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Abstract

Few-shot learning (FSL) aims to classify images under low-
data regimes, where the conventional pooled global feature
is likely to lose useful local characteristics. Recent work has
achieved promising performances by using deep descriptors.
They generally take all deep descriptors from neural networks
into consideration while ignoring that some of them are use-
less in classification due to their limited receptive field, e.g.,
task-irrelevant descriptors could be misleading and multiple
aggregative descriptors from background clutter could even
overwhelm the object’s presence. In this paper, we argue that
a Mutual Nearest Neighbor (MNN) relation should be estab-
lished to explicitly select the query descriptors that are most
relevant to each task and discard less relevant ones from ag-
gregative clutters in FSL. Specifically, we propose Discrim-
inative Mutual Nearest Neighbor Neural Network (DMN4)
for FSL. Extensive experiments demonstrate that our method
outperforms the existing state-of-the-arts on both fine-grained
and generalized datasets.

Introduction
With the availability of large-scale training data, deep neu-
ral networks have achieved great success in recent years (He
et al. 2016; Krizhevsky, Sutskever, and Hinton 2012; Si-
monyan and Zisserman 2015). However, collecting and la-
beling training data are still laboriously painful. In terms of
low-data scenarios, such as medical images and endangered
species, deep neural networks can easily collapse. Few-shot
learning (FSL), whose goal is to construct a model that can
be readily adapted to novel classes given just a small number
of labeled instances, has emerged as a promising paradigm
to alleviate this problem.

Few-shot learning methods can be roughly categorized
into two schools, i.e., optimization based (Finn, Abbeel, and
Levine 2017; Rusu et al. 2018) and metric learning based
(Vinyals et al. 2016; Snell, Swersky, and Zemel 2017; Sung
et al. 2018; Li et al. 2019). Optimization based methods
aim to learn a good parameter initialization for the classifier,
whose weights can be quickly adapted to novel classes us-
ing gradient-based optimization on only a few labeled sam-
ples. Metric learning methods mainly focus on concept rep-
resentation or relation measures by learning a deep embed-
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Figure 1: DN4 (Li et al. 2019) accumulates all query descrip-
tors where multiple ”sky” descriptors are taken as strong
evidence against birds’ presence. (D)MN4 selects discrim-
inative task-relevant query descriptors (grids connected by
double-ended red lines) by introducing MNN where less rel-
evant query descriptors (the shaded grids) nearest neighbor-
ing to the same support descriptor would be ignored if they
were not the mutual nearest one.

ding space to transfer knowledge. They generally treat deep
pooled features from the global average pooling layer as
an image-level representation, which is a common practice
for large-scale image classification. Considering the unique
characteristic of FSL (i.e., the scarcity of examples for each
class), however, the cluttered background and large intra-
class variations would drive these pooled global features
from the same category far apart in a given metric space
under low-data regimes, where useful local characteristics
could be overwhelmed and lost.

To fully exploit the local characteristics, Li et al. revisited
Naive-Bayes Nearest Neighbor (NBNN) (Boiman, Shecht-
man, and Irani 2008) to retain all reference deep descriptors
in their original form. They remove the last global average
pooling layer to achieve a dense image representation and
treat the output feature map as a set of deep local descrip-
tors. For each descriptor from a query image, they calculate
its similarity scores to the nearest neighbor descriptors in
each support class. Finally, similarity scores from all query
descriptors are accumulated as an image-to-class similarity.

However, in our perspective, there is a notable differ-
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ence between local invariant descriptors (e.g., SIFT) in tradi-
tional NBNN and network deep descriptors: the former one
is position-agnostic and diversely distributed (around salient
positions), while deep descriptors from neural networks are
densely distributed like a grid. Directly accumulating all
deep descriptors violates the intuition that the presence of
background clutter shouldn’t be taken as a strong evidence
against the object’s presence.

Although the background clutters influence the NBNN
classification, there is rarely a straightforward way to pre-
select those backgrounds unless introducing extra modules
for the foreground retrieval. Instead, we try to mitigate the
influences from those descriptors in a different way by rec-
ognizing the fact that descriptors within a background clutter
are relatively similar to their nearby descriptors, e.g.multiple
local characterless blue sky in Figure 1 themselves are quite
similar compared to the huge difference between the charac-
teristic beak and wings of the bird.

Based on this observation, we introduce Mutual Nearest
Neighbor (MNN) for NBNN in this paper to mitigate the ac-
cumulated influences from aggregative background clutters
so that less relevant characterless background descriptors ac-
count less during classification. To further mine the discrim-
inative descriptors in classification, we propose a novel Dis-
criminative Mutual Nearest Neighbor (DMNN) algorithm
based on the derivation of NBNN, which is quantitatively
shown to be effective in the experiments. In summary, the
contributions are: (1) We propose to find discriminative de-
scriptors to improve NBNN based few-shot classification.
To the best of our knowledge, this is the first attempt to
combine MNN with NBNN in deep learning framework.
(2) The proposed methods outperform the state-of-the-art
on both fine-grained and generalized few-shot classification
datasets. The proposed methods could be easily extended to
a semi-supervised version without extra bells or whistles.

Related Work
Global Feature based methods. Traditional metric learn-
ing based methods use compact feature vectors from the last
global average pooling layer of the network to represent im-
ages and classification is performed via simple classifiers
or nearest neighbors directly. Vinyals et al. trains a learn-
able nearest neighbor classifier with a deep neural network.
Snell, Swersky, and Zemel takes the mean of each class as
its corresponding prototype representation to learn a metric
space. Sung et al. introduces an auxiliary non-linear metric
to compute the similarity score between each query and sup-
port set. These deep global features would lose considerable
discriminative local information under low-data regimes.

Deep Descriptor based methods. Another branch of
metric learning methods focuses on using deep descriptors
to solve few-shot classification. Lifchitz et al. propose to
make predictions for each local representation and average
their output probabilities. Huang et al. combines local de-
scriptors with prototypical learning. Zhang et al. adopts the
earth mover’s distance as a metric to compute a structural
distance between dense image representations to determine
image relevance. Li et al. uses the top k nearest vectors

between two feature maps in a Naive-Bayes way to repre-
sent image-level distance. Our DMN4 further highlights the
importance of selecting discriminative and task-relevant de-
scriptors in the deep descriptors based method.

Subspace Learning based methods. Recent works also
investigate the potential of adaptive subspace learning in
FSL. Yoon, Seo, and Moon learns a task-specific subspace
projection and the classification is performed based on the
mapped query features and projected references. Simon
et al. learns class-specific subspaces based on the few ex-
amples within each class, and the classification is performed
based on the shortest distance among query projections onto
each subspace. Both of them adapt subspace projection with
few examples provided in each task but ignore that projec-
tion matrices derived from matrix decomposition could eas-
ily collapse under low-data regimes. DMN4 could also be
treated among the family of subspace learning as it also se-
lects a subset of descriptors for each query example. Dif-
ferently, our subspace dimensionality will be automatically
determined by the number of MNN pairs instead of pre-
defining a hyper-parameter as in the previous literature.
Also, the large quantity of descriptors makes it more reliable
to retain useful local characteristics compared to the matrix
decomposition on a global feature vector.

Methodology
In this work, we focus on the N -way K-shot few-shot clas-
sification problem, where N is the number of categories
with K labeled examples in each. The model is trained with
a large training dataset Dtrain of labeled examples from
classes Ctrain with an episodic training mechanism (Vinyals
et al. 2016). In each episode, we first construct a support set
S = {(xi, yi)}N×K

i=1 and a query set Q = {(x̃i, ỹi)}qi=1 con-
taining different samples from the same label, where S and
Q are sampled from Dtrain; then the model is updated on
the labeled S by minimizing classification loss on Q.

Deep Descriptor based Image Representation
We embed the image x via the backbone network to obtain
the 3D feature map representation f(x) ∈ Rh×w×d, where
f(·) is the hypothesis function of the deep backbone net-
work. Like other descriptor based methods, we treat the fea-
ture map as r = h×w number of d-dimensional descriptors.

There are K-shot images for each support class within
an episode. When K > 1, some methods use the empirical
mean of K compact image representations for the stability
and memory efficient in meta-training. Others instead unite
those K × r feature vectors from the same support class to
retain descriptors in their original form. In this work, we use
the empirical mean of descriptors that are from the deeper
feature extractor (e.g., ResNet-12) while unit in their origi-
nal form for those that are from the shallower backbone net-
work (e.g., Conv-4).

Formally, we denote the set of descriptors from the same
support class c ∈ C as sc and denote descriptors from each
query image as q. We use the bold font {q, s} to represent
a set of descriptors and {q, s} to represent a single channel-
dimensional descriptor vector in the following sections.
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Figure 2: The architecture of Mutual Nearest Neighbor Neural Network (MN4) for few-shot classification. The episodic data is
first fed into embedding CNN to get a deep compact feature map and then flatten as sets of channel-dimensional local descriptors
q and sc. Support descriptors from different classes unite as a single support pool S. We select part of the query descriptors q∗

by performing MNN between q and S. The selected q∗ as well as the native sc are used to calculate a Naive-Bayes classification
score ϕ(c) for class c. (The architecture of DMN4 is the same as MN4 except for using DMNN instead of MNN in selectivity.)

Mutual Nearest Neighbor
As discussed, if we directly accumulate all descriptors in a
Naive-Bayes way, background clutters and outliers would
mislead the classification. To alleviate it, we revisit the con-
cept of Mutual Nearest Neighbor (MNN) (Gowda and Kr-
ishna 1979) that initially proposed to obtain a condensed
training set decades ago. Formally, we use a single merged
support descriptor pool S =

⋃
c∈C sc comprising support

descriptors from all classes. For each descriptor q ∈ q, we
find its nearest neighbor s = NNS(q) from the support de-
scriptor pool S and use s to search back its nearest neighbor
q̃ = NNq(s) from q. If q equals q̃, we consider q and s a
MNN pair between query descriptor set q and support de-
scriptor pool S.

Naive-Bayes Nearest Neighbor for FSL
To help motivate and justify our updates to the original
NBNN algorithm, we briefly provide an overview of the
original NBNN derivation and its application in DN4 (Li
et al. 2019). We start by classifying image x to class c by:

ĉ = argmax
c∈C

p(c|x) = argmax
c∈C

log p(c|x). (1)

Applying Bayes’ rule with the equal class prior and con-
ditional independence assumptions on Eqn.(1) gives:

ĉ = argmax
c∈C

[
log(

∏
q∈q

p(q|c))

]
= argmax

c∈C

[∑
q∈q

log p(q|c)

]
(2)

We then approximate p(q|c) in Eqn.(2) by a Parzen win-
dow estimator with kernel κ:

p(q|c) = 1

|sc|

|sc|∑
j=1

κ(q,NNsc(q, j)) ≈ κ(q,NNsc(q)) (3)

where |sc| is the cardinality of support descriptor set sc and
NNsc(q, j) is the j-th nearest descriptor of support class c.
NBNN takes it to the extreme by considering only the first
nearest neighbor NNsc(q).

Li et al. chooses a cosine similarity for the approximation
of log κ(·)) and substitutes Eqn.(3) into (2) to find the class
with the maximum accumulated similarities:

ĉ = argmax
c∈C

[∑
q∈q

cos(q,NNsc(q))

]
(4)

In this work, we further select subspaces q∗ ∈ R|q∗|×C

that owns a relatively stronger bond of mutual closeness with
support descriptors. The accumulated similarity score of a
query image x to class c in proposed MN4 is

ϕ(x, c) =
∑
q∈q∗

cos(q,NNsc(q)) (5)

and the cross-entropy loss is used to meta-train the network:

p(c|x) = eϕ(x,c)∑
c′∈C eϕ(x,c′)

(6)

L = − 1

|Q|
∑
Q

∑
c∈C

y log p(c|x) (7)

Towards Discriminative Mutual Nearest Neighbor
MNN selects task-relevant descriptors by considering their
mutual absolute mutual similarity. Yet, it offers no theoreti-
cal guarantee that the selected query descriptors are discrim-
inative enough in NBNN classifications. In this section, we
propose a novel relative closeness in MNN that designed
for NBNN classifications and term it Discriminative Mutual
Nearest Neighbor (DMNN). The discriminability indicates
how query descriptor q relates to its neighbored support de-
scriptor s than other descriptors in S.

We start by recasting NBNN updates as an adjustment to
the posterior log-odds (McCann and Lowe 2012). Let c be
some class and c̄ be the set of all other classes, the odds (O)
for class c is given by:

Oc =
p(c|x)
p(c̄|x)

=
p(x|c)p(c)
p(x|c̄)p(c̄)

=
∏
q∈q

p(q|c)
p(q|c̄)

p(c)

p(c̄)
(8)
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This allows an alternative classification rule expressed in
terms of log-odds increments and class priors:

ĉ = argmax
c∈C

[∑
q∈q

log
p(q|c)
p(q|c̄)

+ log
p(c)

p(c̄)

]
(9)

Approximating by a Parzen window estimator like in
Eqn.(3) and assuming an equal class prior give the NBNN
log-odds classification rule (find the class with the largest
accumulated relative similarities):

ĉ = argmax
c∈C

∑
q∈q

(
cos(q,NNsc(q))− cos(q,NNS\sc(q))

)
(10)

where S \ sc represents all support descriptors set minus the
descriptors from class c.

Recall that the basic idea of MNN is equivalent to discard-
ing quantities of characterless descriptors. To further guar-
antee the discriminability of selected descriptors, we take
their relative closeness into consideration. Formally, for each
query descriptor q ∈ q, we first find the belonging class c∗
of s ∈ S that is nearest to q, i.e., sc∗ ∋ s = NNS(q). To
measure whether a query descriptor q discriminative enough
in MNN selection, we consider its relative closeness τ(q)
that represents how q votes for its nearest support class c∗

than the other supporting classes C \ {c∗}:

c∗ = argmax
c∈C

cos(q,NNsc(q)) (11)

τ(q) = cos(q,NNsc∗ (q))− cos(q,NNS\sc∗ (q)) (12)

As illustrated in Figure 3, if both query descriptors qi, qj
are nearest neighboring to the same support descriptor s in
support descriptor pool S, the selectivity is determined by
their relative closeness τ(q) in DMNN while determined by
the absolute closeness cos(q, s) in MNN.

Experiments
Datasets
miniImageNet (Vinyals et al. 2016) is a subset of ImageNet
containing randomly selected 100 classes. We follow the
setup provided by Sachin and Hugo that takes 64, 16 and 20
classes for training, validation and evaluation respectively.

tieredImagenet is a larger subset of ImageNet but con-
tains a broader set of classes compared to the miniImageNet.
There are 351 classes from 20 different categories for train-
ing, 97 classes from 6 different categories for validation, and
160 classes from 8 different categories for testing (Ren et al.
2018), where the information overlap between training and
validation/testing tasks is minimized.

Caltech-UCSD Birds-200-2011 (CUB) (Wah et al. 2011)
is a fine-grained dataset that contains 11788 images of 200
birds species. Following the same partition proposed by
(Hilliard et al. 2018), we use 100/50/50 classes for train-
ing, validation and evaluation respectively. As is commonly
implemented, all images are cropped and resized with the
provided bounding boxes.

meta-iNat (Wertheimer and Hariharan 2019) is a fine-
grained benchmark of animal species in the wild. We follow

qi qj

sc∗ S∖{sc∗}
(b) Discriminative Mutual Nearest Neighbor

…

qi qj

(a) Mutual Nearest Neighbor

s …

s

NN   (q)

NN (q)
sc∗

S∖{sc∗}

Figure 3: Comparison between MNN and DMNN when
multiple query descriptors nearest neighboring to the same
support descriptor. (a) MNN selects q by its absolute simi-
larity. (b) DMNN selects q by its largest relative similarity.

the class split proposed by where 908 classes of between 50
and 1000 images are used for training and the rest 227 are
assigned for evaluation.

tiered meta-iNat (Wertheimer and Hariharan 2019) is a
more difficult version of meta-iNat where a large domain
gap is introduced between train and test classes. We follow
the same class split provided by FRN (Wertheimer, Tang,
and Hariharan 2021) where 781/354 classes are used for
training and evaluation respectively.

Experimental Settings
Backbone Networks. We conduct experiments on both
Conv-4 and ResNet-12 backbones. Like in DN4, the Conv-
4 generates a feature map of size 19 × 19 × 64 (i.e., 361
deep descriptors of 64 dimensions) for 84× 84 image while
ResNet-12 gives 25 deep descriptors of 512 dimensions.

Training and Evaluation. We meta-train Conv-4 from
scratch for 30 epochs by Adam optimizer with learning rate
1 × 10−3 and decay 0.1 every 10 epochs. With regard to
ResNet-12, we first pre-trained it like in the previous lit-
erature and then meta-train it by momentum SGD for 40
epochs. The learning rate in meta-training is set 5 × 10−4

for ResNet-12 and decay 0.5 every 10 epochs. We randomly
sample 10,000 episodes from the test set during evaluations
and compare the top-1 mean accuracy with other methods.

Re-implementations. To fully compare with recent state-
of-the-art methods as well as other classic ones on mini-
/tieredImageNet, we re-implement ProtoNet, RelationNet,
MatchingNet and baseline DN4 in a unified framework. We
follow the most recent methods that take the original images
as inputs instead of using the pre-cropped and resized ones
in the early work. By doing so, data augmentations like ran-
dom crop could be applied to achieve a fair comparison.

1831



Method
Conv-4 ResNet-12

miniImageNet tieredImageNet miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
MatchingNet† (Vinyals et al. 2016) 53.95 69.88 56.19 74.04 63.08 75.99 68.50 80.60

ProtoNet† (Snell, Swersky, and Zemel 2017) 52.32 69.74 53.19 72.28 62.67 77.88 68.48 83.46
RelationNet† (Sung et al. 2018) 52.12 66.90 54.33 69.95 60.97 75.12 64.71 78.41
MetaOptNet (Lee et al. 2019) 52.87 68.76 54.71 71.76 62.64 78.63 65.99 81.56

DC (Lifchitz et al. 2019) 49.84 69.64 - - 62.53 79.77 - -
TAPNet (Yoon, Seo, and Moon 2019) - - - - 61.65 76.36 63.08 80.26

DN4† (Li et al. 2019) 54.66 72.92 56.86 72.16 65.35 81.10 69.60 83.41
DSN∇⋆ (Simon et al. 2020) 51.78 68.99 53.22 71.06 62.64 78.83 67.39 82.85

DeepEMD∇♢ (Zhang et al. 2020) 52.15 65.52 50.89 66.12 65.91 82.41 71.16 86.03
Negative Margin♢ (Liu et al. 2020) 52.84 70.41 - - 63.85 81.57 - -
Meta-Baseline (Chen et al. 2020) - - - - 63.17 79.26 68.62 83.29

Centroid♢ (Afrasiyabi, Lalonde, and Gagn’e 2020) 53.14 71.45 - - 59.88 80.35 69.29 85.97
FEAT (Ye et al. 2020) 55.15 71.61 - - 66.78 82.05 70.80 84.79

E3BM♭♢ (Liu, Schiele, and Sun 2020) 53.20 65.10 52.10 70.20 64.09 80.29 71.34 85.82
RFS-Simple (Tian et al. 2020) 55.25 71.56 56.18 72.99 62.02 79.64 69.74 84.41
RFS-Distill♭ (Tian et al. 2020) 55.88 71.65 56.76 73.21 64.82 82.14 71.52 86.03

FRN∇⋆ (Wertheimer, Tang, and Hariharan 2021) 54.87 71.56 55.54 74.68 66.45 82.83 72.06 86.89
MN4 (ours) 55.57 73.64 57.01 73.74 66.53 83.39 71.95 85.66

DMN4 (ours) 55.77 74.22 56.99 74.13 66.58 83.52 72.10 85.72

Table 1: Few-shot classification accuracy (%) on miniImageNet and tieredImageNet dataset with Conv-4/ResNet-12 backbones.
We show top two performances in bold font regardless of their different settings (†: our reimplementation under the same setting.
∇: the reimplemented results with their provided codes on Conv-4. ♢: use SGD fine-tuning during evaluation. ♭: knowledge
distillation or model ensemble. ⋆: larger shot training). The confidence intervals for our models are all below 0.25.

Few-shot Classification Results
Comparisons with the state-of-the-arts. Table 1 shows
that (D)MN4 achieve new state-of-the-art with simple Conv-
4 backbone and have competitive performances when us-
ing deeper ResNet-12. (D)MN4 leverages pre-training (in
ResNet-12) but no other extra techniques or tricks like
inference-time gradient fine-tuning, model ensembling and
knowledge distillation.

Comparisons with global feature based methods. De-
scriptors based methods (e.g., DN4, DC and DeepEMD)
generally outperform classic metric-based methods that rely
on the image-level feature vector (e.g., MatchingNet, Pro-
toNet and RelationNet) by a large margin, which validates
the effectiveness of using deep descriptors.

Comparisons with descriptor based methods. Among
those methods, DN4 performs NBNN to represent image-
level distance; DC averages predictions from each local de-
scriptor; DeepEMD uses optimal matching to connect query
and support descriptors. They all use the entire descriptor
set while ignoring that some of them are not such discrim-
inative. Our (D)MN4 outperform other model variants on
almost all tasks as we think it meaningless to consider a de-
scriptor if it is not task-relevant enough.

Comparisons with subspace methods. Table 1 shows
that class-specific subspace learning (DSN) outperforms
task-specific learning (TAPNet). A possible explanation is
that, compared to limited class-specific subspaces, there

are far more possible variants of task-specific subspaces
from different class combinations, where projection matri-
ces could easily collapse under low-data regimes. In con-
trast, our (D)MN4 outperforms previous methods by (1) us-
ing MNN relations to find subspaces where local character-
istics are retained in their original forms comparing to ma-
trices decomposition used in DSN; (2) using a set of deep
descriptors instead of a single vector representation to avoid
model collapsing.

Comparisons on fine-grained datasets. The fine-grained
few-shot classification results are shown in Table 2. It can
be observed that our proposed (D)MN4 are superior across
the board. Interestingly, our methods achieve overwhelming
performances on CUB with the simple Conv-4 backbone.
The reason is that cropped and resized images in CUB have
few background clutters where MNN relations can be easily
established among local characteristics, e.g., eyes and beak.

Ablation Study
Different Network Generated Descriptors. It can be ob-
served in Table 1 that MN4 has greater improvement over
DN4 with Conv-4 backbone compared to ResNet-12 and no-
tice that descriptors from ResNet-12 (r = 25, d = 640) are
much scarcer but more informative than those from Conv-
4 (r = 361, d = 64). We speculate that different quanti-
ties and informative quality of descriptors benefit differently
from the mutual nearest neighbor selectivity.
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Method
CUB meta-iNat tiered meta-iNat

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
ProtoNet♡ (Snell, Swersky, and Zemel 2017) 63.73 81.50 55.34 76.43 34.34 57.13

Covar. pool♡ (Wertheimer and Hariharan 2019) - - 57.15 77.20 36.06 57.48
DSN♡ (Simon et al. 2020) 66.01 85.41 58.08 77.38 36.82 60.11

CTX♡ (Doersch, Gupta, and Zisserman 2020) 69.64 87.31 60.03 78.80 36.83 60.84
DN4† (Li et al. 2019) 73.42 90.38 62.32 79.76 43.82 64.17

FRN (Wertheimer, Tang, and Hariharan 2021) 73.48 88.43 62.42 80.45 43.91 63.36
MN4 (ours) 78.10 92.14 62.87 80.22 43.96 66.93

DMN4 (ours) 78.36 92.16 63.00 80.58 44.10 67.18

Table 2: Comparisons of 5-way few-shot classification (%) results on fine-grained datasets using Conv-4 backbone. ♡ indicates
results reported by FRN (Wertheimer, Tang, and Hariharan 2021). The confidence intervals are all below 0.25.

(a) different network depth (b) fix informative quality d (c) fix descriptor quality r
r = 25
d = 640

r = 100
d = 320

r = 400
d = 160

r = 25
d = 640

r = 100
d = 640

r = 400
d = 640

r = 100
d = 64

r = 100
d = 160

r = 100
d = 320

DN4 65.35 61.73 57.00 65.35 62.60 63.00 59.16 61.15 61.73
MN4 66.53 62.80 58.02 66.53 63.92 64.13 59.22 61.89 62.80

DMN4 66.58 62.94 58.73 66.58 64.32 64.77 59.25 62.23 62.94

Table 3: Ablations (5-way 1-shot miniImageNet tasks) on different embedding backbones derived from ResNet-12 by: (a)
remove entire residual blocks to get larger number r of deep descriptors but less dimensions d; (b) remove max pooling layers
within some residual blocks but fix feature dimensions d; (c) increase feature dimensions d but fix the descriptor’s quantity r.
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Figure 4: Kernel Density Estimation (KDE) of τ(q) from
sampled query descriptors in three methods.

To validate and further investigate the benefit of proposed
methods for different kinds of network generated descrip-
tors, we conduct ablations on different embedding back-
bones derived from ResNet-12. Table 3(a) firstly shows de-
scriptors from various network depths where deeper embed-
ding networks have less improvement with MNN. It sup-
ports the intuition that descriptors from a deep backbone
own a large receptive field and contain compact image infor-
mation where ignoring part of them could be helpless. Table
3(bc) shows the impact of descriptor quantity r and informa-
tive quality d by controlling variables. It can be concluded
that MNN have a larger benefit when there are more deep
descriptors and more information contained among them.
Combining Table 3(a) with Table 3(b)(c), we can also con-
clude that the influence of quantity r is larger than the infor-
mative quality d of deep descriptors.

Quality of Selected Descriptors in (D)MN4. We have
claimed that query descriptor q ∈ q∗ that mutual nearest
neighbor to some support descriptors contains class-specific
information. To validate, we visualize the q and selected q∗

q q∗

Figure 5: The t-SNE visualization of MN4 selected descrip-
tors on an example of miniImageNet with Conv-4 backbone.

with t-SNE in Figure 5. It can be observed that the visual-
ization of q∗ is departed while q is a mess.

We also claim (D)MN4 being able to find discriminative
query descriptors in this work. To investigate the definition
of such discriminability, we further recast NBNN to the log-
odds updates of each class and find the relative similarity
τ(q) in Eqn.(12) can be a good measure. To measure the
discriminative quality of selected descriptors, we conduct
the experiment by randomly sampling 50K query descriptors
from DN4, MN4 and DMN4 respectively on miniImageNet
and visualize their kernel density estimations (KDE) of τ(q)
in Figure 4. It can be found that most descriptors in DN4
contribute little in classification (τ(q) ≈ 0) which veri-
fies our claim that not all descriptors are task-relevant. We
also find the KDE of Conv-4 backbone is much steeper
than that of ResNet-12 indicating deep compact descriptors
in ResNet-12 are generally informative and useful. Overall,
τ(q) are much larger in DMN4 revealing that more discrim-
inative descriptors are selected and sampled.
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DN4 with ODM
MN4 (k%)

30% 25% 20% 15%
CUB 77.02 77.31 76.19 77.23 78.10 (20.9%)

tieredImageNet 56.66 56.58 56.23 55.97 57.01 (20.0%)
miniImageNet 54.40 53.76 53.99 53.73 55.57 (25.0%)

Table 4: Classification accuracy (%) of DN4 (Conv-4) with
Online Discriminative Mining (ODM) on the 5-way 1-shot
tasks. We report the averaged percentage (k%) of selected
query descriptors in MN4 for comparisons.

Why Still Need Mutual Nearest Neighbor? We have
claimed that τ(q) is a good measure of discriminative ef-
fect for the query descriptors and our goal is to find such
descriptors. Thus, it is straightforward to raise a solu-
tion by selecting the top k% query descriptors of largest
τ(q) like OHEM (Shrivastava, Gupta, and Girshick 2016).
To compare, we conduct an experiment by choosing top
[30%, 25%, 20%, 15%] query descriptors for NBNN classi-
fication and the results are shown in Table 4. It can be ob-
served that Online Discriminative Mining (ODM) could def-
initely improve the classification accuracy, however, MN4
still outperforms them in all tasks. We speculate that this im-
provement is due to MNN being able to preserve rank (i.e.,
variety) of selected descriptors, where aggregative query de-
scriptors would be ignored if they are nearest neighbors to
the same support descriptor but not neighbored back from
it. In contrast, ODM only focuses on the top discriminative
query descriptors but ignores that similar descriptors (e.g.,
adjacent background descriptors) would be all retained if
they were discriminative enough. To validate, we conduct
a rank accuracy experiment by replacing the absolute simi-
larity scores with (rank) counts:

ĉ = argmax
c

∑
q∈q∗

1(c = c∗) (13)

where 1 is an indicator function that equals 1 if its argument
is true and zero otherwise. c∗ is the nearest supporting class
of query descriptor q as defined in Eqn.(11).

It can be observed in Table 5 that the performances of
DN4 drop by a large margin if we only count the number of
nearest neighbored descriptors in each support class. ODM
narrows down the gap by focusing on the top discriminative
descriptors. Our (D)MN4 further cuts down the differences
by preserving more variety of visual characteristics with mu-
tual nearest relations. More qualitative results in supplemen-
tary materials also demonstrate that vast majority of selected
query descriptors nearest neighbor to the ground truth class.

Semi-Supervised Few-Shot Learning
From the perspective of MNN that descriptors from an unla-
beled image can be roughly categorized to its MNN sup-
port class (if exists), our work can be easily extended to
semi-supervised version MN4-semi as follows: (1) We first
pseudo-label each descriptor u from unlabeled images to its
MNN support class c and attach it to the support descriptors
s′c = sc∪{u} if their MNN relationship exists. (2) We merge

miniImageNet CUB
1-shot 5-shot 1-shot 5-shot

DN4
NBNN 54.66 72.92 73.42 90.38
Rank 48.84↓5.8 58.28↓14.6 54.80↓18.6 77.15↓13.2

DN4 NBNN 54.50 72.60 76.34 92.12
(ODM) Rank 51.42↓3.1 69.00↓3.6 65.93↓10.4 88.69↓3.5

MN4
NBNN 55.57 73.64 78.10 92.28
Rank 52.71↓2.9 71.53↓2.1 72.20↓5.9 89.99↓2.1

DMN4
NBNN 55.77 74.22 78.36 92.11
Rank 53.97↓2.3 72.60↓1.6 70.58↓7.8 88.80↓3.3

Table 5: Comparisons of NBNN accuracy and rank accu-
racy (%) from three models with Conv-4 backbone. For each
task, the smallest gap between NBNN and rank accuracy is
marked in bold.

Model
5-way Accuracy (%)
1-shot 5-shot

w/o D

PN, Non-Masked (2018) 50.09 64.59
PN, Masked (2018) 50.41 64.39
TPN-semi (2018) 52.78 66.42
DSN-semi (2020) 53.01 69.12

DN4† (2019) 51.46 68.75
MN4-semi (ours) 53.48 71.06

w/ D

PN, Non-masked (2018) 48.70 63.55
PN, Masked (2018) 49.04 62.96
DSN-semi (2020) 51.01 67.12
MN4-semi (ours) 52.73 70.31

Table 6: Semi-supervised few-shot classification results us-
ing Conv-4 on miniImageNet with 40% labeled data. We
show the classification results (w/ D) and without distrac-
tors (w/o D).

the support descriptor pool from all supporting descriptors
and their attached pseudo-labeled descriptors S′ =

⋃
c∈C s′c.

(3) We run standard MN4 between S′ and q as before.
We follow the same experimental setup proposed by (Ren

et al. 2018) and report the comparisons in Table 6, where
MN4-semi shows a consistent ∼ 2% improvement over
the baseline DN4. Also, MN4-semi has a less performance
drop compared to DSN (Simon et al. 2020) when unlabeled
distractor classes included as MNN discards outliers from
these classes.

Conclusions
In this paper, we argue that not all deep descriptors are use-
ful in recent few-shot learning methods since task-irrelevant
outlier could be misleading and background descriptors
could even overwhelm the object’s presence. We propose
Discriminative Mutual Nearest Neighbor Neural Network
(DMN4) to find those that are most task-relevant to each
task. Experimental results demonstrate that our method out-
performs the previous state-of-the-arts on both supervised
and semi-supervised FSL tasks.
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