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Abstract

Object localization aims to generate a tight bounding box for
the target object, which is a challenging problem that has been
deeply studied in recent years. Since collecting bounding-box
labels is time-consuming and laborious, many researchers fo-
cus on weakly supervised object localization (WSOL). As the
recent appealing self-supervised learning technique shows
its powerful function in visual tasks, in this paper, we take
the early attempt to explore unsupervised object localization
by self-supervision. Specifically, we adopt different geomet-
ric transformations to image and utilize their parameters as
pseudo labels for self-supervised learning. Then, the class-
agnostic activation map is used to highlight the target object
potential regions. However, such attention maps merely fo-
cus on the most discriminative part of the objects, which will
affect the quality of the predicted bounding box. Based on
the motivation that the activation maps of different transfor-
mations of the same image should be equivariant, we further
design a siamese network that encodes the paired images and
propose a joint graph partition mechanism in an unsupervised
manner to enhance the object co-occurrent regions. To vali-
date the effectiveness of the proposed method, extensive ex-
periments are conducted on CUB-200-2011, Stanford Cars
and FGVC-Aircraft datasets. Experimental results show that
our method outperforms state-of-the-art methods using the
same level of supervision, even outperforms some weakly-
supervised methods.

Introduction
Recently, deep convolution neural networks have achieved
impressive results in many visual tasks such as recogni-
tion (He et al. 2016; Su et al. 2020) and segmentation (Chen
et al. 2017; Su et al. 2022), etc. This is due to the strong
learning ability under supervision. Object localization aims
to locate the object of interest within an image. However,
collecting bounding-box labels is very time-consuming and
labor-intensive, thereby some of these methods are often un-
available in practice.

To relax the demand for expensive annotations, some re-
cent researches (Zhou et al. 2016; Choe and Shim 2019;
Lin et al. 2020) focus on weakly-supervised object localiza-
tion (WSOL), which only utilizes image-level labels. As the
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Figure 1: CUB-200-2011 (Wah et al. 2011) GT-Known Loc
accuracy of different methods by different level supervi-
sions. All methods adopt VGG16 as backbone for a fair
comparison. ‘†’ denotes the backbone is pre-trained on Ima-
geNet (Russakovsky et al. 2015) using class-level labels.

recent self-supervised learning techniques (He et al. 2020;
Chen et al. 2020b,a; Gidaris, Singh, and Komodakis 2018)
arising, image visual representations can be learned with-
out labels in an unsupervised way. To this end, we make
the early attempt to explore unsupervised object localization
with self-supervised learning, which not only outperforms
previous unsupervised works (Zhang et al. 2018a; Zhao et al.
2020), but also even outperforms some weakly-supervised
methods (Zhou et al. 2016; Zhang et al. 2018b; Baek, Lee,
and Shim 2020) (see in Figure 1).

In this work, we introduce a novel and simple framework
for unsupervised object localization by self-supervision.
Specifically, inspired by RotNet (Gidaris, Singh, and Ko-
modakis 2018), the network can extract visual features by
a classification task. The core intuition is that it is essen-
tially impossible for a network to effectively perform the
recognition task unless it has first learned to recognize and
detect classes of objects as well as their semantic parts in
images. But different from it, we consider predicting sim-
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Figure 2: Inconsistent activation maps of different transfor-
mations (i.e., original, rescale 2×, flipping and rotation 90◦)
of the same image.

ple tasks may lead to degenerate learning (Jenni, Jin, and
Favaro 2020). Therefore, we adopt several different geomet-
ric transformations (i.e., rotation, flipping, rescale and trans-
lation. Note that we can perform the regional dropout by
erasing the parts of objects during transformation through
affine padding.) to images and then use their parameters as
artificial labels for self-supervised learning. In this way, the
network model can learn to extract meaningful representa-
tions by predicting those transformations.

However, the activation maps generated from the afore-
mentioned learning paradigm merely focus on the most dis-
criminative part of the objects, which will affect the quality
of the predicted bounding box. As shown in Figure 2, we ob-
serve that the activation maps of different geometric trans-
formations of the same object distribute are in different parts
(i.e., head, wing), which is quite different from our human
visual system. When we recognize the object, we can high-
light the consistent part no matter it transforms. Motivated
by this, we can utilize the divergence information for com-
plementary learning to enhance the object activated regions.
Specifically, we propose to encode the paired images with
different transformations. Since the same object shares sim-
ilar semantic information, therefore, we can propagate the
learning features across the object. To this end, we introduce
an unsupervised joint graph partition mechanism to mine the
co-occurrent regions of the same object. By constructing and
partitioning image feature graph obtained from paired im-
ages containing the same object, it yields the optimal masks
for both the images that highlight the co-regions. Then we
can use the partition results to enhance the network. Finally,
the class-agnostic activation map is used to highlight the tar-
get objects for bounding-box prediction. Extensive exper-
iments on three benchmark datasets give both quantitative

and qualitative results, demonstrating the superiority of our
approach. Our main contributions are the following:

• We take the early attempt to conduct unsupervised ob-
ject localization by self-supervision, which to our best
knowledge, has not been well explored.

• We introduce a network to encode paired images with
different transformations and propose an unsupervised
joint graph partition mechanism to enhance the co-
occurrent regions of the target object.

• Extensive experimental results on three benchmark
datasets show the effectiveness of our proposed method
and it can outperform the state-of-the-art unsupervised
methods by a large margin, even outperforms some
weakly-supervised methods.

Related Work
Weakly-supervised Object Localization
Weakly-supervised Object Localization (WSOL) aims to
learn the localization of objects with only image-level labels.
The mainstream and representative methods for WSOL are
based on CAM (Zhou et al. 2016), which produced localiza-
tion maps by aggregating deep feature maps using a class-
specific fully connected layer. However, such the CAM-
based methods only discover small discriminative parts of
objects. To tackle this drawback, EIL (Mai, Yang, and Luo
2020) and ADL (Choe and Shim 2019) proposed to mine
the objects by integrating discriminative region mining and
adversarial erasing in a single forward-backward propaga-
tion. ACoL (Zhang et al. 2018b) used multiple parallel clas-
sifiers that were trained adversarially. CutMix (Yun et al.
2019) and CDA (Su et al. 2021b) also explored the strat-
egy and forced the network to focus on more relevant parts
of objects. Besides, there are some works (Xue et al. 2019;
Zhang, Wei, and Yang 2020a) focused on the intra and inter
pixel-level correlations to help the network learn divergent
activation maps. In recent work, TS-CAM (Gao et al. 2021)
took the full advantage of the self-attention mechanism in
visual transformer for long-range dependency extraction for
object mining. SPA (Pan et al. 2021) proposed a two-stage
approach to leverage the structure information incorporated
in convolutional features for WSOL.

Self-supervised Learning
Self-supervised learning is an important technique in unsu-
pervised tasks. By setting up different proxy-tasks, the net-
work itself can learn meaningful image feature representa-
tions. (Larsson, Maire, and Shakhnarovich 2016) performed
image colorization pretext to establish a mapping from ob-
jects to colors. In (Pathak et al. 2016), they learned objects
features by predicting the missing parts of the images. In
recent studies, some works (Noroozi and Favaro 2016; Wei
et al. 2019a) tried to solve jigsaw problems to learn the in-
formation of different patches in the images. RotNet (Gi-
daris, Singh, and Komodakis 2018) proposed a simple ro-
tation transformation and achieved remarkable results. Be-
sides, video information is also widely used for training un-
supervised models (Misra, Zitnick, and Hebert 2016; Pathak
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Figure 3: The overview of our method. Paired training images that contain the same object with different geometric transforma-
tions are first encoded into feature representations by a share-weight network. The joint graph partition module is responsible
for dividing the two joint image features into two optimal sub-graphs and yields the masks to reinforce the co-occurrent object
regions for enhancement followed by a standard convolutional layer. The final classification loss Lcls and equivariant regular-
ization loss LER are used to update the gradient propagation to train the network in an end-to-end manner.

et al. 2017; Mahendran, Thewlis, and Vedaldi 2018). Re-
cently, contrastive learning (Tian, Krishnan, and Isola 2020;
Su, Lin, and Wu 2021; Su et al. 2021a) by constructing pairs
using different augmentations of image achieved great suc-
cess. The core idea in contrastive learning is to strengthen
the invariance of the network to various data augmentations.
MoCo (He et al. 2020; Chen et al. 2020b) further improved
the performance by using the memory bank and relaxing the
big batch size for training. In this paper, we focus on self-
supervised object localization that learns the potential image
object feature representations with self-supervised strategy.

Unsupervised Object Discovery
Traditional unsupervised object learning methods are based
on the similarity between image pixels such as super-
pixels (Wang et al. 2016) and Grabcut (Rother, Kolmogorov,
and Blake 2004). In terms of deep learning, due to the
need for a large number of ground-truth for training, there
have been only a few unsupervised learning works in these
years. (Cho et al. 2015) used off-the-shelf region propos-
als to form a set of candidate bounding boxes for objects
and adopted probabilistic Hough transform to select the final
prediction. MO (Zhang et al. 2019), DDT (Wei et al. 2019b),
SCDA (Wei et al. 2017a) and PSY (Baek, Lee, and Shim
2020) all utilized the models pre-trained on ImageNet (Rus-
sakovsky et al. 2015) that use class-level labels for post-
process generation. Therefore, these are not strictly unsu-
pervised object localization approaches. Another common
method is to employ adversarial networks (Goodfellow et al.
2014) to find the objects. ReDraw (Chen, Artières, and De-
noyer 2019) proposed to segment the objects by redrawing
the masks of the targets based on an adversarial architec-
ture. In this work, we compare our proposed method with
the above mentioned unsupervised and weakly supervised

methods to validate the effectiveness of our approach.

Methodology
We address unsupervised object localization in a self-
supervised manner, and the core idea is to learn the poten-
tial object features that cover the entire region by predicting
transformation task. In particular, we present a simple yet
powerful framework to mine the object and propose an un-
supervised joint graph partition strategy for object mining.
In the following sections, we first give an overview of the
entire architecture, and then introduce the joint graph parti-
tion method and objective functions in detail.

Overall Architecture
The entire framework of our proposed method is shown in
Figure 3. Formally, given an unlabeled image I , we adopt
two different random geometric transformations T1, T2 to
it and form two new images I1 and I2. Note that the new
images can also be the original image without transforma-
tions. We first adopt the backbone network (i.e., VGG16 (Si-
monyan and Zisserman 2014)) as the encoder to extract
their features denoted as F1 and F2, by removing the fully-
connected layers and softmax layer. Since these two trans-
formed images contain the same objects but with different
parts of activation as we show in Figure 2, we then design a
joint graph partition mechanism with learnable parameters,
which is able to model the relationship between similar and
dissimilar pixels for co-occurrent object regions mining for
enhancement. The partition module yields two optimal solu-
tion masks that highlight the co-objects. Afterward, we add
the masks to the former features F1 and F2 and followed
by a 1×1 convolutional layer. Finally, we apply an average
pooling along the channel axis to form the class-agnostic ac-
tivation map. The prediction loss Lcls and equivariant regu-
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Figure 4: Illustration of the joint graph partition module. (Left) Visualization of the potential pixels in the initial activation
maps. (Right) The paradigm of the unsupervised joint graph partition, which views the two feature maps as graph nodes and
the edge represents the distance between each other. The similar object nodes are close while the dissimilar ones are distant.
We aim to cut the graph and divide it into two optimal sub-graphs by using the subgraph indicator. The final optimal solution is
then reshaped into two masks representing the co-occurrent regions.

larization loss LER are used to train the network in an end-
to-end manner.

Joint Graph Partition
As depicted in Figure 4 left, we transform the initial CAMs
into grayscale maps, which show the potential foreground
object pixels. We aim to use these two different maps to mine
the semantic features in the co-occurrent part.

To this end, we propose a joint graph partition mechanism
for better object mining as shown in Figure 4 right. For-
mally, the paired image feature maps (F1, F2) ∈Rw×h×c are
viewed as graph nodes, where w and h denote the spatial size
of the feature map and c is the feature map dimension. We
then construct a graph G(V, E), where V represents feature
nodes in the graph, and E represents edges between nodes. In
graph G, we have 2wh nodes N ∈Rc×2wh in total for paired
images. We then use the paired images nodes to jointly con-
struct a adjacency matrix A that represents the similarity of
each node across inter and intra images. Specifically, we uti-
lize Euclidean distance: di,j = ||xi − xj ||2 to measure the
distance between the two arbitrary nodes in G. Since we use
normalized channel features for both F1 and F2, which sat-
isfies ||xi||22 = 1. By removing the constant, the adjacency
matrix can be approximated to A ∈ R2wh×2wh = N TN . As
for the degree matrix D , since we consider both inter and in-
tra information between paired images, nodes are fully con-
nected between each other, D = diag(

∑
Ai,j , ...,

∑
Ai,j) ∈

R2wh×2wh. After converting the image features to a graph,
we then cut the graph. Our goal is to make the different sub-
graphs as far apart as possible from each other and as sim-
ilar internally as possible. In this way we can aggregate the
co-occurrent category of prospects for subsequent enhance-
ment. Inspired by (Ng, Jordan, and Weiss 2002), we will
have the following function:

Lm = RatioCut(Vi, ...,Vk) =
k∑
i

W (Vi,Vi)

|Vi|
, (1)

where {V1,V2, ...,Vk} represents a subset of V . In our

task, we aim to divide the foreground object O and back-
ground O, thus, k = 2. W (O,O) represents the sum of
edges of O and its complementary set, which equals to∑

m∈O,n∈O Am,n. |O| is the nodes cardinality in O subset.
In order to solve the optimal graph cut problem and avoid

the occurrence of a single sample node as a subset, we then
introduce the subgraph indicator h = [h1, ..., h2wh]

T ∈
R2×w×h as follows:

hi =

{
1√
|O|

, if Vi ∈ O

0 , if Vi /∈ O
(2)

Since D is a diagonal matrix, only the elements on the
diagonal multiplied by the vector hi have a value, where
Dm,m =

∑
n=1 Am,n. And known from the property of the

Laplace matrix, we then can put Eq 2 into Eq 1. The function
Lm can be reformulated as:

Lm =
1

2
(

∑
m∈O,n∈O

Am,n
1

|O| +
∑

m∈O,n∈O

Am,n
1

|O| )

=
1

2
(

∑
m∈O,n∈O

Am,n(
1√
|O|

− 0)2

+
∑

m∈O,n∈O

Am,n(0−
1√
|O|

))2

=
∑
m=1

∑
n=1

hmhnDm,n −
∑
m=1

∑
n=1

hmhnAm,n

= hT (D −A)h.

(3)

Following (Zhang et al. 2020) that the continuous solution
of the indicator vector is the principal component, we can fi-
nally get the optimal co-occurrent mask h∗ by optimizing
Eq 3. Afterward, we reshape it into {h1, h2} ∈ Rw×h×1 as
the enhancement features and add them to the F1 and F2 re-
spectively followed by a new standard convolutional layer
for information updating. Note that except for tensor addi-
tion for features fusion, other alternatives like multiplication
and concatenation will be discussed in our ablation studies.
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Objective Function
Prediction Loss. For self-supervised learning, we pro-
vide the network N (·) pretext task to update the gradient
propagation and learn the object features. Specifically, we
adopt different geometric transformations including the un-
changed original images, random rotation (90◦, 180◦, 270◦),
random flipping, random scaling (1/4, 1/2, 2, 4) size of
the original ones and translation. Then, we use the Cross-
Entropy loss for transformation prediction as follows:

Lcls = Cross-Entroy(N (Ti(I)), yi), (4)

where yi is the artificial label of each transformation Ti.
Equivariant Regularization Loss. At the last layer of our
network, we adopt an average pooling along the channel axis
(i.e., P1 = AvgPool(N (T1(I))[B,:,w,h]), B is batch size) to
yield the class-agnostic activation map (CAAM) followed
by the Softmax function for classification. To further guar-
antee the consistency of input paired images for learning, we
propose an equivariance regularization loss for regularizing
the network prediction as follows:

LER = ||P1 − P2||1. (5)

Training. Finally, we train our network in an end-to-end
manner, all the network parameters are jointly learned by
minimizing the following multi-task loss function:

Ltotal = Lcls + LER + Lm. (6)

Experiments
Experimental Setup

Datasets. To evaluate the proposed approach, three datasets
are adopted, including CUB-200-2011 (Wah et al. 2011),
FGVC-Aircraft (Maji et al. 2013) and Stanford Cars (Krause
et al. 2013). Among them, CUB-200-2011 is the largest
dataset that contains 200 categories of birds with 5,994 train-
ing images and 5,794 testing images. We strictly follow the
train-list and test-list of the datasets for training and evalu-
ation and the bounding box annotations are solely used for
evaluation.

Metrics. Following previous methods (Baek, Lee, and Shim
2020; Choe and Shim 2019), we use GT-Known localization
(GT-Known Loc): fraction of images for which the predicted
bounding box has more than 50% IoU with the ground-truth
box. Since we target on unsupervised object localization, we
do not report Top-1/ Top-5 classification accuracy.

Implementation Details
In this work, we implement the proposed framework with
PyTorch and train on 2080Ti-GPUs. For fair comparisons,
VGG16 (Simonyan and Zisserman 2014) is used as the
backbone network. The input image was resized to 256 ×
256 and then was randomly cropped to 224 × 224 using
zero padding if needed. We use stochastic gradient descent
(SGD) optimizer with initial learning rate of 0.001, momen-
tum of 0.9 and batch size of 32 for the model. The weight
decay is set to 0.004. For strict unsupervised setting, we

Baseline Lm LER GT-Known Loc

✔ 54.6
✔ ✔ 57.9

✔ ✔ ✔ 60.4

Table 1: The ablation study for each proposed loss of our
method.

Rotation Flip Rescale Translation GT-Known Loc

✔ 57.9
✔ ✔ 58.1
✔ ✔ 58.6
✔ ✔ 58.2
✔ ✔ ✔ 60.2
✔ ✔ ✔ 60.0
✔ ✔ ✔ 60.2

✔ ✔ ✔ ✔ 60.4

Table 2: Experiments of various transformations for self-
supervised learning. Aggregating different affine transfor-
mations can bring significant improvement.

train our network without using any labels. For pseudo-
unsupervised setting, we use the backbone pre-trained on
ImageNet (Russakovsky et al. 2015) using class-level labels
following previous methods (Zhang et al. 2019; Wei et al.
2019b; Baek, Lee, and Shim 2020) for a fair comparison.
Note that for both settings, we do not use any annotations
from the three aforementioned datasets for training.

Ablation Studies
In this section, we explore the effectiveness of each com-
ponent in our proposed method. Since CUB-200-2011 is a
more challenging dataset, we conduct ablative analysis on it
with the VGG16 backbone pretrained without using class-
level labels if there is no special declaration.

Comparison with Baseline. Table 1 gives an ablation study
of each loss in our approach. Note that in our method, base-
line denotes using only prediction loss Lcls and using single
image for training since it does not have Lm for graph par-
tition. As can be seen, paired images mining boosts the net-
work performance by 3.3%, which reveals that joint graph
partition is effective. Furthermore, when we introduce to use
equivariant regularization loss LER, we can further improve
the localization accuracy achieving 60.4%. This shows the
effectiveness of the proposed losses in our self-supervised
object localization learning, which can help the network to
mine and regularize the potential object features. Besides,
compared with baseline, we insert the joint graph partition
module into the network structure. Since the module works
at the top layer with a relatively small spatial size, thus the
overhead is marginal compared with the baseline network.
More detailed information about the computation complex-
ity can be referred to supplementary material.
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Method Backbone Venue CUB-200-2011 Cars Aircraft

Weakly-supervised Methods.
CAM (Zhou et al. 2016) VGG16 CVPR’16 51.09 - -

ACoL (Zhang et al. 2018b) VGG16 CVPR’18. 64.86 - -
ADL (Choe and Shim 2019) VGG16 CVPR’19 75.41 - -

I2C (Zhang, Wei, and Yang 2020b) InceptionV3 ECCV’20 72.60 - -
GC-Net (Lu et al. 2020) GoogLeNet ECCV’20 75.30 - -

TS-CAM (Gao et al. 2021) Transformer ICCV’21 87.70 - -
SPA (Pan et al. 2021) VGG16 CVPR’21 77.29 - -

Pseudo-unsupervised Methods.
SCDA (Wei et al. 2017b) VGG16 TIP’17 76.79 90.96 94.91
DDT (Wei et al. 2019b) VGG16 PR’19 82.26 71.33 92.53
MO (Zhang et al. 2019) VGG16 - 80.45 92.51 94.94

PSY (Baek, Lee, and Shim 2020) VGG16 AAAI’20 83.78 96.61 95.59
Ours VGG16 AAAI’22 88.83 97.73 96.72
Ours InceptionV3 AAAI’22 86.31 98.62 97.94

Unsupervised Methods.
UODL (Cho et al. 2015) - CVPR’15 69.37 93.05 36.23

DUSD∗ (Zhang et al. 2018a) ResNet101 CVPR’18 50.15 62.74 64.81
ReDraw∗ (Chen, Artières, and Denoyer 2019) GAN NIPS’19 54.73 42.75 37.89

DiLo∗ (Zhao et al. 2020) VGG16 AAAI’21 56.68 62.37 64.59
Ours VGG16 AAAI’22 60.40 70.37 74.62

Table 3: Comparison between our method and the previous state-of-the-arts in terms of GT-Known Loc performance on CUB-
200-2011, Stanford Cars and FGVC-Aircraft datasets. ‘*’ indicates our reimplemented results using their publicly released
code since they do not report the results.

Method GT-Known Loc

Multiplication 57.8
Concatenation 59.2

Addition (Ours) 60.4

Table 4: Experiments of various features fusion strategies.

The Effect of Different Transformations. As we men-
tioned in the introduction, too simple pretext tasks may de-
grade the learning features. As shown in Table 2, we explore
different numbers of transformations for network learning.
Only using rotation means the network has totally 4 classes
to predict (i.e., self image, 90◦, 180◦ and 270◦ rotated im-
ages, respectively), which achieves 57.9% GT-Known Loc.
When we utilize more geometric transformations, it makes
the network harder to predict the class. As we finally use
four different transformations, we can yield the best results
to 60.4%. This also shows that different geometric transfor-
mations can drive the network to activate objects in different
areas, and the variety of transformations can help the net-
work to mine more useful object regions by our proposed
joint graph partition and regularization strategies.

The Effect of Different Features Fusion. Table 4 gives
different features fusion strategies in our network. Among
them, features addition yields the best performance. We con-
jecture that because the optimal masks have zero values, ma-
trix multiplication turns some features to zero sharply, which

Method Part More

VGG16 (Simonyan and Zisserman 2014) 21.91 10.53
Ours 16.52 7.73

InceptionV3 (Szegedy et al. 2016) 23.09 5.52
Ours 18.21 5.48

Table 5: Localization error statistics.

may affect the features learning. And the concatenation op-
eration can not well integrate the features globally.

Error Analysis. To further reveal the effect of our method,
we categorize the localization errors into localization part
error (Part) and localization more error (More). Part indi-
cates that the predicted bounding box only covers parts of
the object, and IoU is less than a certain threshold. On the
contrary, More indicates that the predicted bounding box is
larger than the ground truth bounding box by a large margin.
Table 5 lists localization error statistics. Our method effec-
tively reduces Part, and More errors using different back-
bones, which indicates that our localization maps are much
accurate. More detailed definitions of each metric can be re-
ferred to supplementary material.

Comparisons with State-of-the-arts
We compare the proposed approach with the state-of-the-
arts on the GT-Known Loc performance by using tight
bounding boxes. Table 3 reports the results of our method
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Figure 5: Visualization of the localization maps with CAM (Zhou et al. 2016) and our proposed method. The ground-truth
bounding box is in green. The predicted bounding box is in red. Ours† denotes the backbone is pre-trained on ImageNet (Rus-
sakovsky et al. 2015) using class-level labels.

and several methods on the three benchmark datasets. To
be specific, we first list some weakly-supervised object lo-
calization approaches at the top of Table 3. Among them
TS-CAM (Gao et al. 2021) yields the best result achieving
87.70% accuracy on CUB-200-2011 dataset, outperforming
the latest SPA (Pan et al. 2021) by 10.3% and achieves more
than 30% gains over the CAM (Zhou et al. 2016) in terms
of GT-Known Loc. It employs a visual transformer (Doso-
vitskiy et al. 2020) backbone network structure, which can
help the network to learn the features globally.

Secondly, we compare our method with several methods
under pseudo-unsupervised setting. As can be seen in the
middle of Table 3, using the same VGG16 backbone, our
method outperforms other SOTA methods by a large mar-
gin. On CUB-200-2011 dataset, we achieve 88.83% GT-
Known Loc performance gains compared with the second-
best method PSY (Baek, Lee, and Shim 2020). On Stan-
ford Cars and Aircraft datasets, we get remarkable perfor-
mance achieving 97.73% and 96.72%, respectively. When
we adopt a stronger InceptionV3 (Szegedy et al. 2016) back-
bone, we can further improve the GT-Known Loc perfor-
mance on Stanford Cars and Aircraft datasets achieving
98.62% and 97.94%. It is worth mentioning that our pro-
posed method even outperforms the best weakly-supervised
methods (Ours: 88.83% vs. TS-CAM: 87.70%) on CUB-
200-2011 dataset. Although the backbone is pretrained us-
ing class-level labels, compared with the WOSL methods,
we train the network by self-supervision without using anno-
tations on the training datasets and achieve significant per-
formance. This validates the effectiveness of our proposed
method and further ease the burden of using class labels for
training the networks.

Finally, we show the unsupervised learning results at the
bottom of Table 3. Since there are few researches on un-

supervised object localization, we adopt similar unsuper-
vised saliency detection method DUSD (Zhang et al. 2018a)
and unsupervised segmentation method ReDraw (Chen,
Artières, and Denoyer 2019) in our task. We also compare
our method with a recently published approach DiLo (Zhao
et al. 2020), which utilizes distilling localization for self-
supervised representation learning. As can be seen, the tra-
ditional method UODL (Cho et al. 2015) yields the best re-
sults on both CUB-200-2011 and Stanford Cars datasets by
using off-the-shelf region proposals. As for deep learning
methods, our approach achieves the best results 74.62% on
Aircraft dataset. Besides, we achieve the second best perfor-
mance on CUB-200-2011 approaching 60.4% and Stanford
Cars approaching 70.37% in terms of GT-Known Loc with-
out using other auxiliary techniques.

Visualization comparisons of the proposed approach are
shown in Figure 5. Compared with the WSOL method
CAM (Zhou et al. 2016), our method can mine more com-
plete object regions than only focuses on the most discrimi-
native ones. Bounding boxes produced by our method not
only localize object regions accurately but also are more
compact, which verifies its superiority.

Conclusion
In this paper, we take the early attempt to explore unsu-
pervised object localization by self-supervision. By pro-
viding different geometric transformation pretext tasks and
introducing a novel joint graph partition module, we en-
code paired images with the same object and mine the co-
occurrent regions for features learning. To validate the ef-
fectiveness of our approach, extensive experiments are con-
ducted on three benchmark datasets, and the results show
that our method outperforms state-of-the-art methods.
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