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Abstract

3D delineation of anatomical structures is a cardinal goal in
medical imaging analysis. Prior to deep learning, statistical
shape models (SSMs) that imposed anatomical constraints
and produced high quality surfaces were a core technology.
Today’s fully-convolutional networks (FCNs), while domi-
nant, do not offer these capabilities. We present deep implicit
statistical shape models (DISSMs), a new approach that mar-
ries the representation power of deep networks with the ben-
efits of SSMs. DISSMs use an implicit representation to pro-
duce compact and descriptive deep surface embeddings that
permit statistical models of anatomical variance. To reliably
fit anatomically plausible shapes to an image, we introduce
a novel rigid and non-rigid pose estimation pipeline that is
modelled as a Markov decision process (MDP). Intra-dataset
experiments on the task of pathological liver segmentation
demonstrate that DISSMs can perform more robustly than
four leading FCN models, including nnU-Net + an adver-
sarial prior: reducing the mean Hausdorff distance (HD) by
7.5-14.3 mm and improving the worst case Dice-Sørensen
coefficient (DSC) by 1.2-2.3%. More critically, cross-dataset
experiments on an external and highly challenging clinical
dataset demonstrate that DISSMs improve the mean DSC
and HD by 2.1-5.9% and 9.9-24.5 mm, respectively, and
the worst-case DSC by 5.4-7.3%. Supplemental validation
on a highly challenging and low-contrast larynx dataset fur-
ther demonstrate DISSM’s improvements. These improve-
ments are over and above any benefits from representing de-
lineations with high-quality surfaces.

Introduction
3D delineation is a fundamental task in medical imag-
ing analysis. Currently, medical segmentation is dominated
by fully-convolutional networks (FCNs) (Long, Shelhamer,
and Darrell 2015), which segment each pixel or voxel in
a bottom-up fashion. FCNs are well-suited to the under-
lying convolutional neural network (CNN) technology and
are straightforward to implement using modern deep learn-
ing software. The current state has been made particularly
plain by the dominance of nnU-Net (Isensee et al. 2021),
i.e., nothing-new U-Net, in the medical segmentation de-
cathlon (MSD) challenge (Simpson et al. 2019). Yet, de-
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Figure 1: Top Panel: DISSMs produce high quality surfaces
without discretization. Its use of rich and explicit anatomical
priors ensure robustness, even on highly challenging cross-
dataset clinical samples. In this example, nnU-Net (Isensee
et al. 2021) oversegments the cardiac region (green arrow)
and mishandles a TACE-treated lesion (red arrow), caus-
ing a fragmented effect. Bottom Panel: a 2D t-SNE embed-
ding (van der Maaten and Hinton 2008) of the DISSM shape
latent space. Shapes closer together share similar features.

spite their undisputed abilities, FCNs do lack important fea-
tures compared to prior technology. For one, a surface-based
representation is usually the desired end product, but FCNs
output masks, which suffer from discretization effects (see
top panel of Fig. 1). These are particularly severe when
large inter-slice distances come into play. Conversion to a
smoothed mesh is possible, but it introduces its own arti-
facts. While this is an important drawback, an arguably more
critical limitation is that current FCN pipelines typically op-
erate with no shape constraints.

Shape priors are critical for ensuring anatomically plau-
sible delineations, but the techniques and concepts of statis-
tical shape models (SSMs), so integral prior to deep learn-
ing (Heimann and Meinzer 2009), have fallen out of favor.
Despite the incontrovertible power of FCNs, they can pro-
duce egregious mistakes, especially when presented with
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morbidities, scanners, or other scenarios not seen in train-
ing (again see top panel of Fig. 1). Because it is impossi-
ble to represent all clinical scenarios well enough in train-
ing datasets, priors can act as valuable regularizing forces.
FCNs may also struggle with anatomical structures with
low-contrast boundaries. Efforts have been made to incorpo-
rate anatomical priors with CNNs, but these either do not di-
rectly model shape and/or do not estimate rigid poses. Thus,
they do not construct a true SSM. Even should their interop-
eration with CNNs not be an issue, classic SSMs also have
their own disadvantages, as they mostly rely on the point dis-
tribution model (PDM) (Cootes et al. 1992), which requires
determining a correspondence across shapes. Ideally, corre-
spondences would not be required.

To fill these gaps, we introduce deep implicit statisti-
cal shape models (DISSMs), a new and deep approach to
SSMs. Using the recently introduced deep implicit shape
concept (Park et al. 2019; Chen and Zhang 2019; Mescheder
et al. 2019), DISSMs learn a compact and rich latent space
that can accurately and densely generate the signed dis-
tance functions (SDFs) of a representative sample of shapes.
Importantly, correspondence between shapes is unneces-
sary, eliminating a major challenge with traditional SSMs.
Statistics, e.g., mean shape, principle components analy-
sis (PCA), and interpolation, can be performed directly on
the latent space (see bottom panel of Fig. 1). To fit an
anatomically plausible shape to a given image, DISSMs
use a CNN to determine rigid and non-rigid poses, thus
marrying the representation power of deep networks with
anatomically-constrained surface representations. Pose esti-
mation is modelled as a Markov decision process (MDP) to
determine a trajectory of rigid and non-rigid poses, where
the latter are defined as PCA loadings of the DISSM la-
tent space. To handle the intractably large search space
of poses, DISSMs make use of marginal space learning
(MSL) (Zheng et al. 2008; Zheng and Comaniciu 2014) and
inverted episodic training, the latter a concept we introduce.
A final constrained deep level set refinement (Michalkiewicz
et al. 2019) captures any fine details not represented by
DISSM latent shape space. At a high level, DISSMs share
many philosophies with traditional SSMs, but they modern-
ize these concepts in a powerful deep-learning framework.

As proof of concept, we evaluate DISSM primarily on
the problem of 3D pathological liver delineation from com-
puted tomography (CT) scans, with supplemental validation
on a challenging larynx segmentation task from low-contrast
CT. For the former, we compare our approach to leading
2D (Harrison et al. 2017), hybrid (Li et al. 2018), 3D cas-
caded (Isensee et al. 2021), and adversarial learning (Yang
et al. 2017) FCNs. When trained and tested on the MSD
liver dataset (Simpson et al. 2019), DISSMs provide more
robust delineations, improving the mean Hausdorff distance
(HD) by 7.5-14.3mm. This is over and above any benefits
of directly outputting a high resolution surface. More con-
vincingly, we perform cross-dataset evaluation on an exter-
nal dataset (97 volumes) that directly reflect clinical condi-
tions (Raju et al. 2020a). DISSMs improve the mean Dice-
Sørensen coefficient (DSC) and HD from 92.4% to 95.9%
and from 34.1mm to 21.8mm, respectively, over the best

fully FCN alternative (nnU-Net). In terms of robustness, the
worst-case DSC is boosted from 88.1% to 93.4%. Commen-
surate improvements are also observed on the larynx dataset.
These results confirm the value, once taken for granted, of
incorporating anatomical priors in 3D delineation. Our con-
tributions are thus: 1) we are the first to introduce a true
deep SSM model that outputs high resolution surfaces; 2)
we build a new correspondence-free, compact, and descrip-
tive anatomical prior; 3) we present a novel pose estima-
tion scheme that incorporates inverted episodic training and
MSL; and 4) we provide a more robust solution than leading
FCNs in both intra- and cross-dataset evaluations. Our code
is publicly shared1.

Related Work
Anatomical Shape Priors: Because anatomical structures
are highly constrained, delineations should match shape pri-
ors. SSMs were a workhorse for 3D medical segmentation
and were most popularly realized as PDMs (Cootes et al.
1992), which requires determining a set of surface point cor-
respondences across all shapes. Correspondence permitted
statistical techniques, such as PCA, to model shape variabil-
ity (Heimann and Meinzer 2009). However, dense 3D sur-
face landmarks are not typically possible to define, and even
when so, they are not always reliably present (Heimann and
Meinzer 2009). The alternative of automatically generating
correspondences is still a dense research topic (Heimann
and Meinzer 2009), and all existing solutions are imperfect.
While PDMs have been used with CNNs (Milletari et al.
2017; Bhalodia et al. 2018), these works make no attempt
at determining rigid poses, thus they are only applicable in
constrained and limited setups. In general the reliance on ex-
plicit surface representations, e.g. meshes, makes it difficult
to integrate traditional SSMs with CNNs. SSMs based on
implicit level set representations have been explored (Cre-
mers, Rousson, and Deriche 2007), but the statistics must
be collected across a dense 3D regular grid. The most pop-
ular approach today is to impose an implicit prior (differ-
ent from implicit representation) using auto-encoders (Ok-
tay et al. 2017; Ravishankar et al. 2017) or generative ad-
versarial networks (Yang et al. 2017; Raju et al. 2020b; Cai
et al. 2019), but these do not permit a controllable and inter-
pretable prior and are not invariant to rigid similarity trans-
forms, so a true shape prior is not constructed. Recent work
has also used CNNs to deform an initial mesh (Yao et al.
2019; Wickramasinghe et al. 2020) or point-cloud (Cai et al.
2019) sphere, but the process is used to augment an exist-
ing voxel-based output, otherwise the deformation cannot
capture all details (Wickramasinghe et al. 2020). Besides,
these works offer no statistical description of anatomical pri-
ors. Like traditional SSMs, DISSMs explicitly enforce shape
constraints via a model of anatomical variability, but using
a deep implicit SDF representation that is 1) highly descrip-
tive, 2) highly compact, and 3) requires no correspondences.
DISSM is the first to offer a complete “deep” SSM solution
that includes rigid and non-rigid pose estimation.

1https://github.com/AshStuff/dissm

2136



Deep Implicit Shapes: The concept of deep implicit
shapes (Park et al. 2019; Chen and Zhang 2019; Mescheder
et al. 2019) were introduced to represent shapes using a com-
pact latent space and an SDF decoder. DISSMs adopt Park
et al. (2019)’s auto-decoder formulation. Unlike these sem-
inal works, DISSMs build a model of anatomical variability
and propose a pose estimation strategy for 3D images.
Pose Estimation: Fitting an SSM to an image requires de-
termining the rigid and non-rigid poses of the shape. Stan-
dard learning strategies, such as one shot regression (Štern,
Ebner, and Urschler 2016; Gauriau et al. 2015) and exhaus-
tive scanning (Zheng et al. 2015), yield sub-optimal results
as the model relies on a prohibitively large number of sam-
ples (Ghesu et al. 2017) and only has one opportunity to
produce pose estimations. A recent work directly regresses
poses using deep implicit shapes, but these are from sim-
ulated 2D images on white backgrounds (Xu et al. 2019).
DISSMs must operate in the challenging 3D medical set-
ting, where datasets may be small and the contrast low. We
formulate pose estimation as an agent-based MDP, where
the agent navigates to a pose matching the present anatom-
ical structure. This has connections to some recent registra-
tion approaches (Liao et al. 2017; Krebs 2017; Ma et al.
2017). However, estimating both non-rigid and rigid poses
presents an extremely large search space. To deal with this,
1) we introduce inverted episodic training and 2) we em-
ploy a deep realization of MSL (Zheng and Comaniciu 2014;
Zheng et al. 2008) to incrementally learn pose parameters.
The use of MSL links DISSMs to a variety of traditional
SSM works pre-dating modern deep networks.

Method
Fig. 2 illustrates the DISSM framework. As the bottom panel
demonstrates, a CNN encoder predicts rigid and non-rigid
poses, which, along with desired coordinates, are fed into
a deep implcit multilayer perceptron (MLP) shape decoder
to output corresponding SDF values. The encoder searches
for the best pose using an MDP combined with MSL (top
panel). We first outline the deep implicit shape model, dis-
cuss pose estimation, then describe the final local surface
refinement.

Implicit Shape Representation
Deep implicit shapes (Park et al. 2019; Chen and Zhang
2019; Mescheder et al. 2019) are a recent and powerful im-
plicit shape representation. We use Park et al. (2019)’s for-
mulation to model organ shapes using an SDF, which, given
a coordinate, outputs the distance to a shape’s surface:

SDF (x) = s : x ∈ R3, s ∈ R, (1)

where s is negative inside the shape and positive outside of
it. The iso-surface of (1), i.e., coordinates where it equals
0, corresponds to the shape surface. The insight of deep im-
plicit shapes is that given a set of coordinate/SDF pairs in
some canconical or normalized space, X̃ = {x̃i, si}, a deep
MLP can be trained to approximate a shape’s SDF:

fθS (x̃) ≈ SDF (x̃), ∀x̃ ∈ Ω, (2)

where the tilde denotes canonical coordinates. Because it
outputs smoothly varying values (2) has no resolution limita-
tions, and, unlike meshes, it does not rely on an explicit dis-
cretization scheme. In practice the resolution of any captured
details are governed by the model capacity and the set of
training samples within Xi. While (2) may describe a single
shape, it would not describe the anatomical variation across
a set of shapes. To do this, we follow Park et al. (2019)’s ele-
gant approach of auto-decoding latent variables. We set ofK
SDF samples from the same organ, S = {X̃k}Kk=1, and we
create a corresponding set of latent vectors, Z = {zk}Kk=1.
The deep MLP is modified to accept two inputs, fθS (x̃, zk),
conditioning the output by the latent vector to specify which
particular SDF is being modeled. We jointly optimize the
network weights θS and latent vectors Z to produce the best
SDF approximations:

arg min
θS ,Z

K∑
k

|X̃k|∑
i=1

L(fθS (x̃i, zk), si) +
1

σ2
‖zk‖22

 , (3)

where L is the L1 loss and the second term is a zero-mean
Gaussian prior whose compactness is controlled by σ2.

The implicit shape model assumes shapes are speci-
fied in a canonical space. However, segmentation labels
are usually given as 3D masks. To create canonical co-
ordinate/SDF training pairs, we first perform within-slice
interpolation (Albu, Beugeling, and Laurendeau 2008) on
masks to remove the most egregious of discretization arti-
facts. We then convert the masks to meshes using march-
ing cubes (Lewiner et al. 2003), followed by a simplifica-
tion algorithm (Forstmann 2020). Each mesh is then rigidly
aligned to an arbitrarily chosen anchor mesh using coher-
ent point drift (Myronenko and Song 2010). Similar to Park
et al. (2019), SDF and coordinate values are randomly sam-
pled from the mesh, with regions near the surface much
more densely sampled. SDF values are also scaled to fit
within [−1, 1]. Based on the anchor mesh, an affine matrix
that maps between canonical and pixel coordinates can be
constructed, x = Ax̃. More details can be found in our sup-
plementary (Raju 2021).

Once the shape decoder is trained, any latent vector can be
inputted into fθS (., .) along with a set of coordinates to ras-
terize an SDF, which can then be rendered by extracting the
iso-boundary. As the top row of Fig. 3 and bottom panel of
Fig. 1 demonstrate, the latent space provides a rich descrip-
tion of shape variations. The mean latent vector, µ, produces
an anatomically valid shape. A PCA can capture meaning-
ful variation, e.g., the first basis corresponds to stretching
and flattening while the second controls the prominence
of lobe protuberances. Interpolating between latent vectors
produces reasonable shapes (bottom row of Fig. 3).

Pose Estimation
The next major step is use the compact and rich DISSM
shape space to delineate an object boundary given an im-
age, I . We assume a dataset of labelled images is avail-
able, allowing for the generation of coordinate/SDF pairs:
D = {Ik,Xk}KD

k=1, where Xk = {xi, si} is specified us-
ing pixel coordinates. Note, we only assume a mask/SDF is
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Figure 2: Overview of our deep implicit statistical shape modeling (DISSM) framework. Here T, S, R, PCA, LR are Trans-
lation, Scale, Rotation, PCA loadings and Local Refinement respectively.

mean λ1 = −0.5 λ1 = 0.5 λ2 = −0.5 λ2 = 0.5

α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1

Figure 3: DISSM shape embedding space on MSD liver
dataset (Simpson et al. 2019). The top row shows the shapes
generated from the mean latent vector and scaled version of
the two first PCA bases (λ1 and λ2). The bottom row ren-
ders an interpolation between two selected latent vectors:
z = (1− α)z0 + αz1.

present, and do not require explicit ground-truth rigid and
non-rigid poses. We need to define: 1) the rigid-body trans-
form from the canonical coordinates to the image space, and
2) the latent vector that specifies the shape variation. We de-
note the rigid-body transformation as T(ω) with parameters
ω = {t, s,b}, i.e., translation, anisotropic scale, and rota-
tion, respectively, where t ∈ R3, s ∈ R3, and b ∈ R6. Here
we use Zhou et al. (2019)’s recent six-dimensional parame-
terization of the rotation matrix, where we actually predict
deviations from identity, i.e., I+T(b). We model shape vari-
ation using a truncated PCA basis that only captures salient
variations: z = µ + Wλ. Unlike explicit SSMs, the PCA
is performed on the latent space and does not require cor-
respondences. We employ an encoder network, gθE (I), to
predict the rigid pose parameters, ω, and the non-rigid PCA
loadings λ. The parameters predicted by gθE (.) are fed into
a frozen fθS (., .) to produce the object’s SDF:

SDF (x) = fθS
(
A−1T(ω)x,µ + Wλ

)
, (4)

ω,λ = gθE (I). (5)

While (4) and (5) could work in principle, directly pre-
dicting global pose parameters in one shot is highly sensitive

to any errors and we were unable to ever reach convergence.
We instead interpret the encoder gθE (.) as an “agent” that,
given an initial pose, ω0, generates samples along a trajec-
tory by predicting corrections to the previous pose:

∆τ , λτ = gθE
(
Ik, ω

τ−1
)
, (6)

ωτ = ∆τ ◦ ωτ−1, if τ > 0, (7)

where ◦ denotes the composition of two rigid-body trans-
forms and τ indicates the current step in the trajectory. An
observation of ωτ−1 is injected into the input of the encoder
so that it is aware the previous pose to correct. To do this we
rasterize the SDF corresponding to the mean shape, SDFµ,
once. After every step it is rigidly transformed using ωτ−1

and fed as a second input channel into gθE (., .). The agent-
based formulation turns the challenging one-step pose esti-
mation task into a simpler multi-step correction task. Note
in (6) we do not predict a trajectory for the PCA loadings.
Unlike rigid pose estimation, which can use the transformed
SDFµ, it not clear how to best inject a concept of PCA state
into the encoder without rasterizing a new SDF after every
step. Since this is prohibitively expensive, the PCA load-
ings are directly estimated at each step. We break the search
space down even further by first predicting rigid poses then
predicting the PCA loadings, as detailed below.

Rigid Pose Estimation We first train the encoder gθE (., .)
to predict rigid poses. In training we generate samples along
a trajectory of T steps, which is referred to as an episode.
The encoder is trained by minimizing a loss calculated over
the episodes generated on the training data:

arg min
θE

KD∑
k=1

|Xk|∑
i=1

T∑
τ=1

L(fθ
(
A−1T(ωτ )xi,µ

)
, si), (8)

where back-propagation is only executed on the encoder
weights θE within each step τ , and the dependence on gθE (.)
is implied through ωτ . Note that (8) uses the mean latent
vector, µ, to generate SDF predictions and the λ output in
(6) is ignored for now. This training process shares simi-
larities to deep reinforcement learning (DRL), particularly
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Stage ∆ η ω0

Trans. t ηt ωD
Scale {s, t} ηs ◦ η′t {ωT

t,k}
KD
k=1

Rot. {b, s, t} ηr ◦ η′s ◦ η′t {ωT
s,k}

KD
k=1

Non Rig. {b, s, t} η′r ◦ η′s ◦ η′t {ωT
r,k}

KD
k=1

Table 1: MSL schedule used in DISSM.

in its formulation of the prediction step as an MDP. Un-
like DRL, and similar to MDP registration tasks (Liao et al.
2017; Krebs 2017; Ma et al. 2017), there is no need for cu-
mulative rewards because a meaningful loss can be directly
calculated. At the start of training, the agent will not pro-
duce reliable trajectories but, as the model strengthens, the
playing out of an episode of T steps for each training iter-
ation will better sample meaningful states to learn from. To
expose the agent to a greater set of states, we also inject ran-
dom pose perturbations, η, after every step, modifying (6)
and (7) to

∆τ , λτ = gθE
(
Ik, η

τ ◦ ωτ−1
)
, (9)

ωτ = ∆τ ◦ ητ ◦ ωτ−1, if τ > 0. (10)

A downside to episodic training is that each image is sam-
pled consecutively T times, which can introduce instability
and overfitting to the learning process. To avoid this we in-
troduce inverted episodic training, altering the loop order to
make each episodic step play out as an outer loop:

arg min
θE

T∑
τ=1

KD∑
k=1

|Xk|∑
i=1

L(fθ
(
A−1T(ωτ )xi,µ

)
, si), (11)

where ωτ is saved for each sample after each iteration.
Marginal Space Learning: The MDP of (11) provides
an effective sampling strategy, but it requires searching
amongst all possible translation, scale, and rotation config-
urations, which is too large a search space. Indeed we were
unable to ever reliably produce trajectories that converged.
To solve this, DISSMs use a deep realization of marginal
space learning (MSL) (Zheng and Comaniciu 2014). MSL
decomposes the search process into a chain of dependant
estimates, focusing on one set while marginalizing out the
others. In practice (Tab. 1) this means that we first limit the
search space by training the encoder to only predict a trans-
lation trajectory, t, with the random perturbrations also lim-
ited to only translation, i.e., ηt. The initial pose is the mean
location in the training set, denoted ωD. Once trained, the
translation encoder weights and final poses, {ωT

t,k}
KD
k=1, are

used to initialize a scale encoder of identical architecture,
but one that predicts scale corrections, s, in addition to fine-
tuning the translation. Importantly, to focus the search space
on scale, the random translation perturbations are config-
ured to be much smaller than before, which is represented by
the prime modifier on η′t. Finally, a rotation model is trained
(while finetuning translation + scale with smaller perturba-
tions). In inference, the rigid pose is estimated by succes-
sively applying the models of each stage, using the final pose
of the previous step to initialize the next.

Non-Rigid Pose Estimation Once a rigid pose is deter-
mined, anatomically plausible deformations can then be es-
timated. We initialize the weights and poses of the non-rigid
encoder using the translation + scale + rotation rigid model,
modifying (11) to now incorporate the PCA basis:

arg min
θE

T∑
τ=1

KD∑
k=1

|Xk|∑
i=1

L(fθ
(
A−1T(ωτ )xi,µ + Wλτ

)
, si)

+
1

σ2
‖µ + Wλτ‖22. (12)

As Table 1 indicates, the random rigid perturbations are con-
figured to be small in magnitude to confine the search space
to primarily the PCA loadings.

Surface Refinement
Like classic SSMs (Heimann and Meinzer 2009), non-rigid
pose estimation provides a robust and anatomically plau-
sible prediction, but it may fail to capture very fine de-
tails. We execute local refinements using an FCN model,
r = hθR(I,SDFλ), that accepts a two-channel input com-
prising the 3D image and the rasterized SDF after the non-
rigid shape estimation. Its goal is to refine the SDFλ to bet-
ter match the ground truth SDF. To retain an implicit surface
representation, we adapt portions of a recent deep level set
loss (Michalkiewicz et al. 2019):

Lr =
∑
x∈Ωb

(
SDF (x)2 · δε (SDFλ(x) + r(x))

)1/2
+ λ1

∑
x∈Ωb

(‖∇(SDFλ(x) + r(x))‖ − 1)2

+ λ2

∑
x∈Ωb

|max(0, r(x)− ρ)|, (13)

where SDF is the ground truth SDF and δε is a differentiable
approximation of the Dirac-delta function. The first term pe-
nalizes mismatches between the iso-boundaries of the re-
fined SDF ground-truth. The second term ensures a unit gra-
dient everywhere, guaranteeing that it remains a proper SDF.
See Michalkiewicz et al. (2019) for more details. The third
term ensures the refinement does not deviate too much from
SDFλ beyond a margin, ρ, otherwise it is free to deviate
without penalty. Following standard level set practices, we
only produce refinements within a narrow band, Ωb, around
the SDFλ iso-boundary, which is also represented in the
loss of (13). Finally, in addition to standard data augmen-
tations to I , we also independently augment SDFλ with
random rigid and non-rigid pose variations, enriching the
model’s training set.

Experiments
Liver Dataset: We focus on delineating pathological livers
from venous-phase CTs. We use the size-131 training set
of the MSD liver dataset (Simpson et al. 2019), splitting it
randomly into training, testing, and validation using propor-
tions of 70%, 20%, and 10%, respectively. Tumor masks
were merged into the liver to create a complete patholog-
ical liver mask. Intra-dataset results are important, but we
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Translation Scale Rotation

Non-rigid Refinement Surface

Figure 4: The DISSM pose estimation process. Red and
green contours represent the prediction and ground truth, re-
spectively.

Model DSC (%) ASSD (mm) HD (mm)
2D-PHNN 95.9 ± 2.7 2.6 ± 1.2 35.7 ± 16.1
nnU-Net 96.4 ± 1.9 1.7 ± 0.9 29.1 ± 12.4
H-DenseUNet 96.3 ± 2.1 1.9 ± 1.1 30.4 ± 13.9
Adv. Shape Prior 96.0 ± 2.4 2.1 ± 1.3 28.9 ± 12.8
DISSM w/o refine 96.1 ± 0.9 1.5 ± 0.7 23.4 ± 12.2
DISSM w refine 96.5 ± 0.7 1.1 ± 0.7 21.4 ± 11.8

Table 2: Quantitative results on the MSD liver dataset.

take a further step to evaluate robustness and generalizabil-
ity on unseen data from true and challenging clinical scenar-
ios. To do this, we also evaluate on the external test set of
Raju et al. (2020a), which comprises 97 venous-phase CTs.
The dataset was sampled directly from a hospital archive
with minimal curation and includes challenging scenarios
not seen in the MSD dataset, i.e., new lesion types and new
co-morbitidies. Demographics are also different (Asian pop-
ulation vs. mostly Western population in MSD). Thus, the
external dataset helps reveal whether the DISSM anatomical
priors can provide robustness against unavoidable new and
unseen clinical scenarios.

We compare DISSM against very strong FCN alterna-
tives. 1) 2D P-HNN (Harrison et al. 2017), used as an FCN
backbone for a recent semi-supervised liver segmentation
method (Raju et al. 2020a). 2) HDenseUNet (Li et al. 2018),
a leader of the LiTS liver segmentation challenge (Bilic et al.
2019) that uses a cascade of 2D and 3D FCNs. 3) nnU-
Net (Isensee et al. 2021), the winner of the MSD (Simpson
et al. 2019) and KiTS (Heller et al. 2020) challenges. We use
its dual model 3D cascade setting, which performed best on
the liver task of the MSD challenge. 4) nnU-Net augmented
with an adversarial anatomical prior that follows Yang et al.
(2017). For its discriminator, we use Raju et al. (2020a)’s
more modern version, which has already proven effective
on the clinical liver dataset. For all, we use their published
implementations, including recommended resolutions, pre-
and post-processing, and data augmentations. For quantita-
tive comparisons we threshold the DISSM SDF surface to
produce a mask and measure the DSC, average symmetric
surface distance (ASSD), and HD scores against the origi-
nal masks. Note, this is a disadvantageous setup for DISSM,
as the original masks suffer from stair-like discretization ef-
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Figure 5: Box-whisker plot of DSCs on the MSD dataset.

fects, which DISSM aims to rectify.
Larynx Dataset: We also perform validation on larynx seg-
mentation from CT, a critical organ-at-risk (OAR) for head
and neck cancer radiotherapy (Brouwer et al. 2015). This
task is highly challenging due to very low contrast bound-
aries in CT. We compare against the SOARS method and
dataset of Guo et al. (2020) (142 CTs), who reported a re-
cent and computationally intensive approach that relies on
stratified learning and neural architecture search. However,
SOARS is also designed to segment other OARs at the same
time, so results are not apples-to-apples. For this reason, we
additionally compare against nnU-Net (Isensee et al. 2021),
trained only to segment the larynx. More details on this
dataset can be found in the supplementary (Raju 2021).
Implementation Details: We kept settings as similar as pos-
sible for the two datasets. The shape decoder structure and
hyperparameters follow that of Park et al. (2019) and we use
a size 256 latent variable. For the pose encoders, gθE (., .),
use the 3D encoder of a 3D U-Net (Çiçek et al. 2016), with
4 downsampling layers and global averaging pooling to pro-
duce ∆τ and λ. For the liver we estimate the first 28 PCA
components (72% of the variance). Larynx shape variations
are more constrained, so we estimate the first 12 components
(95% variance). The number of inverted episodic steps, T,
for training the translation, scale, rotation, and non-rigid en-
coders was 7, 15, 15, and 15, respectively. The translation
encoder was trained on a coarsely sampled volume. After
it converged, we cropped volumes to encompass the max-
imum organ size and trained the remaining pose encoders
on higher resolution volumes. Finally, we use a patch-based
3D U-Net (Çiçek et al. 2016) as the local surface refinement
model, hθR(., .). Full training details, including a complete
listing of all hyperparameters, can be found in the supple-
mentary (Raju 2021).
Liver Results: DISSM consumes 12 − 13s to fully delin-
eate a 3D volume. Fig. 4 overlays the DISSM results on top
of a CT scan after each stage. As can be seen, each stage
progressively improves the result. After the non-rigid PCA
loading, the delineation quality is already quite high, cap-
turing a lobe curve not represented by the mean shape. The
local refinement improves results even further by capturing
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Figure 6: Qualitative comparison of DISSM (second row)
versus nnU-Net (first row). Red and green contours repre-
sent the prediction and ground truth delineations, respec-
tively. The first and second-to-fourth columns are drawn
from the MSD and clinical dataset, respectively. Fourth row
is worst-case performance for DISSM. Blue arrows in the
top row shows nnU-Net mispredictions. Results from other
methods can be found in the Supplemental.

Model DSC (%) ASSD (mm) HD (mm)
2D-PHNN 90.1 ± 5.1 3.9 ± 1.4 46.3 ± 21.1
nnU-Net 92.4 ± 3.3 3.6 ± 1.1 34.1 ± 17.3
HDenseUNet 92.1 ± 3.7 3.3 ± 1.3 36.2 ± 16.7
Adv. Shape Prior 93.8 ± 1.7 3.1 ± 1.1 31.7 ± 14.3
DISSM w/o refine 95.7 ± 1.8 2.6 ± 1.1 24.7 ± 12.6
DISSM w refine 95.9 ± 1.6 2.3 ± 0.9 21.8 ± 12.1

Table 3: Cross-dataset results on the clinical liver dataset.

fine-grained boundary curvatures. An ablation study can be
found in the supplementary (Raju 2021).

Table 2 outlines the performance on the MSD data. As can
be seen, all models perform quite well, but DISSM exhibits
less variability in DSC and ASSD, indicating better robust-
ness. This is cogently illustrated by the HD numbers, i.e., the
worst-case distances for each volume. DISSM dramatically
improves the HD numbers by roughly 26% to 40%, resulting
in much more reliable delineations. This robustness can be
best seen by the box and whisker DSC plot of Fig. 5, which
shows DISSM posting better worst-case and third-quartile
performance. The visual impact of these improvements can
be seen in the first column of Fig. 6.

While the above demonstrate that DISSM can provide su-
perior intra-dataset robustness, the clinical results are even
more telling. As Table 3 highlights, the competitor model
performances drop drastically on the clinical dataset, under-
scoring the difficulty of operating when morbidities, scan-
ners, patient populations, and practices can vary in unan-
ticipated ways. In contrast, DISSM’s performance is much
more stable, still posting very good numbers. Compared to
the competitors, DISSM boosts the mean DSC score by 2.1
to 5.8% and reduces the HD by 31 to 53%. As the box
and whisker plot of Fig. 7 shows, DISSM also provides
much better worst-case performance and smaller spread,
even when compared against the adversarial prior. The best
FCN-only competitor, i.e., nnU-Net posts a worst-case DSC
performance of 88.1%, whereas DISSM’s is a much bet-
ter 93.2%. The second to fourth columns of Fig. 6 illus-
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Figure 7: Box-whisker plot of DSCs on the clinical dataset.

Model DSC (%) HD (mm)
SOARS 56.7 ± 17.1 9.0 ± 7.1
nnU-Net 58.6 ± 14.7 8.6 ± 4.4
DISSM w/o refine 59.4 ± 9.3 7.8 ± 5.3
DISSM w refine 60.9 ± 5.9 7.1 ± 5.7

Table 4: Larynx dataset results.

trate challenging clinical examples, where nnU-Net leaked
into the cardiac region, failed to segment a treated lesion,
and failed to handle a patient with splenomegaly. Note, the
fourth row represents the worst-case result for DISSM.
Larynx Results: Table 4 outlines mean DSC and HD scores
on the larynx dataset, which is all that SOARS reported (Guo
et al. 2020). As can be seen, DISSM outperforms the com-
petitors, posting a mean DSC of 60.9%, which is roughly
2% better than the next best result (nnU-Net). More notably,
the standard deviation is significantly reduced (from 14.7 to
5.9), indicating that DISSM is much more reliable. These
robustness benefits on a delineation task with challenges dis-
tinct from pathological livers, i.e., low contrast boundaries,
provide further evidence of the value of the DISSM SSM.
Qualitative examples can be found in the supplemental (Raju
2021).

Conclusion
Deep implicit statistical shape models (DISSMs) use a deep
implicit model to construct statistical and correspondence-
free anatomical priors and directly outputs high-quality sur-
faces, rather than voxelized masks. For pose estimation,
DISSM proposes a robust MDP that incorporates MSL and
inverted episodic training. DISSM is the first to integrate a
true SSM with deep learning technology. Cross dataset eval-
uations on pathological liver segmentation demonstrate that
DISSM outperforms leading FCNs, e.g., nnU-Net (Isensee
et al. 2021), improving the mean and worst-case DSC by
3.5% and 5.1%, respectively. Supplemental validation on a
challenging larynx dataset further confirmed the value of
DISSM. While continued maturation is necessary, DISSM
represents a new and promising approach to 3D medical
imaging delineation.
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