeneous and shares the same structures.
However, this assumption is relatively too ideal. As shown
in Fig. 1, given an image of a cat, in the embedding space,
its neighbors can distribute in a wide range on the “tex-
ture” dimension, since cats can have very different texture
patterns. By contrast, for a tiger, its neighbors should dis-
tribute in a narrow range, since all kinds of tigers have sim-
ilar textures. Therefore, on the “texture” dimension, the cat
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Figure 2: The Principal Component Analysis (PCA) (Abdi
and Williams 2010) on CUB-200-2011 using Triplet loss.

and tiger should have different shapes. This observation also
holds on practical datasets. We randomly select two classes
from the test set of CUB-200-2011 (Wah et al. 2011), and
project the DML embeddings onto the first-4 PCA compo-
nents. Fig. 2 shows that different classes have quite differ-
ent distributions on the same dimension, which is consistent
with Fig. 1. As a result, it is desirable to have adaptive neigh-
borhood structures for different samples.

In this work, we propose a Neighborhood-Adaptive Struc-
ture Augmented metric learning framework (NASA) to
solve the above issues, where a sample is now represented
by its sample embedding and local neighborhood struc-
ture embedding. The overall framework is illustrated in
Fig. 3. As downstream tasks of metric learning can usu-
ally be cast to Embedding-Based Retrieval (EBR) (Huang
et al. 2020), indexing techniques (Jégou, Douze, and Schmid
2011; Malkov and Yashunin 2020) are usually required.
Since most indexing techniques only work with the sam-
ple embeddings, we formulate the learning procedure of
NASA as two sub-tasks: (1) sample embeddings are opti-
mized to provide good separability between samples, which
work with indexing to efficiently filter out irrelevant results;
and (2) structure embeddings are learned to capture adaptive
local neighborhoods which provide fine-grained result lists,
with respect to the retrieval and re-ranking stage of large-
scale EBR (Huang et al. 2020). In this way, indexing tech-
niques can be used to facilitate large-scale EBR with NASA
without any modifications and additional memory cost.

Our main contributions are summarized as follows: 1)
we demonstrate the importance of the local manifold struc-
ture of each sample in metric learning; 2) a novel frame-
work, NASA, which captures the adaptive neighborhood
structure of each sample, is proposed to learn a globally
well-separated and locally discriminative embedding space;
3) results on six benchmark datasets with two kinds of
widely-adopted embeddings (real-valued embedding and bi-
nary embedding) demonstrate the effectiveness of NASA.
To our best knowledge, our method is the first work that tries
to exploit the heterogeneity of local neighborhood structures
in deep metric learning.

Related Work
Metric Learning. The objective of metric learning is to
build new spaces of representations such that similar sam-
ples are pushed towards together and different samples are
repelled against. Most deep metric learning works focus on

the design of metric loss functions based on sample pairs.
The earliest is Contrastive loss (Chopra, Hadsell, and LeCun
2005), which minimizes the distances of positive pairs and
maximizes the distances of negative pairs. Then pair-based
methods are expanded by triplet (Schroff, Kalenichenko,
and Philbin 2015), n-pairs (Sohn 2016), and so on. The cor-
responding hard examples sampling (Wu et al. 2017) and
weighting (Wang et al. 2019; Sun et al. 2020) strategies
are also helpful to the pair-based losses, but the auxiliary
strategies bring about the runtime cost and training instabil-
ity (Kim et al. 2020). To overcome the shortcoming of pair-
based methods, many alternative methods are proposed. One
of direction is called proxy-based methods (Movshovitz-
Attias et al. 2017; Teh, DeVries, and Taylor 2020). They
compare samples to class-related and learnable proxies, but
the parameters are tremendous when there are too many cat-
egories (Qian et al. 2019; Kim et al. 2020). Some works are
not limited to inter-class discrimination, but mining intra-
class (Fu et al. 2021) or multi-level relations (Kim and Park
2021) to regularize embedded networks. Recently, proba-
bilistic embeddings have been proposed to measure the un-
certainty in the embedding space. HIE (Oh et al. 2019)
represents a sample by a Gaussian distribution with mean
specifies the position and covariance reflects the uncertainty.
In (Shi and Jain 2019), PFE uses a pretrained sample embed-
ding as the mean and only learns the uncertainty (variance).
By learning feature (mean) and uncertainty (variance) simul-
taneously, DUL (Chang et al. 2020) proposes to fully exploit
the effect of uncertainty in feature learning, and achieves su-
perior performance in face recognition.
Hashing Learning. Deep unsupervised hashing can be re-
garded as a special deep metric learning technology, which
aims to learn discriminative binary embeddings without la-
bels. DeepBit (Lin et al. 2016) is the first deep unsupervised
method to learn hash functions, which mainly considers the
binary code consistency between the original images and the
rotated images. Generative models (Song et al. 2018; Dai
et al. 2017) apply generative adversarial network (Goodfel-
low et al. 2014) or auto-encoder structure to learn binary
codes through the minimum decoding error principle. How-
ever, these above methods do not explore semantic similar-
ity well. Subsequently, some methods (Yang et al. 2018; Su
et al. 2018) utilize the semantic information in deep fea-
tures and construct similarity graphs to learn local structures
between data. The credibility of the similarity graph struc-
ture determines the efficiency of model training. Recently,
TBH (Shen et al. 2020) considers the advantages of the gen-
erative models and similar learning methods and uses the
twin bottleneck structure to obtain the optimal performance.

Method
Given a dataset consist of n images X = {xi}ni=1 and
its corresponding labels Y = {yi}ni=1 ∈ {1, · · · , C} (if
provided), the set of neighbors of xi is denoted as N(xi).
Deep metric learning (DML) aims to learn a feature encoder
f : RH×W×3 → RD to map xi into a D-dimensional em-
bedding space zi = f(xi), where the distance between
xi,xj can be effectively measured by their embeddings
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Figure 3: The pipeline of our proposed NASA. A backbone network and two head networks are used to learn both the sample
embedding and structure embedding. Lmetric is built using existing DML techniques in the embedding space with a homo-
geneous neighborhood, where positives are pushed together and negatives are repelled. Lstrc is solved in the adaptive local
neighborhood, which is derived from the structure embedding, to maintain the local data topology.

zi, zj : dist(xi,xj) , d(zi, zj). d(·, ·) is a distance metric
such as Hamming distance (Su et al. 2018), Euclidean dis-
tance (Radenović, Tolias, and Chum 2019) and cosine simi-
larity (Deng et al. 2019). With a predefined metric, the local
region around zi = f(xi) is defined as:

N(zi) , {z : d(z, zi) ≤ τ} , (1)

where τ is a threshold. By mapping N(xi) into N(zi) and
X − N(xi) out of N(zi), DML learns an embedding space
with small intra-class distance and large inter-class distance.

Adaptive Neighborhood
Neighborhood structure (1) in the embedding space is im-
plicitly determined by the distance metric used in train-
ing. For most widely used metrics, the resulting neighbor-
hood is homogeneous, i.e., deviations on different dimen-
sions contribute equally to the distance, and consistent, i.e.,
same geometry structure for all samples. However, as shown
in (Zhang et al. 2013), if a feature encoder can map xi and
N(xi) closer on some dimensions, these dimensions should
contribute more in distance calculation, resulting in a het-
erogeneous and adaptive neighborhood. As a result, given
zi = f(xi), its local neighborhood structure can be ex-
tracted from the posterior distribution of {z = f(x) : x ∈
N(xi)}. We denote this distribution as p(z|zi), and parame-
terize it as aD-dimensional Gaussian distribution with mean
zi and diagonal covariance Σi = diag(σ

(1)
i , · · · , σ(D)

i ) (Oh
et al. 2019; Shi and Jain 2019; Chang et al. 2020):

p(z|zi) =
exp

{
− 1

2 (z − zi)T Σ−1i (z − zi)
}

(2π)D/2|Σi|1/2
. (2)

Eq. (2) can be related to a distance metric as follows (Sebe,
Lew, and Huijsmans 2000):

d(z, zi) =
D∑

d=1

(
z(d) − z(d)i

)2
/σ

(d)
i . (3)

Eq (3) realizes an adaptive local neighborhood as deviations
on different dimensions are weighted by σ(d)

i and contribute

differently. As a sample is a neighbor of itself, Eq (2) can
be interpreted as a sample xi is now mapped to a proba-
bilistic distribution in the embedding space (Oh et al. 2019;
Shi and Jain 2019), with µi = zi specifies the location and
ωi = {1/σ(1)

i , ..., 1/σ
(D)
i } reflects the uncertainty. In this

work, we call µi the sample embedding and ωi the structure
embedding, and propose to learn these two kinds of embed-
dings by exploiting the adaptive neighborhood structures.

Sample Embedding Learning
For two samples z1 ∼ N (µ1,Σ1), z2 ∼ N (µ2,Σ2), their
distance can be extended as:

d(z1, z2) =

∫∫
z′
1∼N1,z′

2∼N2

d(z′1, z
′
2)p(z′1|µ1)p(z′2|µ2)dz′1dz

′
2.

(4)
(4) can be approximated via Monte-Carlo sampling, how-
ever, this would bring much computational cost. Instead, by
using the Euclidean distance as a metric, we can reach a rea-
sonable estimation of distance for any two samples, which
supports embedding learning effectively. The expectation of
the squared Euclidean distance can be estimated as:

E
[
d2(z1, z2)

]
=

∫∫
z′
1,z

′
2

p(z′1)p(z′2)(z′1−z′2)T (z′1−z′2)dz′1dz
′
2.

(5)
By factorizing (z′1−z′2) as (z′1−µ1 +µ1−µ2 +µ2−z′2)
and expanding the inner product, (5) can be expressed as:

E
[
d2(z1, z2)

]
= tr(Σ1) + tr(Σ2) + ‖µ1 − µ2‖22. (6)

Since E[d2] ≥ E2[d], (6) gives the upper bounds of the
expectation of distance between two (probabilistic) embed-
dings z1, z2. One can directly use (6) to guide the training
process, however this would increase the training cost sub-
stantially, since more neighbors are needed in a mini-batch
to estimate Σi accurately. Instead, we use ‖µ1 − µ2‖2, i.e.,
distance between sample embeddings, as the metric, which
still ensures a well-separated embedding space as demon-
strated in our experiments. Another advantage of this ap-
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proximation is that, most DML techniques can now be ap-
plied to learn the sample embeddings. The pipeline of sam-
ple embedding learning is illustrated in Fig 3. A sample em-
bedding network is optimized using an existing DML tech-
nique. The learned sample embedding has a homogeneous
neighborhood, which is then locally “fine-tuned” by the fol-
lowing structure embedding.

Structure Embedding Learning
For a sample zi = f(xi), its structure embedding ωi is
learned from the manifold structure of its local neighbor-
hood. As a manifold can be entirely characterized by the
relative proximities between its subregions (Lee and Verley-
sen 2007), we use the ranking of neighbors to guide struc-
ture embedding learning. Specially, for zi and its neighbors,
z = f(x), x ∈ N(xi), by using (3) as adaptive distance,
the embedding space is locally stretched or shrunk such that
the rankings among neighbors are preserved in this adaptive
local neighborhood.

Since it is not able to get the ranking information from
current human-labeled signals, (e.g., class label), we start
with the help of self-supervised learning strategy. Based on
whether we can infer confident ranking information, two
kinds of self-supervised learning tasks are proposed.
Point-wise Ranking Learning. Many unsupervised hash-
ing methods (Shen et al. 2020; Yang et al. 2019; Su et al.
2018) assume that the pairwise similarity between features
h extracted by a pre-trained network can be directly used
to guide the learning of binary embeddings z ∈ {−1, 1}D.
Generally, pair samples with high similarity are regarded as
high-confidence supervisory signals. In this case, we con-
sider that the top-K similarity ranking information is bene-
ficial to neighborhood structure learning.

In a mini-batch, for an anchor with binary embedding
zi, we calculate its cosine similarity with other samples us-
ing the pre-training features, and get the top-K neighbors
{n1, ...,nK} according to the similarity in a descending or-
der. With structure embedding ωi, the query-sensitive Ham-
ming distance (Zhang et al. 2013) between zi and nk is:

dstrc(zi,nk) =
D∑

d=1

ω
(d)
i ·

(
z
(d)
i ⊕ n(d)

k

)
= ωT

i (zi ⊕ nk) .

(7)
Structure embedding ωi is learned to make: ∀ p, q ∈ [1,K],

if p < q, then dstrc(zi,np) < dstrc(zi,nq).

Noticing that deep hashing techniques (Li et al. 2019; Yang
et al. 2018) use the inner product of `2 normalized binary
embedding as similarity metric in training, to make the or-
der of magnitude of ranking preserving loss consistent with
that of sample embedding learning loss, we map the adaptive
distance (7) to adaptive similarity:

sstrc(zi,nk) =

∑D
d=1 ω

(d)
i − 2dstrc(zi,nk)

D
= ωT

i

(
z̃Ti ñk

)
,

(8)
where z̃i and ñk are the `2 normalized binary embeddings.
Since

∑
d ω

(d)
i is consistent for zi, preserving the order

Group-wise 
Ranking

(a) The initial distance (b) The adaptive distance

Figure 4: Visualization of distance distribution w/o and w/
group-wise ranking learning (CUB (Wah et al. 2011), Triplet
loss, 512d). The Triplet model has a large distribution over-
lap, whereas our model has a large group margin.

of sstrc(zi,nk) is equivalent to preserving the order of
dstrc(zi,nk), and the point-wise ranking preserving task is:

Lstrc =
1

N

N∑
i=1

K−1∑
k=1

[sstrc (zi,nk+1)−sstrc (zi,nk)+β]+,

(9)
where N is the batch size, β is the margin and [·]+ is the
hinge function.

Group-wise Ranking Learning. In most cases, we can-
not infer confident point-wise ranking information as above,
since images usually have large intra-class variances and
subtle inter-class distinctions (Wah et al. 2011). As shown
Fig. 4-a, for one thing, the initial distances of positive
and negative pairs are too close and chaotic, thus the top-
K point-wise ranking is confusing and cannot be directly
used as supervised signals. For another, most negatives have
larger distances than most positives. Therefore, for an an-
chor, we can have a confident “group ranking” between its
positive group and negative group. By exploring local neigh-
borhood structure, we propose a group-wise ranking strat-
egy to separate the two group distributions, which ensures a
large margin as well as a small overlap between positive and
negative samples, and improves feature discrimination and
generalization. The pairwise adaptive distance is defined as:

dstrc(zi, zj) =
√∑D

d=1 ω
(d)
i · (z(d)i − z(d)j )2

=
√
ωT

i (rij � rij),
(10)

where rij = zi − zj and � is Hadamard product. For zi,
to separate its two group distributions with a large margin,
we first set two distant centers for its positive and nega-
tive groups. Then, by squeezing each group towards its own
center, the overlap is minimized as well. Since almost all
samples in a batch are negatives of zi, the center of nega-
tive group, η1, is set to mean of distances between zi and
other samples. Noticing that the overall distance distribution
is bell-shaped (Fig. 4-a), the center of positive group is set
to a relatively small value: η2 = max(0.2η1, η1 − t · θ), θ
is the standard deviation of the overall distance distribution
and t controls the margin. The group-wise ranking learning
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task is formulated as:

Lstrc =
1

N

N∑
i=1

∑
j 6=i

cij |dstrc(zi, zj)− η1|

+ (1− cij)|dstrc(zi, zj)− η2|,

(11)

cij is the soft assignment to different centers:

cij =
exp (−α|dstrc(zi, zj)− η1|)∑2

m=1 exp (−α|dstrc(zi, zj)− ηm|)
, (12)

where α is the scale factor. Each anchor can have its own
η1, η2, but this may cause the learning process unstable due
to the limit of batch-size. In our experiments, we find that
using the same η1, η2 for all anchors in a mini-batch works
well, therefore, η1 and θ are set to the mean and standard
deviation of all pairwise distances in a mini-batch.

Overall Learning
The overall training objective of NASA is as follows:

L = Lmetric + λLstrc, (13)

where λ relatively weights the losses. Lmetric is an existing
DML loss, and for binary embedding, Lstrc is Eq (9), while
for real-valued embedding, Lstrc is Eq (11).

Discussion
NASA with indexing. NASA can be used to support large-
scale EBR with indexing techniques straightforwardly. For
a large-scale dataset, only the sample embeddings are ex-
tracted and organized using indexing (Jégou, Douze, and
Schmid 2011), while the structure embeddings are skipped,
adding no additional computational and memory costs. For a
query, its sample embedding is processed by indexing to effi-
ciently filter out irrelevant results, then if required, its struc-
ture embedding is employed to re-rank the left candidates
based on (10) or (7). That’s why only the structure embed-
ding of the anchor is employed in training, as it ensures the
consistency of distance metric in testing and training. Since
(10) and (7) can be efficiently vectorized, and there are not
many candidates, the time cost of re-ranking is negligible.
Asymmetric distance. The adaptive distance, (10) or (7),
is asymmetric, i.e., dstrc(x,y) 6= dstrc(y,x) which has
its own advantage. Take the central tiger image and the
rightmost cat image in Fig. 1 as a query-recall pair. If
query=“cat”, the adaptive distance on the “texture” dimen-
sion should be small, since cats can have similar texture
as a tiger. However, if query=“tiger”, the adaptive distance
should be relatively large, since the cat has a different tex-
ture pattern, from which we can be sure that it is not a tiger.
This asymmetry also makes sense in semantic information
retrieval (Huang et al. 2020). A document “landmarks in
Paris” is a good recall for query “landmarks in France”,
while “landmarks in France” is not a good recall for “land-
marks in Paris”. In the future, we would like to investigate
whether the essence of adaptive neighborhood can be ap-
plied in semantic retrieval.

We clarify some key differences between NASA and sev-
eral representative probabilistic embeddings (Oh et al. 2019;

Shi and Jain 2019; Chang et al. 2020). To measure the simi-
larity of two samples, HIE (Oh et al. 2019) samples K = 8
candidates from each distribution, and uses the average of
the 64 candidate-pairs’ similarities as the estimation, both in
training and testing. PFE (Shi and Jain 2019) uses mutual
likelihood score as the metric, which takes both the mean
and variance into account. Both the above two methods
suffer more computational complexity, and cannot directly
work with indexing techniques. In DUL (Chang et al. 2020),
the variance (Σ) in DUL measures the uncertainty of sam-
ple embedding, which should be accurately estimated, thus
a KL-divergence regularization is added to avoid overfitting,
while in NASA, it stems from the adaptive local neighbor-
hood structure, and the accurate value is not strictly required,
making the learning process simple.

MDR (Kim and Park 2021) proposes to regularize dis-
tances into multiple levels, which is similar to group sepa-
ration in group-wise ranking learning. However, the mathe-
matical principles behind MDR and NASA are quite differ-
ent. MDR still assumes a homogeneous local neighborhood,
and its distance separation comes for better generalization.
In NASA, group separation is performed on adaptive dis-
tance, which is derived from a self-supervised learning task
to realizes an adaptive neighborhood.

Experiments
We carry out extensive experiments to evaluate our model
in both retrieval and ranking tasks. According to “Reality
Check” (Shen et al. 2020; Musgrave, Belongie, and Lim
2020), we employ Mean Average Precision (MAP) as per-
formance metrics for binary embeddings and use Recall@K
(R@K), MAP and P@N scores for real-valued embeddings.

Datasets and Settings
Three datasets for binary embeddings. CIFAR-
10 (Krizhevsky, Hinton et al. 2009) consists of 60,000
images in 10 categories, which is randomly divided into
training and testing sets, with 5,000 and 1,000 images.
NUS-WIDE (Chua et al. 2009) is a large-scale dataset
with 269,648 web images in 81 concepts. We select
21 largest concepts with 186,577 images, split 10,500
samples for training and 2,100 samples for testing.
FLICKR25K (Huiskes and Lew 2008) has 25,000 images
collected from Flickr in 24 concepts. We randomly select
2,000 images for testing and 5,000 images for training.
Setting for binary embeddings. We organize experiments
on four representative hashing methods (SGH (Dai et al.
2017), SSDH (Yang et al. 2018), GreedyHash (Su et al.
2018), TBH (Shen et al. 2020)). To be consistent with the
four hashing methods, AlexNet (Krizhevsky, Sutskever, and
Hinton 2012) or VGG-16 (Simonyan and Zisserman 2015)
is adopted as our backbone network. We employ SGD algo-
rithm with 0.9 momentum and fix the batch size as 128. The
hyper-parameters setting is: k = 8, β = 0.03 and λ = 1.
Three datasets for real-valued embeddings. CUB-200-
2011 (CUB) (Wah et al. 2011) has 11,788 images of 200
bird species. We use the first 100 species (5,864 images)
for training and the rest 100 species (5,924 images) for test-
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Method Backbone CIFAR-10 NUS-WIDE FLICKR25K
32 bits 64 bits 128 bits 32 bits 64 bits 128bits 32 bits 64 bits 128 bits

SGH (Dai et al. 2017) 43.7 44.3 45.6 67.8 69.2 70.4 67.5 68.2 69.4
NASA [B] + SGH AlexNet 45.8 46.8 48.1 68.7 70.5 71.1 69.3 70.0 70.7
NASA + SGH 46.1 47.3 49.8 69.8 71.9 72.2 70.1 70.5 71.5
SSDH (Yang et al. 2018) 27.4 29.3 30.1 63.4 64.1 65.2 75.6 75.7 76.0
NASA [B] + SSDH VGG-16 30.2 33.9 37.7 64.6 68.3 69.1 75.9 76.6 78.8
NASA + SSDH 32.4 35.3 38.2 65.8 70.2 70.5 77.1 77.5 79.2
GreedyHash (Su et al. 2018) 36.1 40.2 43.1 73.1 75.0 76.5 66.7 70.3 70.8
NASA [B] + GreedyHash AlexNet 39.4 43.6 46.0 76.5 78.4 79.6 73.0 74.2 74.8
NASA + GreedyHash 40.8 44.2 46.3 77.3 78.7 79.7 73.5 74.3 74.8
TBH (Shen et al. 2020) 51.4 53.2 54.2 72.5 73.5 73.7 70.1 71.5 71.1
NASA [B] + TBH AlexNet 51.9 53.7 55.5 72.9 75.8 76.1 70.8 72.1 72.5
NASA + TBH 52.2 54.3 55.8 74.0 76.3 76.6 71.5 73.1 73.6

Table 1: The MAP scores for various bits on the three datasets. NASA [B] means that only binary sample embedding is used.

Method CUB Cars SOP
R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@10 R@102 R@103

Triplet128 55.5 67.1 77.5 85.4 75.8 84.3 90.1 93.4 72.4 86.5 95.0 98.1
MDR128 + Triplet 65.1 76.4 84.2 90.7 84.7 90.5 94.0 95.9 77.1 89.5 95.6 98.5
NASA128 + Triplet 65.5 76.5 84.6 90.9 85.8 91.4 94.8 96.9 77.4 89.8 95.7 98.6
Margin128 62.8 73.9 82.4 89.7 78.1 86.2 91.1 94.2 72.7 86.2 93.8 98.0
MDR128 + Margin 64.0 75.8 83.5 90.2 82.8 88.4 92.6 95.2 74.2 87.6 94.5 98.1
NASA128 + Margin 65.6 76.5 84.4 90.9 83.1 89.2 93.1 95.7 74.4 87.8 94.6 98.2
MS128 61.7 72.8 82.7 90.2 81.1 89.0 93.4 96.4 76.5 89.3 95.1 98.4
MDR128 + MS 63.3 74.6 83.8 90.4 84.2 90.1 94.1 96.9 77.0 89.6 95.5 98.6
NASA128 + MS 64.8 75.6 84.7 90.8 85.3 90.9 94.7 97.1 77.3 89.8 95.7 98.7
Proxynca++128 62.6 73.9 83.7 90.5 79.2 87.5 92.4 95.8 78.6 90.2 95.8 98.2
MDR128 + Proxynca++ 64.4 75.7 85.1 91.1 82.8 89.2 93.2 96.3 79.4 90.9 96.3 98.5
NASA128 + Proxynca++ 66.0 77.1 86.0 92.1 84.0 90.6 94.3 96.7 80.0 91.4 96.5 98.8

Table 2: Retrieval accuracy on three standard image datasets. Bold numbers indicate the best score within the same type of loss.

ing. Cars-196 (Cars) (Krause et al. 2013) has 16,185 im-
ages of 196 cars. We split the first 98 cars (8,054 images)
for training and the rest 100 cars (8,131 images) for test-
ing. Stanford Online Products (SOP) (Oh Song et al. 2016)
contains 120,053 images of 22,634 online products. We use
the first 11,318 products (59,551 images) for training and
11,316 products (60,502 images) for testing.
Setting for Real-valued embeddings. Triplet loss (Schroff,
Kalenichenko, and Philbin 2015), Margin loss (Wu et al.
2017), MS loss (Wang et al. 2019) and Proxynca++ (Teh,
DeVries, and Taylor 2020) are employed as baselines.
For the first three losses, Inception with batch normaliza-
tion (Ioffe and Szegedy 2015) is used as backbone and the
input images are cropped to 224×224. The structure embed-
ding network is a two-layer MLP with batch normalization
and Softmax activation. We employ Adam optimizer with
1e−5 weight decay and fix the batch size as 128. For Prox-
ynca++, we follow the settings in the original paper. For
CUB, Cars and SOP, the balance factor λ are 4, 2 and 1,
respectively. Hyper-parameters: t = 3 and α = 10.
Test. We directly use sample embeddings to retrieve coarse-
grained results. Then, to further prove the effectiveness of
the structure embeddings (NASA), we re-rank the recalled
top-n results, where n = 2000, 10000, 10000 for CIFAR-10,
NUS-WIDE and FLICKR25K, n = 32, 32, 2000 for CUB,
Cars and SOP. It is worth noting that our re-ranking only
introduces little computational overhead due to a small n.

Results
Results on binary embeddings. The MAP scores on the
standard datasets are shown in Table 1. As compared with
four state-of-the-art (SOTA) methods, NASA achieves a
substantial boost of average 3.33%, 2.95% and 2.72% MAP
for CIFAR-10, NUS-WIDE, and FLICKR25K, respectively.
Moreover, only using binary sample embeddings (NASA
[B]) for retrieval also achieves decent improvements. This
shows that benefiting from the point-wise ranking strategy,
the neighborhood distribution center of the sample also im-
proves the inter-class discrimination in embedding space.
Results on real-valued embeddings. Retrieval accuracy in
Table 2 demonstrates the superiority of our strategy. Specifi-
cally, based on NASA, Triplet loss, Margin loss, MS loss and
Proxynca++ obtain 0.8%–10.0% R@1 gains on three fine-
grained datasets. The above results demonstrate the neces-
sity of NASA, which mines the adaptive neighborhood in-
formation of samples to assist embedding learning, thereby
improving the feature discrimination and generalization. Ta-
ble 3 compares the proposed model with SOTA methods.
Compared with other methods with ResNet50, NASA per-
forms the best combined with Proxynca++ and achieves very
competitive results. Besides, we test the sample embeddings
(NASA[R] +Triplet) with k-reciprocal re-ranking (Zhong
et al. 2017), which is inferior to ours. From Table 2 and 3, it
can be clearly observed the following advantages: (1) NASA
is a general-purpose algorithm that consistently improves
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Method Backbone CUB Cars SOP
R@1 R@2 R@4 R@1 R@2 R@4 R@1 R@10 R@102

A-BIER512 (Opitz et al. 2018) G 57.5 68.7 78.3 82.0 89.0 93.2 74.2 86.9 94.0
HDML512 (Zheng et al. 2019) R 53.7 65.7 76.7 79.1 87.1 92.1 68.7 83.2 92.4
SoftTriple512 (Qian et al. 2019) BN 65.4 76.4 84.5 84.5 90.7 94.5 78.3 90.3 95.9
Symm512 (Gu and Ko 2020) G 55.9 67.6 78.3 79.1 87.1 92.1 73.2 86.7 94.8
Circle512 (Sun et al. 2020) BN 66.7 77.4 86.2 83.4 89.8 94.1 78.3 90.5 96.1
Proxy Anchor512 (Kim et al. 2020) BN 68.4 79.2 86.8 86.1 91.7 95.0 79.1 90.8 96.2
MDR512 (Kim and Park 2021) BN 68.5 78.9 86.5 88.4 93.1 95.4 80.1 91.4 96.4
DCML-MDW512 (Zheng et al. 2021) R 68.4 77.9 86.1 85.2 91.8 96.0 79.8 90.8 95.8
NASA[R]512+ K-r (Zhong et al. 2017) BN 68.3 78.5 86.1 88.5 92.8 94.6 77.9 90.1 95.9
NASA512 + Triplet BN 68.8 79.3 86.9 88.9 93.4 96.2 78.5 90.6 96.2
NASA512 + Proxynca++ R 70.2 80.4 88.0 88.5 93.3 96.1 81.2 92.1 97.0

Table 3: Comparison with the SOTA methods. Backbone abbreviations: G–GoogleNet, BN–Inception with batch normalization,
R–ResNet50. NASA [R] means that only real-valued sample embedding is used.

Method CUB Cars SOP
MAP P@N MAP P@N MAP P@N

T128 29.3 31.2 29.2 31.2 38.4 39.6
M128 31.9 33.4 32.4 33.8 42.7 41.6
MS128 32.5 34.3 33.2 34.3 45.2 44.3
P128 31.8 32.7 32.9 34.1 48.6 47.1
ProxyNCA128 32.0 32.9 31.2 33.1 43.0 42.2
SoftTriple128 31.4 33.0 32.2 33.6 - -
Circle128 32.2 33.8 32.8 33.9 43.5 42.8
NASA128 + T 34.4 35.4 36.5 37.8 45.5 44.7
NASA128 + M 34.6 33.4 34.1 35.4 43.1 42.4
NASA128 + MS 33.3 35.0 35.7 36.6 45.4 44.6
NASA128 + P 35.0 36.3 34.2 35.2 52.7 50.9

Table 4: The MAP and P@N scores on three datasets, where
N is the number of database images in each category. Some
abbreviations: T-Triplet, M-Margin, P-Proxynca++.

all baselines. (2) NASA is a very effective algorithm. A
simple baseline (e.g., Triplet loss) boosted by NASA can
surpass many SOTAs. These results establish the importance
of local neighborhood structure in DML.

To prove the effect on the ranking task, we examine
NASA with MAP and P@N metrics in Table 4. Even if
the intra-class variance of these datasets is large, our NASA
model achieves consistent ranking improvements compared
to baselines and other methods. Besides, incorporating struc-
ture embeddings into the retrieval process leads to very small
time costs. For example, since the re-rank is only performed
on top-32 images on CUB, total time costs are 1.88 ms and
1.97 ms per query for Triplet and Ours, respectively (unop-
timized Python implementation).

Ablation Study
We choose Triplet loss to train models on CUB and Cars.
Hyper-parameters. In Fig. 5, properly adjusting the fac-
tor λ to balance the global and local embedding structure is
beneficial to the performance. Besides, as the margin β or t
grows, the performance increases at first and reaches the best
results, then gradually decreases as a whole. A small margin
may not fully exploit the underlying information, while a
large margin may destroy the adaptive neighborhood struc-
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Figure 5: Accuracy in R@1 versus balance factor λ and mar-
gin factor t on CUB and Cars.
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Figure 6: Accuracy in R@1 versus embedding size.

ture.
Embedding dimension. The trade-off between speed and
accuracy is essential in large-scale retrieval, in which em-
bedding size is the key factor. Therefore, we vary the em-
bedding size and evaluate our model in Fig. 6. As the size
grows, our model has a significant increase in accuracy, and
when the size is greater than 128, the accuracy of Triplet loss
has gradually become saturated.

Conclusion
We propose a novel Neighborhood-Adaptive Structure Aug-
mented (NASA) metric learning framework to learn the
adaptive structure embeddings in a simple self-supervised
manner. Without any modifications, most existing indexing
techniques can be used to support large-scale retrieval with
NASA seamlessly. Extensive experiments show the superior
retrieval performance of our method. We will explore more
sophisticated tasks for structure embeddings learning.
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