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Abstract

Image-level weakly supervised semantic segmentation
(WSSS) is a fundamental yet challenging computer vision
task facilitating scene understanding and automatic driving.
Most existing methods resort to classification-based Class
Activation Maps (CAMs) to play as the initial pseudo la-
bels, which tend to focus on the discriminative image re-
gions and lack customized characteristics for the segmenta-
tion task. To alleviate this issue, we propose a novel acti-
vation modulation and recalibration (AMR) scheme, which
leverages a spotlight branch and a compensation branch to
obtain weighted CAMs that can provide recalibration super-
vision and task-specific concepts. Specifically, an attention
modulation module (AMM) is employed to rearrange the dis-
tribution of feature importance from the channel-spatial se-
quential perspective, which helps to explicitly model channel-
wise interdependencies and spatial encodings to adaptively
modulate segmentation-oriented activation responses. Fur-
thermore, we introduce a cross pseudo supervision for dual
branches, which can be regarded as a semantic similar regu-
larization to mutually refine two branches. Extensive experi-
ments show that AMR establishes a new state-of-the-art per-
formance on the PASCAL VOC 2012 dataset, surpassing not
only current methods trained with the image-level of super-
vision but also some methods relying on stronger supervi-
sion, such as saliency label. Experiments also reveal that our
scheme is plug-and-play and can be incorporated with other
approaches to boost their performance. Our code is available
at: https://github.com/jieqin-ai/AMR.

Introduction
Semantic segmentation is a fundamental and crucial task due
to extensive applications in the field of computer vision. It
aims to perform a pixel-level prediction to cluster parts of
an image together that belong to the same object class. Al-
beit with varying degrees of progress, most of its recent suc-
cesses (Chen et al. 2017, 2018) are involved in a fully su-
pervised setting. It is still arduous to acquire such granular
pixel-level annotations that require a huge amount of man-
ual effort. To alleviate such expensive and unwieldy annota-
tions, many works tend to resort to weakly supervised man-
ner (Wu et al. 2020, 2021), such as bounding boxes super-
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Figure 1: Visualizations of CAMs in the AMR scheme.
“Spotlight CAMs” focus more on the discriminative regions
similar to conventional CAMs. “Compensation CAMs” help
to dig out the important but easily ignored regions. The spot-
light CAMs are recalibrated by the compensation CAMs and
further obtain the “Weighted CAMs”, which contribute to
providing more segmentation-oriented concepts.

vision (Dai, He, and Sun 2015), scribbles supervision (Lin
et al. 2016), points supervision (Bearman et al. 2016), and
image-level supervision (Chang et al. 2020; Ahn and Kwak
2018). Image-level weak supervision is an exceedingly fa-
vorable scheme since such coarse annotations are consistent
with reality as such weak labels are more readily available
in practice. In our work, we focus on the image-level weakly
supervised paradigm.

Previous image-level WSSS works (Lee et al. 2019; Singh
and Lee 2017; Wang et al. 2020b; Choe, Lee, and Shim
2020) mostly employ classification networks to generate the
Class Activation Maps (CAMs) (Zhou et al. 2016) as the
initial pseudo labels for segmentation. However, this kind
of CAM is oriented for classification and lacks customized
optimization for the segmentation characteristics. Namely,
the classifiers appear to highlight the most discriminative re-
gions, hence the obtained CAM seeds only cover part of the
target objects that are consistent with the spotlight CAMs
in Fig. 1. To address this issue, some approaches attempt
to expand the discriminative response regions and refine the
initial CAM seeds. SEAM (Wang et al. 2020b) adds equiv-
ariance regularization on different transformed images to ac-
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quire more seed regions. Similarly, (Wei et al. 2017) presses
the model to concentrate on the other regions by iteratively
erasing the seeds of CAMs. However, these methods usu-
ally formulate the expanding process as a complex training
stage, e.g. the iterative erasing manner is time-consuming
and difficult to determine the best number of iterations. Fur-
thermore, it heavily relies on the discriminative regions pro-
vided via the classification networks, which easily fails to
take the minor important regions into account.

To better cope with the above issues, we propose a
novel Activation Modulation and Recalibration scheme,
termed AMR. The scheme leverages a spotlight branch
and a compensation branch to provide complementary and
task-oriented CAMs for WSSS. The spotlight branch de-
notes the fundamental classification network to produce
CAMs, which usually highlight the discriminative and
classification-specific regions, such as the head of horse and
the window of the car (refer to Fig. 1). AMR alleviates
the task gap issue of using classification-based CAMs to
perform segmentation tasks in previous works, which con-
tributes to providing more semantic segmentation-specific
cues. Moreover, an attention modulation module (AMM) is
employed to rearrange the distribution of activation impor-
tance from the channel-spatial sequential perspective, which
contributes to modulating segmentation-oriented activation
responses adaptively. The contributions of AMR can be
summarized as follows:

• To the best of our knowledge, we offer the first attempt to
explore a plug-and-play compensation branch to provide
complementary supervision and task-specific CAMs in
WSSS. The compensation branch can dig out the essen-
tial regions for segmentation (such as the legs of the horse
and the chassis of the car in Fig. 1), which is very critical
to break through the bottleneck of classification-based
CAMs for applying in the segmentation task. The com-
pensation CAMs assist in generating the segmentation-
oriented CAMs by recalibrating the spotlight CAMs. Ad-
ditionally, we introduce a cross pseudo supervision to
optimize the output CAMs from dual branches, which
can be viewed as the semantic similar regularization
to avoid the compensation CAMs concentrating on the
background and force it close to spotlight CAMs.

• We design an attention modulation module (AMM),
which encourages the activation maps to pay equal at-
tention to the whole target objects by performing fea-
ture modulation in the channel and spatial dimensions
sequentially. A modulation function is leveraged to re-
arrange the distribution of activation features, which at-
tempts to emphasize minor features and penalize the
saliency features that have been captured by the spot-
light branch. The channel-spatial sequential manner con-
tributes to explicitly modelling channel-wise interde-
pendencies and spatial encodings within local receptive
fields at each layer to adaptively modulate segmentation-
oriented features responses.

• Our approach achieves 68.8% and 69.1% in terms of
mIoU on validation and test set, which establishes a
new state-of-the-art performance in WSSS on the PAS-

CAL VOC2012 dataset (Everingham et al. 2015). Ex-
tensive experiments show that AMR surpasses not only
current methods trained with the image-level supervision
but also some methods relying on stronger supervision,
such as saliency label. Experiments also reveal that our
scheme is plug-and-play and can can be incorporated
with other approaches to boost their performance.

Related Work
Weakly Supervised Semantic Segmentation
With the refined research of semantic segmentation, on the
one hand, AutoML (Li et al. 2021; Ren et al. 2021; Li et al.
2020, 2019; Xuefeng Xiao and Lianwen Jin 2017; Xia and
Ding 2020) based technologies are employed to improve
the segmentation quality. On the other hand, training with
lightweight annotation cost is widely explored, image-level
WSSS has been extensively studied in recent years. Existing
advanced methods usually rely on the seed area of Class Ac-
tivation Maps(CAMs) (Zhou et al. 2016) generated by the
classification networks. Most of these efforts can be clas-
sified in two aspects: generating high-quality CAM seeds
and refining the pseudo labels. On the one hand, some ap-
proaches directly expand the response regions of CAMs be-
cause the original activation maps only highlight the dis-
criminative regions of the images. (Wei et al. 2018) uses
dilated convolution with different dilate rates to increase the
target regions. SEAM (Wang et al. 2020b) captures different
regions from transformed images via equivariance regular-
ization in classification networks. On the other hand, some
works focus on refining the pseudo labels based on the initial
CAMs. SEC (Kolesnikov and Lampert 2016) explores three
principles to refine the seeds, i.e., seed, expansion, and con-
straining. AffinityNet (Ahn and Kwak 2018) learns the rela-
tion of pixels and propagates the similar semantic pixels by
a random walk algorithm. In addition, several methods (Yao
et al. 2021; Lee et al. 2019) take the CAMs as foreground
cues and saliency maps (Zhang et al. 2019) as background
cues. (Yao et al. 2021) introduces a graph-based global rea-
soning unit to discover the objects in the non-salient regions.
However, these approaches are formulated in an iterative and
random manner, which may lose essential information. To
alleviate this issue, we propose an activation modulation and
recalibration scheme to generate high-quality CAMs.

Attention Mechanism
The attention mechanism (Wu, Hu, and Yang 2019; Wu, Hu,
and Wu 2018) has been widely used in segmentation net-
works to build the global context relation of images. Non-
local (Wang et al. 2018a) is the first to take account of the
correlation between each spatial point in the feature maps.
Then, asymmet (Zhu et al. 2019) proposes an asymmetric
non-local network to strengthen the connection of non-local
networks. SE (Hu, Shen, and Sun 2018) learns the impor-
tance of channel features by computing the interactions be-
tween channels. Following this work, (Wang et al. 2020a)
uses a channel-based convolution to learn the interactions.
CBAM (Woo et al. 2018) exploits the spatial-wise and the
channel-wise attention to highlight the important cues in the
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Figure 2: The framework of the AMR scheme. (a) represents the whole pipeline of AMR. AMR consists of dual branches, i.e.
spotlight branch and compensation branch. “GAP” represents the global average pooling. (b) Illustration of the AMM, which
aims to modulate the activation maps of features in the channel-spatial sequential manner.

channel and spatial dimension. (Cao et al. 2019) incorpo-
rates long-range dependencies to the fundamental attention
module. In this paper, we introduce an attention modulation
module to enhance the minor but essential features for the
segmentation task.

Methodology
In this section, we first briefly introduce the conventional
method for CAMs generation. Then we illustrate the activa-
tion modulation and recalibration scheme (AMR). The moti-
vation and details of the proposed AMM is introduced in the
next section. Finally, the modulation function and training
loss functions are illustrated.

Preliminary
Class Activation Maps (CAMs) (Zhou et al. 2016) denote
the response regions of specific classes for the input images
I ∈ R3×H×W . A multi-label classification network is em-
ployed for encoding the features of all classes, which can
be leveraged to extract the feature maps F (I) ∈ RC×H×W

before the last classification layer to obtain CAMs. C indi-
cates the channel numbers of features maps. Then we simply
perform matrix multiplication on F (I) to generate CAMs:

M(I) = wT
NF (I), (1)

where M(I) ∈ RN×H×W is the obtained CAMs. wT
N is the

weight of the last fully-connected layer for N classes.
However, such CAMs are classification-oriented and ig-

nore the task-specific of semantic segmentation. Namely, the
network is optimized via classification-based loss, which re-
sorts to some discriminative regions of the full objects to
accomplish the classification task. It will sacrifice the perfor-
mance of weakly supervised semantic segmentation, which
needs to obtain the holistic bound of the whole object. To ad-
dress this issue, we propose the Activation Modulation and
Recalibration (AMR) scheme to recalibrate initial CAMs to
be more task-specific.

Activation Modulation and Recalibration Scheme
We illustrate the activation modulation and recalibration
(AMR) scheme in Fig. 2. The AMR consists of the spotlight
branch and the compensation branch. The spotlight branch
is similar to the previous methods (Wei et al. 2017; Jiang
et al. 2019; Lee, Kim, and Yoon 2021), which employs the
classification loss to optimize itself and generate the spot-
light CAMs MS . Because the spotlight branch frequently
activates the informative features during the training proce-
dure, the obtained CAMs mainly highlight the discrimina-
tive regions of target objects.

The compensation branch is craftily designed to play as

2119



auxiliary supervision for the spotlight CAMs. It alleviates
the task gap issue of using classification-based CAMs to
perform segmentation tasks in previous work, which con-
tributes to providing more semantic segmentation-special
cues. The compensation branch can be regarded as a plug-
and-play component, which can dig out the essential re-
gions for segmentation that are easily ignored by the spot-
light branch. The obtained compensation CAMs MC helps
to recalibrate the spotlight CAMs MS to generate the final
weighted CAMs MW , which is illustrated as:

MW (I) = ξMS(I) + (1− ξ)MC(I), (2)

where ξ denotes the recalibration coefficient.

Attention Modulation Module
The attention modulation module (AMM) is proposed to
assist the compensation branch to extract more regions es-
sential for semantic segmentation tasks. As shown in Fig 2,
AMM consists of channel attention modulation and spatial
attention modulation. We firstly feed features F (I) to the
channel AMM. The channel interdependencies are explic-
itly modeled by the average pooling and the convolutional
layer, which reflect the sensitivity to informative features.
Inspired by (Jiang et al. 2019), the most sensitive features
correspond to the discriminative regions, the minor features
denote the important but easily ignored regions, and the in-
sipid features may indicate the background concepts. There-
fore, we exploit a modulation function to enhance the minor
features and restrain the most and least sensitive features.
The above operations can be denoted as:

Ac = G(H(Ps(F (I)))), (3)

where Ac is the channel attention map. We denote Ps as
the spatial average pooling function and H as the convolu-
tion layer. Then the modulation function G is leveraged to
reassign the distribution of features to highlight the minor
features in the the channel dimension.

Then we conduct an element-wise multiplication between
the channel attention maps and input feature maps to gener-
ate the redistributed features, which is defined as,

Fc(I) = Ãc � F (I), (4)

where Ãc denotes the channel attention maps which are ex-
panded to the dimensions of feature maps. Fc(I) represents
the output feature maps.

To further model inter-spatial relationship in the spatial
dimension, we also introduce a spatial AMM to cascade af-
ter the channel AMM. Specifically, we first employ a chan-
nel average pooling Pc on Fc(I) in channel dimension and
then apply a convolution operation H to them. The output
feature maps illustrate the importance of the features in the
spatial dimensions. Then we perform a modulation function
on the output feature maps to increase the minor activations.
The implementation process can formulate as:

As = G(H(Pc(Fc(I)))), (5)

where As is the spatial attention map. The high activation
values in As reflect the easily ignored regions. Then we
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Figure 3: Illustration of modulation function. The values on
the axis denote the range of distribution of activations. (a)
represents the original activation distribution. (b) indicates
the redistributed activations, which are modulated by the
gaussian function to highlight the minor activations.

make an element-wise multiplication between the spatial at-
tention maps and the feature maps:

Fs(I) = Ãs � Fc(I), (6)

where Ãs denotes the spatial attention maps that are ex-
panded to the dimensions of feature maps.

Modulation Function
In AMM, we employ the modulation function to redistribute
the activation values of feature maps:

VA = G(VAf
), (7)

where G represents the gaussian function, which maps all ac-
tivation values into a gaussian distribution. The parameters
of “mean” and “std” are calculated by the values of VAf

:

µ =
1

M

M∑
i=1

(Vi
Af

), σ =

√√√√ 1

M

M∑
i=1

(Vi
Af
− µ)2, (8)

where µ and σ are the mean and standard deviation of
activation maps. We follow the seting of µ and σ to project
the activation values in G.

We visualize the distribution of activations before and af-
ter the modulation in Fig. 3. We observe that the gaussian
projection greatly suppresses the most and the least impor-
tant activations. And it emphasizes the minor activations to
extract the easily-ignored regions directly, which is crucial
for the segmentation task. In addition, we also explore di-
rectly set the thresholds to change the importance distribu-
tion. But it is difficult to determine an uniform threshold for
all images. The experimental results of different modulation
functions are summarized in Tab. 4.

Loss Function
In the training procedure, we employ a global average pool-
ing operation and a fully-connected layer to obtain the pre-
diction Y , which represents the class probability for all cat-
egories. Finally, we leverage the multi-label soft margin loss
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Methods Sup. Val Test
AffinityNet (Ahn and Kwak 2018) I 61.7 63.7
IRNet (Ahn, Cho, and Kwak 2019) I 63.5 64.8
CIAN (Fan et al. 2020b) I 64.3 65.3
SSDD (Shimoda and Yanai 2019) I 64.9 65.5
OAA+ (Jiang et al. 2019) I 65.2 66.9
SEAM (Wang et al. 2020b) I 64.5 65.7
Chang et al. (Chang et al. 2020) I 66.1 65.9
Zhang et al. (Zhang et al. 2020a) I 66.3 66.5
Chen et al. (Chen et al. 2020) I 65.7 66.7
CONTA (Zhang et al. 2020b) I 66.1 66.7
DRS (Kim, Han, and Kim 2021) I 66.8 67.4
AdvCAM (Lee, Kim, and Yoon 2021) I 68.1 68.0

MCOF (Wang et al. 2018b) I + S 60.3 61.2
SeeNet (Hou et al. 2018) I + S 63.1 62.8
DSRG (Huang et al. 2018) I + S 61.4 63.2
FickleNet (Lee et al. 2019) I + S 64.9 65.3
MCIS (Sun et al. 2020) I + S 66.2 66.9
ICD (Fan et al. 2020a) I + S 67.8 68.0
Yao et al. (Yao et al. 2021) I + S 68.3 68.5

AMR (Ours) I 68.8 69.1

Table 1: Comparison with the state-of-the-art methods on
PASCAL VOC2012 val and test set. All results are evalu-
ated in mIoU(%). I represents the image-level label and S
indicates the saliency label.

Lcls to optimize Y :

Lcls = −
1

N

N∑
i=1

(Ỹilog(
1

1 + e−Yi
)+(1−Ỹi)log(

e−Yi

1 + e−Yi
)),

(9)
where N denotes the number of classes and Ỹi denote the
label of the category i. We provide two classification losses
to supervise two classification heads in the AMR. The Ls

cls
indicates the supervision of the spotlight branch. And the
Lc
cls is supervised for the compensation branch. In short, the

total classification loss can be illustrated as:

Lcls =
1

2
(Ls

cls + Lc
cls). (10)

To make full use of complementary CAMs from the coun-
terpart branch, we employ a cross pseudo supervision on
the spotlight CAMs and the compensation CAMs. It can be
viewed as a semantic similar regularization for each branch:

Lcps = ‖MS −MC ‖1 , (11)
where Lcps not only regularizes the compensation branch
but also pulls the discriminative regions and easily ignored
regions close to each other. Therefore, we can obtain two
complementary regions as seeds to recalibrate the initial
CAMs. To sum up, the proposed AMR is optimized with
the final loss function Lall:

Lall = Lcls + Lcps. (12)

Experiment
Datasets and Evaluation Metric
We evaluate our approach on the PASCAL VOC2012
dataset (Everingham et al. 2015). It contains 20 foreground

objects classes and one background class. Following the
common methods (Wei et al. 2017; Wang et al. 2020b), we
use 10,582 images for training, 1,449 images for validation,
and 1,456 ones for testing. During the whole training pro-
cess, we only adopt the image-level class labels for supervi-
sion. Each image may contain multi-class labels. To evaluate
the performance of experiments, we calculate the mean in-
tersection over union (mIoU) of all classes.

Implementation Details
We employ ResNet50 (He et al. 2016) as the backbone of
AMR. We train the network for 8 epochs with a batch size
of 16. The initial learning rate is set to 0.01 with a momen-
tum of 0.9. We leverage the stochastic gradient descent al-
gorithm for network optimization with a 0.0001 weight de-
cay. We also take some typical data augmentations on the
training images such as random scaling and horizontal flip-
ping. Following the works (Ahn and Kwak 2018; Ahn, Cho,
and Kwak 2019), we exploit the random walk algorithm on
the obtained CAMs to refine the pseudo labels. After ob-
tained the final pseudo labels for segmentation, we train
the DeepLab-v2 (Chen et al. 2017) with the backbone of
ResNet101 (He et al. 2016), which is pre-trained on the Im-
ageNet (Russakovsky et al. 2015).

Comparison with State-of-the-art Methods
Comparison on semantic segmenation task. We conduct
the experiments on the DeepLab v2 (Chen et al. 2017) with
the obtained pseudo labels of the training set. We report the
results on the PASCAL VOC2012 validation and test set,
which are shown in Tab. 1. On the one hand, AMR sig-
nificantly outperforms the image-level weakly supervised
method and establishes a new state-of-the-art performance.
AMR achieves 68.8% of mIoU on the validation set and
69.1% on the test set, which outperforms DRS (Kim, Han,
and Kim 2021) with 2.0% and 1.7% respectively. On the
other hand, AMR even achieves better or comparable results
than some algorithms with more granular supervision cues.
For instance, AMR surpasses the (Yao et al. 2021) with
0.5% on validation and 0.6% on the test set, which uses the
extra saliency supervision. This is an inspiring result as it
reveals that our method can get impressive results via learn-
ing from massive and cheap annotations, which is of great
benefit to practical application.

Comparison on CAM and pseudo labels. The proposed
scheme aims to provide segmentation-specific CAMs to im-
prove the quality of the pseudo labels. In order to verify the
effectiveness of our method in generating CAMs and pseudo
labels, we summarize the results of the CAMs and the
pseudo-labels of the PASCAL VOC2012 training set with
several competitive methods (see Tab. 2). It reveals that the
AMR achieves the mIoU of 56.8% and 69.7% in terms of
CAM and pseudo labels, respectively. Our method surpasses
the advanced method SEAM (Wang et al. 2020b) with 1.4%
in CAM and outperforms the CONTA (Zhang et al. 2020b)
by 1.8% in pseudo labels. Note that SEAM (Wang et al.
2020b) uses Wide ResNet38 (Wu, Shen, and Van Den Hen-
gel 2019) as the backbone, which achieves superior perfor-
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Figure 4: Visualization of the generated CAMs by our method on the VOC2012 train set. (a) Input images. (b) The spotlight
CAMs generated by the spotlight branch. (c) The compensation CAMs generated by the compensation branch. (d) The weighted
CAMs incorporated by two complementary CAMs.

Methods CAM Pseudo
AffinityNet (Ahn and Kwak 2018) 48.0 59.7
IRNet (Ahn, Cho, and Kwak 2019) 48.3 66.5
CONTA (Zhang et al. 2020b) 48.8 67.9
SEAM (Wang et al. 2020b) 55.4 63.6
Chang et al. (Chang et al. 2020) 50.9 63.4

AMR (Ours) 56.8 69.7

Table 2: Quality results (mIoU) of pseudo labels on the
VOC2012 train images. The “CAM” column indicates the
initial CAM seeds generated by the classification network.
The “Pseudo” represents the refined pseudo labels used to
supervise segmentation.

Baseline AMMc AMMs Lcps mIoU(%)
3 48.3
3 3 52.9
3 3 53.5
3 3 3 54.9
3 3 3 3 56.8

Table 3: Comparison with different effects of each com-
ponent of our method. The “Baseline” represents a single
classification network. The “AMMc” and “AMMc” denote
the proposed channel AMM and spatial AMM respectively.
Lcps denotes the semantic regularization.

mance than ResNet50 in their work. The experimental re-
sults indicate that our compensation CAMs can effectively
improve the quality of the initial CAMs and pseudo labels.

To illustrate how AMR improves the quality of pseudo la-
bels, we visualize the CAMs provided by AMR in Fig. 4.
From this figure, we have the following observations. i) The
spotlight CAMs generated by the spotlight branch mostly

Methods Baseline Threshold Gauss
mIoU(%) 48.3 50.1 56.8

Table 4: Comparison with different modulation functions.
mIoU is evaluated on the CAMs of VOC2012 train images.

focuses on the discriminative regions. ii) The compensation
CAMs highlight the regions that are essential for targets but
easily ignored. It dues to the fact that AMM helps to mod-
ulates the activation maps to emphasize the minor features.
iii) The weighted CAMs contain more complete regions than
spotlight CAMs, which is consistent with the essence of the
semantic segmentation task.

Ablation Studies
Effectiveness of core components. To verify the effec-
tiveness of core components in our approach, we increase
each essential component gradually on the basis of the single
classification network (abbreviated as “baseline”) that only
contains the spotlight branch. We compare the performance
of different components with the variant “baseline” in Tab. 3.
As shown in Tab. 3, AMMc and AMMs improve the mIoU
of CAMs to 52.9% and 53.5% respectively. And the whole
AMM achieves 54.9%. Furthermore, the cross pseudo su-
pervision Lcps contributes to achieving 1.9% performance
improvement. The whole framework achieves the best per-
formance 56.8%. These ablation experiments demonstrate
the effectiveness of each core component in our method.

Effectiveness of modulation functions. In Tab. 4, we
compare the results of different modulation functions intro-
duced in Fig. 3. “Threshold” modulates the activation to 1
when exceeding the threshold and sets to 0 when the acti-
vation is lower than the threshold, which can obtain 1.8%
improvement on the baseline as it remains the most impor-
tant feature and strengthens some minor activations. The
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Figure 5: Qualitative results on the PASCAL VOC2012 validation set. (a) Input images. (b) Ground truth labels. (c) The
segmentation results by IRNet (Ahn, Cho, and Kwak 2019). (d) The segmentation results of our approach.

ξ 0.1 0.3 0.5 0.7 0.9
mIoU (%) 49.2 53.4 56.8 54.5 50.7

Table 5: Comparison with different recalibration coefficient.
mIoU is evaluated on the CAMs of VOC2012 train images.

“Gauss” function achieves 56.8% mIoU, which ranks first in
all candidate functions. It may because the gaussian function
can redistribute the activation maps appropriately to mine
some essential concepts that are easy to be ignored.

Effectiveness of recalibration coefficient. To explore the
optimal recalibration coefficient (ξ), we report the results in
Tab. 5. ξ indicates the contribution of spotlight CAMs to the
weighted CAMs. We observe that when setting ξ as 0.5 can
achieve the best result, i.e. 56.8%. When increasing or de-
creasing the value of ξ, the performance decreases dramati-
cally, it may be due to the fact that it breaks the balance of
regions compensation of two CAMs. When the coefficient
is close to 0.1 or 0.9, the framework approximates a single
branch, which brings dramatical performance degradation.

Generalization Discussion
To verify the generalization of AMR, we extend the pro-
posed AMR into two advanced methods, i.e. IRNet (Ahn,
Cho, and Kwak 2019) and SEAM (Wang et al. 2020b). We
remain the original training settings in their paper and com-
pare the results of the initial CAMs. As shown in Tab. 6,
our approach achieves 8.5% mIoU improvement on IR-
Net. For that baseline SEAM, we transform the classifi-
cation backbone to Wide ResNet38 (Wu, Shen, and Van
Den Hengel 2019) as the same with SEAM. The results in-
dicate that AMR improves the quality of CAMs by 2.5%,
which demonstrates the generalization and robustness of our
method for incorporating with other approaches to improve
segmentation-based CAMs.

Methods CAM(mIoU)
IRNet (Ahn, Cho, and Kwak 2019) 48.3
IRNet+Ours 56.8
SEAM (Wang et al. 2020b) 55.4
SEAM+Ours 57.9

Table 6: Generalization results of AMR on IRNet (Ahn,
Cho, and Kwak 2019) and SEAM (Wang et al. 2020b).

Visualization of Segmentation Results

As illustrated in Fig. 5, we compare our method with IR-
Net (Ahn, Cho, and Kwak 2019) on the segmentation re-
sults in the validation set of PASCAL VOC2012 (Evering-
ham et al. 2015). As we can see, the results of IRNet (Ahn,
Cho, and Kwak 2019) often fall into misjudgment in some
ambiguous regions. On the contrary, our approach success
to dig out more regions belonging to the target objects to
achieve superior segmentation performance.

Conclusion

In this paper, we propose a novel activation modulation
and recalibration (AMR) scheme for WSSS, which lever-
ages a spotlight branch and a plug-and-play compensa-
tion branch to obtain weighted CAMs and provide more
semantic segmentation-oriented concepts. An AMM mod-
ule is designed to rearrange the distribution of feature im-
portance from the channel-spatial sequential perspective,
which contributes to highlighting some essential regions
for segmentation tasks but are easy to be ignored. Exten-
sive experiments on PASCAL VOC2012 dataset demon-
strate that AMR achieves the new state-of-the-art perfor-
mance of weakly supervised semantic segmentation.
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