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Abstract

Color Constancy aims to correct image color casts caused by
scene illumination. Recently, although the deep learning ap-
proaches have remarkably improved on single-camera data,
these models still suffer from the seriously insufficient data
problem, resulting in shallow model capacity and degrada-
tion in multi-camera settings. In this paper, to alleviate this
problem, we present a Transfer Learning Color Constancy
(TLCC) method that leverages cross-camera RAW data and
massive unlabeled sRGB data to support training. Specifi-
cally, TLCC consists of the Statistic Estimation Scheme (SE-
Scheme) and Color-Guided Adaption Branch (CGA-Branch).
SE-Scheme builds a statistic perspective to map the camera-
related illumination labels into camera-agnostic form and
produce pseudo labels for sRGB data, which greatly expands
data for joint training. CGA-Branch further promotes effi-
cient transfer learning from sRGB to RAW data by extract-
ing color information to regularize the backbone’s features
adaptively. Experimental results show the TLCC has over-
come the data limitation and model degradation, outperform-
ing the state-of-the-art performance on popular benchmarks.
Moreover, the experiments also prove the TLCC is capable of
learning new scenes information from sRGB data to improve
accuracy on the RAW images with similar scenes.

Introduction
Computational Color Constancy (CCC) aims to remove il-
lumination color casts in RAW images, which helps im-
prove accuracy for many downstream tasks, such as visual
recognition (Chen et al. 2015), image segmentation (Afifi
and Brown 2019b), etc (Diamond et al. 2017; Andreopou-
los and Tsotsos 2011). In the past, most statistic-based color
constancy approaches utilize image statistics or physical at-
tributes to estimate the illumination color of the scene (Land
1977; Van De Weijer, Gevers, and Gijsenij 2007). How-
ever, the statistics for the reflectance distribution are over-
simplified, and these methods are arduous to cope with
various scenes in the complicated world. Over the years,
learning-based color constancy methods have achieved a re-
markable improvement (Hu, Wang, and Lin 2017; Barron
and Tsai 2017). They can effectively use complex nonlin-
ear functions to extract illumination cues from the single-
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Figure 1: The difference between TLCC and existing meth-
ods. (a) Classic CNN-based methods are limited to single
camera data. (b) Recent methods adopt the multi-camera
strategies to improve the network by joint training of multi-
camera data. (c) Our TLCC method can leverage both multi-
camera RAW data and massive unlabeled sRGB data.

camera data automatically, thereby fitting rough illumina-
tion curves and obtaining strong generalization capabilities
to some extent (Fig. 1(a)). However, due to the sensor do-
main gap (Hernandez-Juarez et al. 2020) and costly data
collection (Shi 2010), learning-based methods are limited
to single-camera and face seriously insufficient data prob-
lem(Xiao, Gu, and Zhang 2020).

To deal with this problem, some methods have been pro-
posed. A common technic is to reduce the model parameters
to prevent over-fitting the few images but limit the model
capacity (Hu, Wang, and Lin 2017). Recently, to overcome
the influence of the sensor domain gap to benefit from multi-
camera joint training, several approaches (McDonagh et al.
2018; Xiao, Gu, and Zhang 2020) apply the ideas of multi-
domain learning and few-shot learning strategies to extend
the training set (Fig. 1(b)). However, these methods are still
restricted in RAW datasets with few images and cannot re-
ally solve the lack of data problem in the CCC task.

In this work, we present a transfer learning color con-
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stancy (TLCC) method that introduces cross-camera RAW
data and massive unlabeled sRGB data to support the model
training (Fig. 1(c)), thereby alleviate the problem of insuffi-
cient data. Firstly, the proposed Statistic Estimation Scheme
(SE-Scheme) converts the camera-related illumination la-
bels and the input images into the camera-agnostic statis-
tic form. It avoids fitting the specific sensor and makes the
multi-camera labels’ distribution overlapped each other, thus
benefits multi-camera regression. Moreover, the SE-Scheme
can generate pseudo statistic labels for approximate color-
balanced sRGB data, so as to truly break data limitation for
the CCC task. Secondly, to efficiently transfer the scene in-
formation from sRGB to RAW data, we propose the Color-
Guided Adaptation Branch (CGA-Branch) that adaptively
regularizes the features of the backbone to reduce the huge
differences in data. Specifically, the proposed branch ex-
tracts the image-specific color features by predicting the
Color Space Transform Matrix (CSTM) from the RGB-uv
histogram (Afifi and Brown 2019a). Then utilize this mean-
ingful feature as conditions to drive the proposed Color-
Guided Instance Normalization (CGIN) module, whose pa-
rameters can adaptively scale and shift the feature maps,
leading the sRGB knowledge to generalize to RAW data.

In summary:
• The proposed TLCC method included SE-Scheme and

CGA-Branch breaks data limitation, obtains large model
capacity and rich scene information.

• The proposed SE-Scheme avoids fitting the specific sen-
sor for RAW data and provides pseudo statistic labels for
sRGB data, thus alleviating insufficient data problem in
the training stage.

• The proposed CGA-Branch extracts an image-specific
color feature to regularize the backbone’s feature map,
which realizes efficient transfer learning for sRGB data.

• The experimental results show that our proposed TLCC
method achieves state-of-the-art performance on two
popular annotated benchmarks.

Related Work
Overview for Color Constancy The CCC approaches con-
cern with estimating illumination on RAW images, which
is usually divided into two categories: the statistics-based
methods (Land 1977; Cheng, Prasad, and Brown 2014) and
the learning-based methods (Barron 2015; Qiu, Xu, and Ye
2020). The former generally estimate the illumination by
building assumptions on statistics of scene information. De-
spite theirs fast speed and insensitivity to cameras, the sim-
ple assumptions can not fit the complex real-world well and
thus limit performance. Recently, many learning-based color
constancy methods based on the convolutional neural net-
work (CNN) have been proposed. They have a stronger gen-
eralization ability, and the main difference lies in the regres-
sion strategies used: (I) Predict illumination directly (Hu,
Wang, and Lin 2017; Yu et al. 2020); (II) Transform to a
2D spatial localization task (Barron 2015; Barron and Tsai
2017); (III) Learn the features of potential achromatic pix-
els (Bianco and Cusano 2019; Qiu, Xu, and Ye 2020). (IV)
Combine with Contrastive Learning (Xu et al. 2020; Lo et al.

2021). However, due to the sensor domain gap (Hernandez-
Juarez et al. 2020) and costly data collection (Shi 2010),
these learning-based methods only bring improvement in
single-camera settings. So that most of them face the prob-
lem of lacking annotation data, resulting in shallow model
capacity and degradation in multi-camera settings.
Color constancy with insufficient data To remedy the
problem of insufficient data, some approaches have been
proposed. The most widely used technics in deep learn-
ing are data augmentation and the pre-trained models fine-
tuning (Hu, Wang, and Lin 2017). However, the former can-
not increase the diversity of scene information and cannot
guarantee the model’s effectiveness in some scenarios. For
the latter, due to the illumination information is distorted in
the early pre-trained layers (Laakom et al. 2020), the priors
from classification tasks can not be transferred effectively.
Recently, several approaches (McDonagh et al. 2018; Xiao,
Gu, and Zhang 2020) combined with other areas’ ideas have
been introduced to alleviate the lack of data. McDonagh et
al. (McDonagh et al. 2018) utilized the concept of color
temperature and Model-Agnostic Meta-Learning algorithm
to obtain a meta-model that can be adapted to a new device
with few training samples. MDLCC (Xiao, Gu, and Zhang
2020) regarded different cameras as different domains and
set parameters to learn each camera’s public and private fea-
tures, which enabled to jointly train with multi-camera data
and overcame the data limit in single-camera. SIIE (Afifi and
Brown 2019a) reduced the difference between cameras by
mapping input images to the public workspace. However,
these methods are still learning limited knowledge from
RAW datasets and cannot really solve the insufficient data
problem. Considering the public sRGB scene recognition
datasets, such as Place205 (Zhou et al. 2014), are 2-4 orders
of magnitude larger than the RAW dataset, a bold idea is
transferring the rich scene information from sRGB to RAW
data. Motivated by this idea, Bianco et al. (Bianco and Cu-
sano 2019) designed a network to detect achromatic pixels
in gray-scale images, enabling to pre-train the model on the
sRGB datasets and then presented the approximate loss to
finetune on the RAW datasets. But the gray-scale image dis-
cards the color information, making the achromatic pixels
detection become another challenging ill-posed problem.

This paper presents a more effective model through trans-
fer learning and scenario statistics information. Unlike the
camera-related illumination labels, our method produces the
camera-agnostic statistic labels, which allow multi-camera
RAW data and sRGB data to train jointly. Besides, the pro-
posed CGA-branch processes the color feature, rather than
discards it, to achieve efficacious knowledge transfer.

Transfer Learning in Color Constancy
We present a TLCC method that performs two stages to
alleviate the insufficient data problem: (i) The SE-Scheme
converts the illumination labels into statistic form and pro-
vides the pseudo label for sRGB data to accomplish data
extension. (ii) The CGA-Branch extracts meaningful color
features to reduce the data difference, which helps to apply
massive sRGB data to the CCC task effectively.
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Figure 2: Illustration of the TLCC. SE-Scheme maps the images and illumination labels into statistic form during training
and transforms them back into illumination form in evaluation. The proposed CGA-Branch extracts the image-specific color
features by predicting the CSTM from the RGB-uv histogram. And drive this color feature to adaptively regularize the feature
map by CGIN module. The main body of network Fse is based on FC4.

Preliminary of Image Formulation
Assume the RAW image is captured by a digital trichromatic
camera, and the image composition can be described by the
Lambert model (Barnard 1999). Under the assumption of
the uniform illumination source and Von Kries coefficient
law (Brainard and Wandell 1986), the RAW image can be
modeled as:

I(x) = R(x) ◦ L ◦ C (1)

where I(x) ∈ R3 is the raw intensity vector at the pixel x,
R(x) ∈ R3 is the RGB value of reflectance under canonical
illumination, L ∈ R3 is RGB vector of the arbitrary global
illumination, C ∈ R3 represents the spectral sensitivity of
camera sensor and ◦ is Hadamard product.

Different from the RAW image located in the camera-
specific color space, the sRGB data is rendered in the stan-
dard RGB space by camera pipeline, which is 8 bits and the
most applied image data type in real life.

Statistic Estimation Scheme
, we present a new color constancy scheme from the statistic
perspective. To derive SE-Scheme, we start from Grey Edge
(GE) algorithm (Van De Weijer, Gevers, and Gijsenij 2007)
that is the most general statistic-based method. Based on Eq.
1, the common GE framework can be written as:

h(I, n, σ, p) =

(∫ ∣∣∣∣∂nIσ(x)∂xn

∣∣∣∣p dx)1/p

=

(∫ ∣∣∣∣∂nRσ(x)∂xn

∣∣∣∣p dx)1/p

◦ L ◦ C

= h(R,n, σ, p) ◦ L ◦ C

(2)

where h(I, n, σ, p) denotes the illumination estimated by
GE for image I , n is color derivative order, σ is the scale of
gaussion filter, p denotes Minkowski norm. The GE estima-
tion includes statistics on surface reflectance, illumination L

and sensors C, where the L and C can be eliminated by the
Von Kries model (Brainard and Wandell 1986) as:

I(x) ◦ h(I, n, σ, p)−1

= R(x) ◦ (L ◦ C) ◦ (L ◦ C)−1 ◦ h(R,n, σ, p)−1

= R(x) ◦ h(R,n, σ, p)−1

(3)

where (·)−1 is taking element-wise reciprocal. According
to Eq. 3, we get the camera-agnostic result that only con-
tains surface reflectance R. However, due to over-simplified
statistics for the reflectance distribution, the newly added
item h(R,n, σ, p)−1 greatly disturbs the accuracy of GE.

In our scheme, we combine the statistic perspective with
the CNN, directly using the strong nonlinear capabilities to
fit the distribution of the item h(R,n, σ, p)−1, so as to elim-
inate its adverse effect. The CNN Fse can be modeled as:

ˆh(R,n, σ, p)−1 = Fse(R⊗ h(R,n, σ, p)−1; θ) (4)

where ⊗ denotes the Hadamard product shared by all pix-
els, θ is the parameters of the network, h(R,n, σ, p)−1

called statistic labels. For comparability, the Fse is based on
FC4 (Hu, Wang, and Lin 2017).

To support this model, the proposed SE-Scheme builds a
new training and validation process. Specifically, according
to Eq. 2 and Eq. 3, we transform the original RAW images
and illumination labels into the statistic form by multiplying
h(I, n, σ, p)−1, respectively. In training, we feed the trans-
formed images into the network Fse to regress the statistic
labels and backward the losses. During validation, we trans-
form the estimations back to the illumination form to main-
tain consistency with the CCC task by removing the previ-
ously multiplied term h(I, n, σ, p)−1.

Unlike the common learning-based scheme (Hu, Wang,
and Lin 2017; Barron and Tsai 2017), our SE-Scheme in-
herits the advantages of statistic-based methods that make
the whole training process irrelevant to sensors, thereby our
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Figure 3: Comparison of the label distributions in UV chro-
maticity space (Barron 2015) on the eight different cam-
eras. The x- and y-axis represent coordinate V and U, re-
spectively. (a) The original illumination annotations. (b) The
statistic labels. The dashed circle with a radius of 0.311 in-
cludes the 90% points. (c) The statistic labels are mapped in
the temporary color space, and the radius reduces to 0.295.
(d) Comparison of all RAW data and sRGB data.

model can adapt to the mixed training of multi-camera RAW
data. We visualize the comparison between illumination la-
bels and statistic labels: Since each sensor has a difference in
sampling Planck locus, the distribution of multi-camera la-
bels looks like a rainbow (Fig. 3(a)). In contrast, our statistic
labels treat each channel of images as a set of sequences and
calculate from a statistic perspective. Thus similar scenes
produce similar labels, leading to aggregated distribution
without any obvious domain gap (Fig. 3(b)), which demon-
strates our statistic labels are camera-agnostic. When the
label distributions of different cameras tend to be concen-
trated, the model will benefit from the multi-camera settings.

In addition, our SE-Scheme also has the ability to extend
to unlabeled sRGB data. Concretely, we assume the approx-
imate color-balanced sRGB images only contain surface re-
flectance R so that they can generate the pseudo statistic
labels h(R,n, σ, p)−1 for themselves. We show the distri-
bution of sRGB almost covers the RAW’s, which indicates
there is no gap in regression targets between them (Fig.
3(d)). We set their initial label as 1, so that they can share
the same preprocess steps as RAW data does to participate
in the training, thereby promoting the model to obtain rich
scene information.

Color-Guided Adaption Branch
Although we align the distribution of labels between sRGB
and RAW data, the CCC task is also sensitive to color in-
formation (Barron 2015; Afifi and Brown 2019a), resulting

Algorithm 1: Statistic Estimation Scheme
Input: the RAW dataset Draw = {(xi, yi)}mi=1 and the approxi-
mate color-balanced sRGB dataset Dsrgb = {(xi, 1)}ki=1, where
k � m, model Fse with parameters θ, learning rate η.
Output: Trained model parameters.
1: Initialize model parameters θ.
2: Divide Draw into training set Traw and validation set Vraw.
3: for each pair (xi, yi) ∈ {Dsrgb,Traw} do
4: si ← h(xi, n, σ, p)

−1

5: inputi ← xi ⊗ si
6: labeli ← yi ◦ si
7: predi ← Fse(inputi; θ)
8: Li ← Loss(predi, labeli)
9: θ ← θ − η∇θLi

10: end for
11: for each pair (xi, yi) ∈ Vraw do
12: si ← h(xi, n, σ, p)

−1

13: inferi ← Fse(xi ⊗ si; θ)
14: Li ← Loss((inferi ◦ s−1

i ), yi)
15: end for
16: return θ

in inconsistent image feature distribution. Hence, we present
the CGA-Branch that extracts meaningful color features by
predicting the CSTM and then drives CGIN to adaptively
reduce the data difference in each layer.
Color Extraction To extract the meaningful and effective
color feature, different from simply obtaining color embed-
ding through CNN (Barron 2015), we set up an additional
branch to estimate a CSTM (Afifi and Brown 2019a) that
maps the input image into a temporary color space. In order
to reduce the error, the learning of CSTM will prompt all
images to map from the private color space into the public
color space, hence making the feature image-specific, which
provides unique information for adaption. Fig. 3(c) shows a
more aggregated distribution of labels is provided in the tem-
porary color space: the radius of the 90% points is reduced
from 0.311 to 0.295, which indicates that the CSTM is also
beneficial to regression. Besides, we convert the input im-
age to parameterized RGB-uv histogram (Afifi and Brown
2019a) that only reserves 2-dimensional color information
to ensure the feature is just color-related. This branch can be
modeled as:

D = Fextract(Frgb2uv(R⊗ h(R,n, σ, p)−1)) (5)

M =
Fmatrix(D)

Z
(6)

where Frgb2uv(·) is the conversion to RGB-uv histogram,
Fextract(·) and Fmatrix(·) contain 3 convolution layers and
a single fully connected layer respectively,M ∈ R3×3 de-
notes the CSTM, Z is a factor that normalizes the matrix to
make each row has unit Manhattan norm andD is our sought
meaningful color feature.

During training, we input the mapped image into the net-
work, and the corresponding prediction must map back be
to the original color space to maintain consistency with the
labels. So the estimation from Eq. 4 becomes Ĥ:

Ĥ =M−1 · Fse(M× (R⊗ h(R,n, σ, p)−1)) (7)
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Methods
ColorChecker

(Shi 2010)
NUS 8

(Cheng, Prasad, and Brown 2014)

Mean Med. Tri. Best
25%

Worst
25% Mean Med. Tri. Best

25%
Worst
25%

Statistics-based
White-Patch (Land 1977) 7.55 5.68 6.35 1.45 16.12 9.91 7.44 8.78 1.44 21.27
Grey-World (Buchsbaum 1980) 6.36 6.28 6.28 2.33 10.58 4.14 3.20 3.39 0.90 9.00
Shades-of-Gray (Finlayson and Trezzi 2004) 4.93 4.01 4.23 1.14 10.20 3.67 2.94 3.03 0.98 7.75
1st-order Gray-Edge (Van De Weijer, Gevers, and Gijsenij 2007) 5.33 4.52 4.73 1.86 10.03 3.35 2.58 2.76 0.79 7.18
Bayesian (Gehler et al. 2008) 4.82 3.46 3.88 1.26 10.49 3.50 2.36 2.57 0.78 8.02
Natural Image Statistics (Gijsenij and Gevers 2010) 4.19 3.13 3.45 1.00 9.22 3.45 2.88 2.95 0.83 7.18
LSRS (Gao et al. 2014) 3.31 2.80 2.87 1.14 6.39 3.45 2.51 2.70 0.98 7.32
Grey Pixel (Yang, Gao, and Li 2015) 4.60 3.10 - - - 3.15 2.20 - - -
GI (Qian et al. 2019) 3.07 1.87 2.16 0.43 7.62 2.91 1.97 2.13 0.56 6.67
Learning-based
Regression Tree (Cheng et al. 2015) 2.42 1.65 1.75 0.38 5.87 2.36 1.59 1.74 0.49 5.54
DS-Net (Shi, Loy, and Tang 2016) 1.90 1.12 1.33 0.31 4.84 2.24 1.46 1.68 0.48 6.08
FFCC (Barron and Tsai 2017) 1.80 0.95 1.18 0.27 4.65 1.99 1.31 1.43 0.35 4.75
SqueezeNet-FC4 (Hu, Wang, and Lin 2017) 1.65 1.18 1.27 0.38 3.78 2.23 1.57 1.72 0.47 5.15
Meta-AWB (McDonagh et al. 2018) 2.57 1.84 1.94 0.47 6.11 1.89 1.34 1.44 0.45 4.28
Quisa-U CC (Bianco and Cusano 2019) 2.91 1.98 - - - 1.97 1.41 - - -
SIIE (Afifi and Brown 2019a) 2.77 1.93 - 0.55 6.53 2.05 1.50 - 0.52 4.48
Multi-Hypothesis-CC (Hernandez-Juarez et al. 2020) 2.10 1.32 1.53 0.36 5.10 2.35 1.55 1.73 0.46 5.62
IGTN (Xu et al. 2020) 1.58 0.92 - 0.28 3.70 1.85 1.24 - 0.36 4.58
MDLCC (Xiao, Gu, and Zhang 2020) 1.58 0.95 1.11 0.37 3.77 1.78 1.29 1.40 0.42 3.97
TLCC (Our proposed) 1.51 0.98 1.07 0.33 3.52 1.61 1.27 1.33 0.44 3.35

Table 1: Comparison and evaluation with other color constancy methods in CCD and NUS 8 in units of degrees.

Color-Guided Insance Normalization To reduce the dif-
ference between sRGB and RAW data, we plug in the pro-
posed CGIN module after each convolution layer. It mainly
adopts the idea of adaptive instance normalization (Ulyanov,
Vedaldi, and Lempitsky 2016; Huang and Belongie 2017;
Kim et al. 2020) that drives the image-specific color fea-
tures D to normalize the feature map adaptively and pro-
duces affine transform parameters for each channel, thereby
reducing the difference in the feature extraction stage for dif-
ferent data. The process can be expressed as:

xnormc = γc(D)(
xc − µc
σc

) + βc(D) (8)

where c is the number of channels, xc denotes the input fea-
ture, µc and σc denote the mean and standard deviation of
xc respectively, the rescale γc(D) and shift βc(D) parame-
ters are guided by the meaningful color features D through
two simple convolution layers. Due to the backbone treats
different types of data in the same way, it extracts inconsis-
tent image feature distribution. Hence we utilize the image-
specific color features as conditions to compensate for the
huge color gap caused by the sRGB data, thereby guiding
the reduction of the data difference.

Experiments
Implementing Details
Angular loss In the CCC task, the angular loss is com-
monly adopted as an evaluation criterion between prediction
p̂ and ground truth p (Hordley and Finlayson 2004; Barron
and Tsai 2017; Qian et al. 2019):

AngularLoss(p̂, p) =
180

π
arccos(p̂ · p) (9)

During training, our proposed statistic estimation scheme di-
rectly uses Ĥ to calculate the angular loss. In the test phase,

we map the statistic estimation back into illumination form
to calculate the loss through Eq. 5 to maintain consistency
with the illumination estimation task.
Training Detail The hyper-parameters n, σ, p of the GE
are set as 0, 1, 0, respectively. And for the function Frgb2uv ,
the image is resized into 150 × 150. We employ the
Adam (Kingma and Ba 2014) solver as the optimizer and
set the learning rate to 1 × 10−4. We train the model for
1,500 epochs with image size 512 × 512 and batch size 16.
For the first 250 epochs, the sRGB data is firstly fed into the
model, followed by RAW data. For the rest epochs, we only
use the RAW dataset to fine-tuning the model.

Datasets and Settings
We verify the effectiveness of our proposed method on two
public color constancy datasets:
• The reprocessed Color Checker dataset (CCD) (Gehler

et al. 2008; Shi 2010) includes indoor and outdoor scenes
taken by two cameras, comprising 568 images in total.

• The NUS 8-Camera dataset (NUS 8) (Cheng, Prasad, and
Brown 2014) is the multi-camera dataset, consisting of
1736 images taken by 8 different cameras in 260 scenes.

For each RAW dataset, the calibration objects have been
masked out, followed by black-level subtraction, saturation
pixel clip, and gamma correction. We adopt three-fold cross-
validation for each RAW dataset on all experiments fol-
lowed by the previous works in (Barron 2015; Hernandez-
Juarez et al. 2020). For the training, the CCD and the NUS 8
dataset are mixed together as the RAW training set. We fur-
ther report five standard metrics (Hu, Wang, and Lin 2017;
Hernandez-Juarez et al. 2020): mean, median, tri-mean of all
angular errors, the mean of the best 25% of angular errors,
and the mean of the worst 25% of angular errors.
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Figure 4: Visualization of proposed TLCC results by CCD only, CCD and NUS 8 mixed, and mixed dataset with additional
12,000 sRGB data. Images are performed gamma correction for visualization.

For the sRGB dataset, We mainly use Place205 (Zhou
et al. 2014), which includes 205 scene categories for a total
of 2.5 million images. This dataset mainly serves as a bench-
mark for scene recognition systems. In our experiment, we
selected 12,000 approximately color-balanced images from
Place205 as the sRGB training set.

Comparison with State-of-the-art Methods
In this section, we compare the quantitative results of our
proposed method with other color constancy algorithms over
the two popular benchmarks as CCD and NUS 8. The results
are listed in Table.1. Our method shows strong competitive-
ness across five metrics, especially far ahead on the mean
and worst 25% metrics, with improvements of 4.4% and
4.9% in CCD and 9.6% and 15.6% in NUS 8 respectively. It
indicates that our TLCC method can greatly improve the ac-
curacy of difficult test samples and increase the lower limit
of the model. The tri-mean metric is slightly better than all
the other methods, and most of the remaining metrics are
also in the top three, which shows that we are comparable
to other state-of-the-art methods on simple samples. The ta-
ble also shows a similar rank on both benchmarks means
that our method has strong stability. Furthermore, it is worth
mentioning that our proposed method is superior to our base-
line (FC4) in all metrics, which further proves the effective-
ness of our proposed method.

Ablation Study and Analysis
In this section, we perform ablation experiments to evaluate
the effectiveness of TLCC’s architecture. We conduct nine
groups of comparative experiments on the CCD and use the
average pooling version of FC4 (the main body of Fse) as
the baseline. The results are shown in Table 2.

The experiments (1) to (3) show the comparisons when
using the proposed SE-Scheme alone. We mainly experi-
ment with two cases of using RAW data only and adding
extra sRGB data. Compared with the baseline that adopts
the illumination annotations, the SE-Scheme provides the
statistic labels with a more aggregated distribution. We see
that experiment (2) performs slightly worse than the baseline

Ablation Study Mean Med. Tri. Best
25%

Worst
25%

(1) FC4 1.81 1.32 1.42 0.42 4.13
(2) FC4 w SE-Scheme (G) 1.84 1.36 1.50 0.39 4.08
(3) FC4 w SE-Scheme 1.73 1.47 1.45 0.41 3.63
(4) FC4 w IN 1.83 1.31 1.40 0.46 4.09
(5) TLCC w/o CGIN 1.65 1.14 1.22 0.49 3.60
(6) TLCC w/o CSTM 1.58 1.05 1.14 0.37 3.65
(7) TLCC w/o SE-Scheme 1.81 1.42 1.47 0.51 3.83
(8) TLCC (Full) 1.51 0.98 1.07 0.33 3.52

Table 2: The ablation study of our proposed structure on
CCD. The G denotes the control group without sRGB data.

when using RAW data only. While adding a large number
of sRGB images, the performance turns to exceed the base-
line in the experiment (3), indicating SE-Scheme with sRGB
images is indeed beneficial to the CCC task. These experi-
ments show that it not only obtains better performance under
multi-camera settings but also achieves our goal – introduc-
ing sRGB images into RAW data to improve performance.

The experiments (4) to (8) show the ablation study of the
CGA-Branch’s structure. We test the effect of each mod-
ule separately and serve the FC4 with Instance Normaliza-
tion (IN) (Ulyanov, Vedaldi, and Lempitsky 2016) as a com-
parison of the CGIN module. When simply adding the IN
module, it does not consider that the different data domain
affects the overall offset of the feature, which slightly re-
duces the accuracy. The proposed CGIN module solves this
problem by extracting image-specific color features to gen-
erate the scale and shift parameters adaptively. The experi-
ment (6) shows that the CSTM plays a crucial role in fur-
ther promoting joint training of multi-type data. Without the
CSTM, the model will not align in image level and work in
chaotic color spaces, which increases the burden of feature
level alignment. Moreover, the experiment (7) shows that
CGA-Branch working alone will face the sensor gap and
unavailable sRGB data, causing the performance degrada-
tion to the baseline. Finally, compared with experiment (3),
the full structure of the TLCC shows the proposed CGA-
Branch further realizes efficient multi-camera learning and
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Training Data scope # Mean Med. Tri. Best
25%

Worst
25%

FC4
CCD only 0 1.81 1.32 1.42 0.42 4.13
Mixed 0 1.86 1.41 1.49 0.54 3.98
CCD only 1 1.98 1.51 1.62 0.54 4.24
Mixed 1 2.00 1.50 1.62 0.58 4.11
TLCC
CCD only 0 1.74 1.28 1.42 0.47 3.81
Mixed 0 1.65 1.21 1.28 0.41 3.57
Mixed + 3,000 sRGB 0 1.58 1.10 1.25 0.39 3.55
Mixed + 6,000 sRGB 1 1.55 1.05 1.13 0.37 3.55
Mixed + 9,000 sRGB 1 1.53 1.07 1.13 0.33 3.55
Mixed + 12,000 sRGB 2 1.51 0.98 1.07 0.33 3.52

Table 3: Comparison of data scope and model capacity on
CCD. # represents the number of additional basic blocks.

sRGB knowledge transfer.

Discussion on Data Extension and Model Capacity
As aforementioned, our method benefits from massive un-
labeled sRGB data and multi-camera RAW data, so we per-
form two sets of experiments to explore the impact of data
expansion on model capacity and performance. Specifically,
the first set of experiments display the effect of deeper model
depth and more cross-camera data under the FC4 environ-
ment. We increase the model capacity by stacking more
basic blocks in the backbone, and the specific location is
marked in Fig. 2. And we compare two cases of data scope:
CCD only, CCD and NUS 8 mixed. The second set of exper-
iments are focused on our proposed method. We add 3,000,
6,000, 9,000, 12,000 sRGB images based on the mixed
RAW dataset respectively. To prevent the number of images
from reaching the upper limit of the model, we deepen the
model at most 2 layers. The results are listed in Table 3.

The first set of experiments show that when the model is
built deeper, or the data becomes mixed, the performance
of FC4 declines, which demonstrates insufficient data and
sensor domain gap cause the model degradation. In con-
trast, the experiments on TLCC show that the performance
is greatly improved when mixing data from different cam-
eras for training, which indicates our method can overcome
the sensor domain gap. Meanwhile, with the increasing of
sRGB data, TLCC is still capable of boosting when adding
more basic blocks, proving that our method can also break
the model capacity limitation. Thereby the CCC task can use
more classic networks without worrying about overfitting.
We further provide some qualitative results in Fig. 4.

Effectiveness of Transfer Learning
We further discuss the effectiveness of transfer learning from
sRGB to RAW data in this section. The main experimen-
tal dataset is Cube+ (Banić, Koščević, and Lončarić 2017)
that contains the 1707 RAW images and the corresponding
white-balanced sRGB images. A third of RAW images are
served as the test set, and the rest are the training set. We im-
plement two variants: (1) Sampling RAW training set only;
(2) Sampling RAW and Supplementing sRGB: Replacing
the remaining unsampled RAW data with sRGB data and

Sample RAW only

Sample RAW and 
supplement sRGB

100%75%50%25%0%

100%75%50%25%0%

RAW

sRGB

Figure 5: Evaluation for the effect of transfer learning on
Cube+ dataset. The ordinate and abscissa are angular error
and sampling ratio of RAW data, respectively.

supplement into the sampled training set. Concretely, sam-
pling can reduce the training set and affect the effect of the
model. We supplement the same scenes sRGB data to prove
the effectiveness of transfer learning from the sRGB data
to RAW data. We set up five experiments: variant1 samples
0%, 25%, 50%, 75%, 100% RAW training set, and variant2
supplements remaining 100%, 75%, 50%, 25%, 0% sRGB
data. The performance of the test set is shown in Fig. 5.

As can be observed, compared with the performance of
variant1 gradually improved as RAW images increased, the
variant2 directly reaches the almost best performance after
acquiring a small number of RAW images in the target do-
main. While the RAW image increasing from 25% to 100%,
the performance of variant2 is only slightly improved, which
explains that we can learn from a large amount of sRGB
scene information and then transfer it to the target RAW do-
main that suffers insufficient data immediately.

Extension
In this paper, our proposed SE-Scheme is based on the Von
Kries model, and it still has the potential to adapt to more
complex image correction models, such as the Diagonal-
offset model (Shafer 1985). The extra offset term can be
eliminated by calculating the image’s first derivative, and the
rest steps are the same as this paper does. In general, as long
as we remove the factors that unrelate to surface reflectance
R, the SE-Scheme can be built.

Conclusion
This paper presents the TLCC method to alleviate the CCC
task’s insufficient data problem by introducing the multi-
camera RAW and sRGB data. We achieve this by regress-
ing the proposed statistic label and driving image-specific
color features to reduce data difference adaptively. The ex-
perimental results show that the proposed method favors a
deeper model with multi-camera settings and achieves state-
of-the-art performance on two public datasets. We also eval-
uate the effectiveness of transfer learning, which shows that
we can leverage massive sRGB scene information to transfer
into the small RAW datasets. In future work, we plan to ex-
tend our method to the more complex reflectance model and
image correction model, which are closer to the real world.
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