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Abstract

Image operators have been extensively applied to create visu-
ally attractive photos for users to share processed images on
social media. However, most image operators often smooth
out details or generate textures after the processing, which
removes the original content and raises challenges for restor-
ing the original image. To resolve this issue, we propose a
quasi-invertible model that learns common image processing
operators in a restorable fashion: the learned image operators
can generate visually pleasing results with the original con-
tent embedded. Our model is trained on input-output pairs
that represent an image processing operator’s behavior and
uses a network that consists of an invertible branch and a non-
invertible branch to increase our model’s approximation ca-
pability. We evaluate the proposed model on ten image oper-
ators, including detail enhancement, abstraction, blur, photo-
graphic style, and non-photorealistic style. Extensive experi-
ments show that our approach outperforms relevant baselines
in the restoration quality, and the learned restorable operator
is fast in inference and robust to compression. Furthermore,
we demonstrate that the invertible operator can be easily ap-
plied to practical applications such as restorable human face
retouching and highlight preserved exposure adjustment.

Introduction
Image operators are broadly utilized for sharing visually ap-
pealing images on the internet as social media plays an in-
creasingly important role in daily life. As shown in the sec-
ond row of Fig. 1, there is a diverse set of image operators
used in practice nowadays. However, a prevalent issue is
how to deal with the original image after we have the pro-
cessed version. On the one hand, users are often reluctant to
keep the original image as it roughly doubles the storage re-
quirement (on a mobile phone). On the other hand, we may
need the original image for inspection or alternative editing
in the future. Being able to restore the original image from
the processed one will be the desired solution. In this paper,
we explore the problem of restorable image operators, which
performs high-quality image processing while the original
image can be restored from the processed one.

The challenges in learning a restorable operator exist in
two main aspects. As shown in Fig. 1, after the processing,
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the output image tends to lose important details or inject new
texture patterns. When restoring the original image, the for-
mer case raises the difficulty of recovering correct image
details, and the latter case increases the possibility of cre-
ating undesired content because of the artificially injected
texture patterns. Although several previous works have in-
vestigated using deep neural networks to accelerate image
operators (Chen, Xu, and Koltun 2017) or simulate specific
invertible process (e.g., RGB2Gray (Xiao et al. 2020)), di-
rectly applying these works leads to low restoration quality
as in Sec. . In this paper, we seek for a general framework
for a broad range of image operators with the possibility of
faithfully restoring the original image.

Our proposed quasi-invertible network depends on the re-
cent advancement of the deep invertible network (Kingma
and Dhariwal 2018). Specifically, we adopt the model with
invertible split-and-transform-based layers (Dinh, Sohl-
Dickstein, and Bengio 2017) to approximate the image pro-
cessing operators. However, we empirically find that exist-
ing invertible models fail to approximate an image operator
if it loses many details (e.g., L0 smooth). We thus design
a quasi-invertible scheme with a non-invertible branch that
significantly increases the approximation capacity. Since the
model is nearly invertible, we can restore the original im-
age by reverse inference in theory. However, due to the in-
formation losses caused by computational inaccuracy, quan-
tization and compression, the restored image may contain
severe noises and artifacts. Therefore, we adopt a training
strategy that learns these degradation jointly with the back-
ward restoration loss. This greatly strengthens the robustness
of our model to non-intentional modifications.

We conduct extensive experiments to evaluate the pro-
posed model on ten image processing operators from various
categories, including detail enhancement, style transfer and
image abstraction. The proposed quasi-invertible model out-
performs baselines on both operator approximation quality
and image restoration quality . Our model is also fast when
inference and restoration: it takes around 75ms on a 480p
image. Our contribution can be summarized as follows.
• We demonstrate the feasibility of learning restorable

complex image operators. Extensive experiments show
that our approximated operator generates perceptually in-
distinguishable results from the desired operator while
restoring high-quality original images.
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Photographic style Detail enhancement L0 smoothing Style transfer Blur Pencil drawing
Figure 1: The results of our learning-based restorable image operators. The figure presents the approximation and restoration
results of six image processing operators: black-and-white photographic style, detail enhancement, L0 smooth, style transfer,
weighted median filter, and color pencil drawing filter. Our method can perform high-quality image processing while recovering
the original image. Zoom in for details.

• The proposed quasi-invertible network greatly benefits
the approximation quality, and our scheme is robust in
restoration against undesired quantization or compres-
sion than the previous methods.

• We show that the proposed scheme can be easily applied
to real-life applications such as restorable human face re-
touching and highlight preserved exposure adjustment.

Related Work
Image Processing Operators
Improving image operators for different low-level vision
tasks (Wang, Ouyang, and Chen 2021; Wang et al. 2021)
has been a long-standing problem in computer vision re-
search. Previous works have developed various image pro-
cessing techniques such as detail enhancement (Subr, Soler,
and Durand 2009; Farbman et al. 2008; Fattal 2009), edge-
preserving image smoothing and abstraction (Xu et al. 2011,
2012), removing undesired noise (Zhang et al. 2014; Zhang,
Xu, and Jia 2014), and artistic or photographic style gen-
eration (Bae, Paris, and Durand 2006). Recent works have
successfully generated stylized images based on neural net-
works by separating style and content (Gatys, Ecker, and
Bethge 2016). Many approaches have been proposed for
accelerating these image processing operators. The fully-

convolutional networks have shown the capability of ap-
proximating, accelerating, and improving them at the same
time (Chen, Xu, and Koltun 2017; Fan et al. 2018). In this
work, we take a further step: we demonstrate the possibil-
ity of using the invertible deep structure to simulate these
operators, and thus the high-quality original image can be
restored. Several recent works focus on a specific task such
as invertible grayscale (Xia, Liu, and Wong 2018), raw-
to-srgb image signal processing (Zamir et al. 2020; Xing,
Qian, and Chen 2021) and image rescaling (Etmann, Ke,
and Schönlieb 2020; Xiao et al. 2020), while we propose a
more general scheme for versatile image operators including
blur, smoothing, and artistic style generation with the quasi-
invertible design. Milanfar (Milanfar 2018) also focuses on
recovering black box filtering based on per-image optimiza-
tion while our method is learning a quasi-invertible neural
network for fast inference.

Deep Invertible Networks
Deep invertible networks (Rezende and Mohamed 2015)
consist of a sequence of invertible transformations that maps
from a simple distribution (e.g., Gaussian) to a complex dis-
tribution. Recently invertible models have become a popular
choice for high-quality speech (Kim et al. 2019; Prenger,
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Valle, and Catanzaro 2019) and image generation. Dinh et
al. (Dinh, Krueger, and Bengio 2015; Dinh, Sohl-Dickstein,
and Bengio 2017) designed the affine coupling layer, which
can integrate arbitrary functions to increase the learning ca-
pacity of the model. Glow (Kingma and Dhariwal 2018) fur-
ther proposed to adopt a 1× 1 convolutional layer for infor-
mation propagation. Ho et al. (Ho et al. 2019) further im-
proved on the limitations on noise generation, inexpressive
affine flows, and conditioning networks in coupling layers.
In our work, we choose the invertible flow-based model due
to the direct access to the inverse mapping.

Image Steganography
Our work is also related to image steganography (Morkel,
Eloff, and Olivier 2005), where the original and the pro-
cessed image can be considered as the secret and the cover
image, respectively. However, traditional image steganogra-
phy methods (Pevnỳ, Filler, and Bas 2010; Tamimi, Abdalla,
and Al-Allaf 2013) are subject to relatively low capacity, and
hiding the secret image in the cover image with the same
resolution is impracticable. Recent deep image steganog-
raphy methods (Baluja 2017; Zhu et al. 2018; Yang et al.
2019) usually adopt an encoder-decoder structure: the hid-
den image is encoded into the cover image and retrieved by
the decoder. Our proposed scheme has two significant ad-
vantages over these methods. Firstly, in our approach, the
hiding and image processing steps are performed simulta-
neously, while extra hiding steps need to be conducted in
the steganography-based approach. Secondly, the steganog-
raphy method is designed for hiding general images where
the secret images and the cover images are not related. In
our case, the processed images and the original images share
similar structures, and using specifically designed architec-
ture can lead to higher restoration quality.

Method
Preliminaries
Let I be the original input image and f be the desired im-
age operator. The desired processed content can be repre-
sented by f(I) where the resolutions of f(I) and I are the
same. We aim in approximating the operator f with a net-
work f̂ such that f(I) ≈ f̂(I) for all images and f̂ is quasi-
invertible. The training pairs can be easily simulated by ap-
plying f to the training dataset to obtain f(I) as ground
truths. We utilize the simulated pairs for the proposed net-
work to learn the behavior of f . As our goal is a widely ap-
plicable architecture for versatile image operators, we divide
these operators into three types based on the invertibility:
• Type I: nearly lossless operator such as detail enhance-

ment, where the original f itself is almost invertible.
Learning a new invertible operator f̂ of this type is rela-
tively easy because the task is naturally invertible.

• Type II: lossy operator such as image abstraction and
smoothing, where the original operator f loses details af-
ter filtering. It requires the learned operator f̂ to recover
the lost details to achieve the restoration.

• Type III: generative operator such as style transfer,
where the original f synthesizes textures in the processed

image. In this case, the newly generated textures should
not be propagated to the original image when restoration.

Although approximating restorable operators from Type I is
straightforward to achieve, learning an invertible model for
operators from Type II and Type III requires extra efforts.
The proposed method is to approximate the original opera-
tor f with a quasi-invertible network, which should be as in-
vertible as possible. Specifically, our model is mainly com-
posed of the invertible affine coupling layers (Dinh, Sohl-
Dickstein, and Bengio 2017). Given an input state h (e.g.,
feature maps), an affine coupling layer is defined as follows:

h1, h2 = split(h), (log s, t) = G(h1),

h′2 = s⊙ h2 + t, h′ = concat(h1, h
′
2),

where split and concat are performed along the channel di-
mension. G is an arbitrary function, where we use a four-
layer convolutional network with LeakyReLU activations
(Maas et al. 2013). h′ is the output state of this layer.

Quasi-Invertible Network
The difficulty of learning a restorable image operator lies
in designing a model that performs both high-quality ap-
proximation and restoration. Directly applying existing in-
vertible blocks leads to inaccurate forward approximation
for Type II/III operators. On the other hand, we observed
that these operators can be approximated with a simple non-
invertible CNN structure in (Chen, Xu, and Koltun 2017).
To combine the best of both worlds, we propose a quasi-
invertible module that fuses the main invertible branch and
a non-invertible encoder-decoder branch. In this work, we
assume the output image f̂(I) is saved with 8-bit integers
for each RGB channel using PNG or JPEG, and the saved
output can be used to recover the original image. However,
the information loss brought by quantization or compression
can result in inaccurate restoration. To compensate for this
loss, we respectively adopt Quantization module for PNG
and Compression-aware optimization (CO) for JPEG.

Fig. 2 illustrates the overview architecture of the proposed
method in which the blue and red arrows denote the forward
approximation and reverse restoration pass, respectively. In
the forward approximation stage, the model takes an image I
as the input, and generates the output processed image f̂(I).
As f̂(I) is saved in PNG or JPEG, we denote the saved out-
put image as µ(f̂(I)), where µ denotes the quantization (and
compression). During the restoration, the original image can
be restored along the reverse pass.
Quasi-Invertible Module. The proposed architecture com-
prises two branches: a main invertible branch ϕ composed
of affine coupling layers described above, and an auxiliary
encoder-decoder branch ψ that improves the approximation
capacity. We denote each block in the invertible branch with
ϕi, and the output of this branch Iϕ is represented as

Iϕ = ϕk ◦ . . . ◦ ϕ2 ◦ ϕ1(I), (1)
where k is the number of blocks. The auxiliary branch ψ
takes I as input, and the output of this branch Iψ can be rep-
resented as ψ(I). The detailed structure of ψ is in the supple-
ment. Considering the inference speed and model size, the
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Figure 2: Overview of the proposed quasi-invertible network. In the forward approximation pass (blue arrow), the input image
I goes through a two-branch quasi-invertible network and a quantization and compression module. In the reverse restoration
pass (red arrow), we can feed the stored output image µ(f̂(I)) in the reverse direction for restoring the original image.

fusion process is only performed in the last block. To fuse
these two branches, we concatenate Iψ and Iϕ channel-wise
and feed it to the invertible block H for output:

f̂(I),∆ = H(Iϕ, Iψ), (2)

where ∆ is a dummy image designed to be close to zero.
Note that different from most of the previous works using in-
vertible networks (Lugmayr et al. 2020; Xiao et al. 2020),we
expect the approximation and restoration process to intro-
duce the least level of randomness. Instead of regularizing
∆ (three additional output channels) introduced by the non-
invertible branch as Gaussian noises, we directly regularize
∆ to approximate zero with a regularization term ∥∆∥2 dur-
ing training. In the restoration phase, we set ∆ = 0. With the
auxiliary branch, the network increases the approximation
ability while becomes quasi-invertible as the information in
additional channels is discarded. Without considering effect
of quantization and compression, the restored image Î can
be directly retrieved from f̂(I) by

Îϕ, Îψ = H−1(µ(f̂(I)),0), (3)

Î = ϕ−1
1 ◦ . . . ◦ ϕ−1

k (Îϕ). (4)

Compression-Aware Optimization
Our propose a training strategy called compression-aware
optimization to make the framework robust against image
quantization and JPEG compression, which is practically
important as compressed images are ubiquitous. The dis-
tortion caused by JPEG compression can be viewed as a
pseudo-noise dependent on the processed image (Zhang
et al. 2020). Although the compression is not differentiable
(Figure 2c), we can still use the Straight-Through Estimator
(Bengio, Léonard, and Courville 2013; Razavi, Oord, and
Vinyals 2019) via reparametrization (Figure 2d): µ(f̂(I)) =
f̂(I) + ϵ where ϵ = µ(f̂(I)) − f̂(I), and ϵ can be re-
garded as pseudo-noise. During forward inference, we com-

pute µ(f̂(I)) = f̂(I) + ϵ; during backpropagation, we as-
sume that ϵ is a constant and simply use the gradient on
µ(f̂(I)) as the gradient on f(I) for gradient descent.

Losses
The quasi-invertible model specifies the correspondence be-
tween the desired processed image f(I) and the input im-
age I . We include different optimization objectives for com-
pelling performance on various types of operators.

Approximation Loss. The output image f̂(I) of the learned
operator should be as similar to the ground truth processed
image f(I) as possible. We use L2 loss to minimize the ap-
proximation error as La = ||f̂(I)− f(I)||2.
Restoration Loss. In real scenarios, to compensate for
quantization and compression, we add a reverse restoration
regularization. We expect the restored image Î to be similar
to the input image: Lr = ||Î − I||2.
Adversarial Loss. To improve the style generation for Type
III operators, we also adopt the adversarial loss (Goodfellow
et al. 2014) on Type III operator outputs.

Experiments
Experimental Settings
Image Operators. We evaluate the proposed method on ten
operators from the three types mentioned in Sec. :

Type I: multiscale tone enhancement (WLS) (Farbman
et al. 2008) and local Laplacian filtering (LLF) (Paris, Hasi-
noff, and Kautz 2011).

Type II: relative total variation filter (RTV) (Xu et al.
2012), rolling guidance filter (RGF) (Zhang et al. 2014), fast
weighted median filter (WMF) (Zhang, Xu, and Jia 2014),
L0 smoothing (Xu et al. 2011), and black-and-white photo-
graphic style (BWP) (Aubry et al. 2014).

Type III: colored pencil drawing (CPD) (Lu, Xu, and Jia
2012), fast style transfer (Rain Princess, Scream).
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Figure 3: Visual comparisons of different methods on learning various image operators. Our method achieves high-quality
approximation and restoration performance. More results on diverse operators are shown in the Supplementary Material.

Baselines. We adapt two previous works as our baselines:
• Invertible encoder-decoder (IED) adapted from (Chen,

Xu, and Koltun 2017). We initialize two encoder-decoder
networks: one maps the input to the processed image, and
the other maps the processed image back to the input.

• Image Steganography (Stega.) adapted from (Weng
et al. 2019). We first process images with original opera-
tors as the cover image. We then apply the steganography
to hide the original input in the cover image.
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Approximation (PSNR / SSIM) Restoration (PSNR / SSIM)

Operators Type Ours IED Operator + Stega. Ours IED Operator + Stega.

WLS Type I 32.58/0.982 32.45/0.982 26.74/0.920 37.31/0.985 31.73/0.970 27.89/0.905
LLF Type I 32.29/0.976 35.97/0.993 27.55/0.927 38.16/0.988 34.65/0.984 28.20/0.907

L0 smooth Type II 32.54/0.952 32.19/0.961 30.59/0.945 36.46/0.975 28.30/0.876 28.43/0.906
WMF Type II 40.81/0.967 38.27/0.986 33.77/0.966 41.25/0.980 29.65/0.937 28.26/0.903
RTV Type II 38.13/0.984 35.85/0.976 34.06/0.972 38.76/0.987 28.98/0.902 28.66/0.915
RGF Type II 38.01/0.988 36.72/0.984 34.09/0.973 40.06/0.991 28.47/0.905 28.65/0.915
BWP Type II 45.86/0.998 47.03/0.997 30.10/0.936 40.50/0.991 25.41/0.917 28.32/0.905

CPD Type III 15.71/0.748 16.72/0.753 30.22/0.964 32.33/0.946 14.99/0.573 25.37/0.837
stylize (Rain) Type III 14.69/0.626 15.37/0.618 21.54/0.864 36.24/0.984 15.27/0.569 28.17/0.915
stylize (Scream) Type III 19.30/0.733 19.71/0.769 31.11/0.941 37.84/0.988 16.45/0.670 28.65/0.926

Table 1: Quantitative comparisons with baselines on different operators on Adobe-MIT 5K test set in the PNG format.

LLF (PSNR / SSIM) Approximation Restoration

MIT-Adobe → RAISE 32.17/0.985 36.20/0.992
RAISE → RAISE 31.94/0.972 38.13/0.976
RAISE → MIT-Adobe 30.24/0.950 36.61/0.970
MIT-Adobe → MIT-Adobe 32.29/0.976 38.16/0.988

Table 2: Cross-dataset validation (training set → test set).

Image Quality Evaluation
Table 1 shows quantitative results on Adobe-MIT 5K.
• Approximation. Our method achieves comparable per-

formance with baselines in terms of operator approx-
imation. Note that for Type III generative operators,
PSNR/SSIM do not necessarily measure the image pro-
cessing quality as the synthesized textures can be ran-
dom (Huang and Belongie 2017). The metrics of the
steganography-based method on Type III operators are
much higher because the ground-truth processed images
are used as the cover images for hiding and thus the out-
put images match the ground-truth textures. Fig. 3 pro-
vides a qualitative comparison, which shows that the per-
ceptual quality of different methods is comparable.

• Restoration. Our method achieves comparable restora-
tion results with baselines for Type I operators, which are
naturally invertible. For hard cases such as Type II and
III, the proposed model achieves significantly stronger
performance than others. As in Fig. 3, the restoration of
our method can recover the original details and contains
less noise compared with other methods.

Analysis
Hidden Details
As our method can recover high-quality images even for
the challenging smoothing tasks that should inevitably lose
many details, an interesting question is how the network can
restore the same details as the original one. We thus mag-
nify the difference map between the original processed im-
age and our approximated image. As shown in Fig. 4 (c), al-
though the difference is not visible in the normal condition,

(a) Original operator (b) Our approximation

(c) Magnified error map (d) Our restoration

Figure 4: Magnified error map between (a.) original L0

smoothing result and (b.) our approximated result. Darker
color indicates smaller difference. Zoom in for details.

L0 smooth / σ LLF / λ
Parameters 0.01 0.02 0.04 0.1 0.25 1.0

Approximation 32.83 32.37 31.84 32.53 32.29 32.16

Restoration 37.18 36.11 35.28 37.20 37.14 37.00

Table 3: PSNR with different hyper-parameters.

we observe the “missing” details after applying the magnifi-
cation (e.g., windows in the building/textures in the cloud).
It indicates that during the training, the quasi-invertible net-
work learns to approximate the operator while simultane-
ously hiding the restoration cues in the processed images.

Cross-Dataset Validation
We evaluate the generalization ability of learned operators
by cross-dataset validation. We apply the model trained on
MIT-Adobe 5K to RAISE (Dang-Nguyen et al. 2015) and
also the model trained on RAISE to MIT-Adobe 5K. Ta-
ble 2 shows the quantitative results, which indicate that
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L0 smooth (PSNR / SSIM) Approximation Restoration

Ours (remove restoration loss) 32.10/0.946 16.69/0.672
Ours (remove auxiliary branch) 29.78/0.921 43.32/0.993
Ours (8 → 4 invertible blocks) 31.26/0.947 35.08/0.971
Ours (full) 32.54/0.952 36.46/0.975

Table 4: Ablation study on different modules. Ours (full)
is composed of 8 invertible blocks and an auxiliary non-
invertible branch, and trained with full loss.

L0 smooth JPEG-70 JPEG-80 JPEG-90

Ours (w/o CO) 26.48/0.652 26.91/0.669 28.06/0.690
Ours (w/ CO) 26.95/0.711 27.78/0.743 28.87/0.786

Table 5: Ablation study on the compression quality. We save
the L0 smoothing images with different JPEG qualities and
report the PSNR/SSIM of the restoration results.

our method achieves comparable performance on the new
dataset with the original one. More qualitative results are
shown in the supplement. Both quantitative and visual re-
sults show that the trained operators can generalize well to
other data distributions.

Controlled Experiments

Effect of Variable Hyper-Parameters. For some operators,
the hyper-parameters can be adjusted on an image-by-image
basis. To study the robustness of our method, we evaluate
the proposed method on various parameters. Following pre-
vious work (Chen, Xu, and Koltun 2017), we concatenate a
hyper-parameter channel with the original image as the new
input of the network. As shown in Table 3, this simple tech-
nique can achieve a coarse control of parameters for Type
I/II operators with only one model. Future work can further
introduce adaptive modules (Fan et al. 2018) to improve the
approximation accuracy.

Ablation Study. Table 4 shows that without the restora-
tion loss, the restoration quality decreases sharply. The re-
sults also show that without the auxiliary branch, the model
suffers degradation in faithfully approximating operators.
However, the restoration quality can drop if we include this
branch. We attach more visual results without this branch in
the supplement, which show that the improvement in the ap-
proximation is perceptually obvious, and the loss in restora-
tion is comparably negligible. If we reduce the number of in-
vertible blocks from 8 to 4, both approximation and restora-
tion qualities drop, but the inference time is reduced from
75ms to 50ms. It remains to be discussed how to choose the
best model achieving the balance among the approximation
quality, restoration quality, and inference time.

We also study the effect of different JPEG qualities.
Fig. 5 demonstrates that the restoration contains strong noise
without the compression-aware optimization. Table 5 shows
that for different JPEG compression qualities, our method
achieves consistent restoration results.

JPEG approximated Restored (w/o CO) Restored (w/ CO)

Figure 5: Restoration results on JPEG-80 approximated im-
ages with and without compression-aware optimization.

Input Ours (approximated) Ours (restored)

Figure 6: Visual results of two applications: restorable face
retouching and exposure adjustment. Zoom in for details.

Applications
Restorable Human Face Retouching. A straightforward
application of our method is to retouch human faces with-
out losing details. As shown in Fig. 6, by applying our
learned edge-aware smoothing filter, we can remove the un-
desired face spots. However, different from traditional non-
invertible operators, which often damage the original con-
tents, we can recover the original input images with high
fidelity by reverse inference.
Highlight Preserved Exposure Adjustment. Exposure ad-
justment, especially increasing the brightness, is a common
cause of losing details for photographers or Photoshop/S-
napshot users, as the overexposed pixels are permanently
clipped. In Fig. 6, we show the results of brightening the
image twice, and our model learns to hide the details in high-
light in the processed image for restoration.

Conclusion
We explore the possibility of learning a restorable image
operator for general fast image processing, and approach
this novel problem with a quasi-invertible network. Exten-
sive experiments show promising results on approximating
ten image operators with the high-quality restoration of in-
put images. However, the robustness of the model still suffer
from non-intentional degradation or using arbitrary param-
eterizations. We expect future work to further improve the
robustness and capacity of restorable image operators.
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