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Abstract

In this paper, we study the zero-shot sketch-based image re-
trieval (ZS-SBIR) task, which retrieves natural images related
to sketch queries from unseen categories. In the literature,
convolutional neural networks (CNNs) have become the de-
facto standard and they are either trained end-to-end or used
to extract pre-trained features for images and sketches. How-
ever, CNNs are limited in modeling the global structural in-
formation of objects due to the intrinsic locality of convo-
lution operations. To this end, we propose a Transformer-
based approach called Three-Way Vision Transformer (TVT)
to leverage the ability of Vision Transformer (ViT) to model
global contexts due to the global self-attention mechanism.
Going beyond simply applying ViT to this task, we propose a
token-based strategy of adding fusion and distillation tokens
and making them complementary to each other. Specifically,
we integrate three ViTs, which are pre-trained on data of each
modality, into a three-way pipeline through the processes of
distillation and multi-modal hypersphere learning. The distil-
lation process is proposed to supervise fusion ViT (ViT with
an extra fusion token) with soft targets from modality-specific
ViTs, which prevent fusion ViT from catastrophic forget-
ting. Furthermore, our method learns a multi-modal hyper-
sphere by performing inter- and intra-modal alignment with-
out loss of uniformity, which aims to bridge the modal gap be-
tween modalities of sketch and image and avoid the collapse
in dimensions. Extensive experiments on three benchmark
datasets, i.e., Sketchy, TU-Berlin, and QuickDraw, demon-
strate the superiority of our TVT method over the state-of-
the-art ZS-SBIR methods.

Introduction
Sketch-based image retrieval (SBIR) (Eitz et al. 2010;
Saavedra, Barrios, and Orand 2015) is a practical problem
that the sketch is used as a query to retrieve relevant images
from the gallery. The conventional SBIR scenario assumes
that training and testing data come from the distributions of
the same categories. Many methods (Sangkloy et al. 2016;
Liu et al. 2017a) have achieved satisfying performance in
this scenario with the help of a large number of annotated
samples. However, annotating samples is labor-intensive and
time-consuming, as well as these methods perform poorly on
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data of unseen classes. Consequently, there has been some
work (Shen et al. 2018; Dey et al. 2019) focused on studying
the SBIR problem in the zero-shot setting, which assumes
that the training class set and the test class set are disjoint.
So zero-shot SBIR (ZS-SBIR) is a more challenging prob-
lem for the inherent modal gap as well as the semantic gap
brought by the zero-shot setting.

So far, most existing ZS-SBIR methods largely rely on
convolutional neural networks (CNNs), i.e., they either fine-
tune the pre-trained CNNs to extract features and then build
projection models to learn a shared embedding space (Dutta
and Akata 2019; Hwang et al. 2020), or train the whole
model in an end-to-end manner (Liu et al. 2019; Wang et al.
2021). In spite of the excellent representational power of
CNNs, these methods are also limited in modeling the global
structural information due to the inherent local nature of
convolution operations. However, global structural informa-
tion is essential for the ZS-SBIR task since the only infor-
mation that the image and sketch together contain is the
global structural information of the object. Vision Trans-
former (ViT) has demonstrated that it is a advanced alter-
native to the CNN framework, with the global structural in-
formation modeling capability and exceptional transferabil-
ity. In particular, ViT pre-trained in a self-supervised man-
ner (e.g., DINO (Caron et al. 2021)) surprisingly shows a
segmentation property. The suffixes of DINO variants in-
dicate the model size and input patch size, where DINO-
S/8 (DINO-B/16) means the “Small” (“Base”) variant with
8×8 (16×16) patch size (as shown in Fig. 1). We can see
that the DINO model explicitly learns the object boundaries
of images and sketches (Fig. 1(a)), ignoring occlusions and
backgrounds. The effect of the segmentation property is also
reflected in the retrieval tasks (Fig. 1(b)): DINO-S/8 outper-
forms ResNet-50 (He et al. 2016) by a margin in both intra-
and inter-modal retrieval tasks on unseen data of Sketchy
(Yelamarthi et al. 2018).

Motivated by the above observations, we take the first
step in this paper towards utilizing the global structure mod-
eling capability of ViT for the ZS-SBIR task. Specifically,
we propose a novel approach named Three-Way Vision
Transformer (TVT), which integrates two modality-specific
ViTs and a fusion ViT into a three-way pipeline by a token-
based strategy. As the general framework of our proposed
TVT model shown in Fig. 2, the modality-specific ViTs,
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(a) Visualization of Attention Maps

(b) Evaluation of Pre-trained Models on Different Retrieval Tasks

Figure 1: Illustration of (a) the visualization of the attention
maps of images and sketches in the self-attention modules
from the last layer of the latest pre-trained model DINO-
S/8 (Caron et al. 2021), and (b) the comparison between
pre-trained ResNet-50 and DINO variants under different
tasks with unseen data of Sketchy (non-overlapping with Im-
ageNet).

pre-trained in a self-supervised manner, is to provide global
structural information specific to each image and sketch for
fusion ViT. In addition, fusion ViT is the model that an extra
fusion token is added to interact with other tokens through
the self-attention mechanism, whose output is mapped into
a common hypersphere to alleviate the modal gap. Besides,
we design a novel method for multi-modal hypersphere
learning. The representations of each class are required to
be well clustered regardless of modalities (both inter- and
intra-modal alignment), but representations of each modal-
ity are only individually encouraged to approach the uniform
distribution (intra-modal uniformity). As a result, the distri-
butions of each class for both modalities are overlapped on
the hypersphere, while avoiding collapse in dimensions. Fi-
nally, the fusion ViT is optimized to perform multi-modal
hypersphere learning through the fusion token and preserve
global structural information through the distillation tokens.
Extensive experiments on three benchmark datasets of ZS-
SBIR verify the superiority of our TVT method.

We summarize the main contributions of this work as:
• To the best of our knowledge, we are the first to model

the global structural information in the field of ZS-SBIR
using Vision Transformer, which is critical for the align-
ment between sketches and images.

• We propose a novel Three-Way Vision Transformer
method termed TVT based on the distillation tokens and
fusion token. These two types of tokens play the same
role as the normal class token, except that the former is
used for knowledge distillation and the latter for elimi-
nating the modal gap.

• We devise a novel multi-modal hypersphere learning pro-
cess that effectively leverages the representational power
of the hypersphere by inter- and intra-modal alignment
and intra-modal uniformity.

Related Work
Zero-Shot Sketch-Based Image Retrieval. ZS-SBIR is a
challenging task that simultaneously addresses the inherent
modal gap and the semantic gap brought by the zero-shot
setting. Pioneer work (Shen et al. 2018) first studied the
SBIR problem under the zero-shot setting by cross-modal
learning (Shen et al. 2021; Xu et al. 2020b). The subsequent
work mainly used fine-tuned pre-trained CNNs to extract
features and then built projection models to learn a joint em-
bedding space (Xu et al. 2021, 2020a) with the help of se-
mantic information, including the generative adversarial net-
work (Dutta and Akata 2019), the adversarial network with
Gradient Reversal Layer (Dey et al. 2019), the content-style
disentanglement model (Dutta and Biswas 2019), and so on.
(Yelamarthi et al. 2018; Hwang et al. 2020) adopted varia-
tional auto-encoder (VAE) to learn latent embedding space
but without semantic information. Unlike the above meth-
ods, (Liu et al. 2019) presented a framework that trains CSE-
ResNet-50 (Lu et al. 2018) with knowledge distillation in an
end-to-end manner, through which features are extracted and
cross-modal retrieval is conducted. (Wang et al. 2021) im-
proved this model by tackling the large intra-class diversity
of sketches with a category-specific memory bank. However,
all these methods largely rely on CNNs and are consequently
limited in modeling global structural information, which is
greatly important for ZS-SBIR. In this paper, we take the
first step to use ViT’s global structure modeling capability
for the ZS-SBIR task.

Vision Transformer. The architecture of Transformer was
firstly introduced by (Vaswani et al. 2017) for machine
translation and has currently become the de-facto standard
for its tremendous success. Subsequently, several attempts
(Hu, Shen, and Sun 2018; Wang et al. 2018b; Li et al.
2019; Ramachandran et al. 2019; Zhang et al. 2020) have
been devoted to adapting the mechanism of Transformer to
CNNs. More recently, (Dosovitskiy et al. 2021) proposed
a convolution-free method that directly applies Transformer
to the sequence of image patches, which achieved state-of-
the-art results on the image recognition task. (Touvron et al.
2021) subsequently addressed the problem of ViT requiring
huge amounts of data and computation from the perspective
of knowledge distillation, producing competitive results by
training on ImageNet (Deng et al. 2009) solely. (Caron et al.
2021) investigated the impact of self-supervised pre-training
for ViT and the resulting model showed a superior segmen-
tation property and performed particularly well with a k-NN
classifier alone. In this paper, we leverage the segmentation
property to align sketches and images by captured global
structural information.

Representation Learning on the Hypersphere. (Liu
et al. 2017b; Davidson et al. 2018; Xu and Durrett 2018;
Wang et al. 2018a) have shown that learning presentations
on hypersphere performs better than Euclidean space since
angular information preserves key semantics rather than
the magnitude. (Sablayrolles et al. 2019) presented a dif-
ferential entropy regularizer derived from the estimator by
(Kozachenko and Leonenko 1987), which was subsequently
applied to image retrieval with contrastive loss by (El-Nouby
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Figure 2: The illustration of basic architectures of (a) our proposed fusion ViT with an additional fusion token and (b) Three-
Way Vision Transformer (TVT), respectively. Images and sketches are fed into the fusion ViT and modality-specific ViTs,
which are pre-trained in a self-supervised manner. The output of the distillation token of fusion ViT is to predict those of
modality-specific ViTs, while the output of the fusion token is to learn a common hypersphere. For clarity, we have drawn the
distillation token of fusion ViT and the associated MLP (multi-layer perceptron) symmetrically twice.

et al. 2021). (Wang and Isola 2020) analyzed the behav-
ior of contrastive learning theoretically and experimentally
and argued that optimizing contrastive loss is equivalent to
optimizing the two properties of alignment and uniformity.
Inspired by this research, we propose multi-modal hyper-
sphere learning to perform intra- and inter-modal alignment
with intra-modal uniformity.

Proposed Method
Problem Definition
We first describe the definition of zero-shot sketch-based
image retrieval. The goal of this task is to train a model
on the training images and sketches from seen classes and
then apply it to extract common representations of unseen
data for retrieval. The training dataset of seen classes is de-
noted as Ds = {Is,Ss}, where Is and Ss represent sets
of natural images and sketches from seen classes Ys, re-
spectively. Mathematically, they are formulated as Is =
{(xIi , yi)|yi ∈ Ys}

N1
i=1 and Ss = {(xSj , yj)|yj ∈ Ys}

N2
j=1,

where N1 and N2 mean the cardinality of the Is and Ss,
respectively. Similarly, the test dataset can be consistently
defined as Du = {Iu,Su} for unseen categories Yu. Note
that under the zero-shot scenario, the scope of seen and un-
seen classes are disjoint, i.e., Ys ∩ Yu = φ. This setting
implies that we need to improve the generalization of the
model trained on limited data.

Network Architecture
The overall framework of the proposed TVT method is il-
lustrated in Fig.2. The DINO model g = h ◦ f is composed

of a ViT backbone f and an additional projection head h (an
MLP), whose output is a K-D vector treated as probabili-
ties to achieve self-distillation training. In this way, our TVT
model consists of two modality-specific ViTs (fI and fS for
modalities of image and sketch, respectively) with their cor-
responding projection heads (hI and hS) and a fusion ViT
(fF ) with two projection heads (hD and hF for the distil-
lation and fusion token, respectively). For brevity, we here-
after use gI , gS , gD, and gF to denote the joint operations of
corresponding f and h. Then, we integrate them into a three-
way pipeline through the processes of distillation and hyper-
sphere learning. The distillation process allows the fusion
ViT to reconcile the outputs of hD with those of hI and hS
to prevent catastrophic forgetting. Furthermore, the hyper-
sphere learning process aims to learn good representations
by performing inter- and intra-modal alignment without loss
of uniformity on the unit hypersphere. It is implemented by
a token-based strategy that adds a new fusion token to the
initial embedding, as shown in Fig. 2(a). The detailed proce-
dure of our TVT method will be described in the remainder
of this section.

Image ViT
Firstly, let us briefly review the mechanism of ViT. It con-
sists of alternating L layers of multi-head self-attention
(MSA) and Feed-Forward Network (FFN) blocks. Both
MSA and FFN layers contain “pre-norm” layer normaliza-
tion and are paralleled with skip connections. ViT takes as
input a sequence of image patches of fixed resolution n×n.
These patches are then linearly projected and added a learn-
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able positional embedding to form a sequence of vector-
shaped tokens. An extra learnable class token is incorporated
into the sequence to aggregate information from other tokens
such that it serves as a global image description. We refer to
(Vaswani et al. 2017) for the basic theory of Transformer and
(Dosovitskiy et al. 2021) for its adaptation to vision tasks.

In this paper, we choose the DINO-S/8 variant (Caron
et al. 2021) as the basic architecture for the sake of its excel-
lent performance (shown in Fig. 1) and compact model size,
which is even less than ResNet-50 in terms of parameters
count. Since the class token of DINO is not attached to any
label nor supervision and is instead used for distillation, we
renamed it to distillation token to avoid ambiguity.

Sketch ViT
Since the original DINO-S/8 model is not trained on
sketches data, we firstly fine-tune it on sketches of seen cat-
egories in the same self-supervised manner as DINO. No-
tably, the labels of sketches are excluded from this process to
avoid the loss of the pre-trained model’s generalization. This
is because the sketch only abstractly depicts the structural
information of the object, without the complex textures and
background variations like an image. If we fine-tune the pre-
trained model based on the supervised signal, this inevitably
results in modality-specific overfitting, which is detrimental
to the subsequent training process.

More specifically, we utilize the multi-crop strategy to
generate a set V of various views for each sketch, which
consists of two global views (xSg,1 and xSg,2) with a resolution
of 2242 and ten local views with a resolution of 962. Then,
we build the teacher-student architecture that the teacher
and student are both initialized from the same pre-trained
weights. Specifically, the optimization follows the “local-to-
global” strategy by feeding all views of V into the student
while only feeding xSg,1 and xSg,2 into the teacher. We denote
by Zt, τt, and θt (Zs, τs, and θs) the logits, temperature,
and parameters for the teacher (student) and ψ the softmax
operation. Finally, the objective can be formulated as:

min
θs

∑
x∈{xS

g,1,x
S
g,2}

∑
x′∈V
x′ 6=x

KL (ψ (Zt(x)/τt) , ψ (Zs (x
′) /τs)) ,

(1)
where θt = ζθt + (1 − ζ)θs is updated by the exponential
moving average of θs and taken as the sketch ViT for the
subsequent training.

Fusion ViT
Distillation through Tokens. After obtaining two
modality-specific ViTs with associated heads, we start to
train fusion ViT with supervision from them. Since the two
modality-specific ViTs are pre-trained in a self-supervised
manner, they are encouraged to discover global structural
information specific to each image and sketch. However, the
fusion ViT aims to reduce the modal gap between images
and sketches of the same category, which will inevitably
require the model to pay more attention to the more dis-
criminative local structures shared by the whole category,
gradually forgetting the structural information specific

to each instance. Therefore, we avoid this catastrophic
forgetting phenomenon by knowledge distillation. Given
a batch of N images, we reconcile the probability vectors
given by hD with those of hI through the distillation tokens,
which is formulated as follows:

LIKD =
N∑
i=1

KL
(
ψ
(
gI(x

I
i )/τt

)
, ψ
(
gD(x

I
i )/τs

))
, (2)

where τt, τs, and ψ are the same as defined previously. Simi-
larly,LSKD is the knowledge distillation loss for the modality
of sketch. Then, we define LKD as follows:

LKD = LIKD + LSKD. (3)
In this way, we prevent our model from reducing the rich
visual information to a limited number of concepts se-
lected from the thousands of object classes acquired by pre-
training.

Inter- and Intra-Modal Alignment. As shown in Fig.
2(b), the fusion tokens of images and sketches are jointly
projected into a unit hypersphere in which the images and
sketches of the same class are expected to be well clustered.
When all classes are well clustered, they are linearly sep-
arable in the hypersphere space. Therefore, we classify the
samples using a linear classifier:

LCLS = −E [logP (yi | gF (xi); θc)] , (4)
where xi can be an image or a sketch, θc is the parameters
of the shared classifier. Consequently, LCLS can perform
intra-modal alignment as well as inter-modal alignment by
the shared classifier. We also propose a center alignment loss
that explicitly requires the distributions of sketches and im-
ages to overlap on the hypersphere:

c∗yi = λc∗yi + (1− λ)
Nyi∑
j=1

[
gF
(
x∗j
)]
,

c∗yi =
c∗yi∥∥c∗yi∥∥2 , ∗ ∈ {I, S},

LCA =
∑
i∈Ys

(cIi − cSi )2.

(5)

Here λ is the weight of the exponential moving average.Nyi
is the number of samples x∗j with the label yi in the batch.
I and S indicate the modalities of image and sketch. The
centers are l2-normalized to map back to the hypersphere.
Equipped with LCLS and LCA, we align the distributions
of the bi-modal data from both inter-modal and intra-modal
aspects.

Intra-Modal Uniformity. Both alignment and uniformity
are key properties of representations in the hypersphere,
where uniformity implies an efficient use of the represen-
tational power of the hypersphere. Specifically, we adopt the
average Gaussian potential to encourage the uniformity of
sketches or images:

Gt(x
∗
i , x
∗
j ; gF ) = e−t‖gF (x∗i )−gF (x∗j )‖

2
2 ,

L∗UNI = logE
[
Gt(x

∗
i , x
∗
j ; gF )

]
, ∗ ∈ {I, S},

LUNI = LIUNI + LSUNI ,

(6)
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Algorithm 1: Overall training procedure of TVT.
Phase 1: Fine-tuning sketch ViT.
Input: Ss = {(xSj , yj)|yj ∈ Ys}

N2
j=1, batch size N , expo-

nential moving average ζ.
Output: Model Parameters θt

1: Build a teacher-student architecture (θt and θs).
2: repeat
3: Sample a batch of sketches.
4: Update θs using Adam optimizer with Eq. 1.
5: θt = ζθt + (1− ζ)θs.
6: until Reach maximum iterations.
7: Take θt as parameters of Sketch ViT.

Phase 2: Training TVT.
Input: Is = {(xSi , yi)|yi ∈ Ys}

N1
i=1, Ss = {(xSj , yj)|yj ∈

Ys}N2
j=1, batch sizeN , image ViT gI , sketch ViT gS , learning

rate µ, hyper-parameters λ, λ1, λ2.
Output: Model parameters θfF , θhF

, θhD
.

1: Build the three-way pipeline.
2: repeat
3: Sample a batch of images and sketches.
4: Compute the objective L← Eq. 7.
5: θfF ← θfF − 0.1 ∗ µOθfF L.
6: θh∗ ← θh∗ − µOθh∗L, ∗ ∈ {F,D}.
7: until Reach maximum iterations.
8: Take trained fusion ViT to conduct ZS-SBIR.

where t is a fixed parameter. It is worth noting that LUNI
is separately applied on the distribution of each modal-
ity, rather than constraining all representations regardless of
modalities. Such a design is reasonable because the distri-
butions of both modalities on the hypersphere are expected
to approach the uniform distribution, but with overlapping
positions learned by inter- and intra-modal alignment.

Overall Objective. Finally, the overall objective of the fu-
sion ViT is the linear combination of the four losses as:

L = LKD + LCLS + λ1LCA + λ2LUNI , (7)
where λ1 and λ2 are the hyper-parameters of center align-
ment loss and uniformity loss. The training procedure of our
TVT method is shown in Algorithm 1.

Experiments
Experimental Setup
Datasets. We verify the effectiveness of our TVT method
on three benchmark datasets of SBIR, i.e., Sketchy (Sangk-
loy et al. 2016), TU-Berlin (Eitz et al. 2010), and Quick-
Draw (Dey et al. 2019). Sketchy is originally composed of
75,471 sketches and 12,500 natural images from 125 classes.
Then (Liu et al. 2017a) extended this dataset with addi-
tional 60,502 images, so yielding in total 73,002 images.
TU-Berlin consists of sketches of 250 categories, with 80
sketches each. It is extended by the collection of 204,489
images provided by (Liu et al. 2017a). QuickDraw contains
330,000 sketches and 204,000 images from 110 classes,
which makes it the largest dataset among three datasets with
the most abstract sketches drawn by the amateur.

Evaluation Setting. There are two kinds of seen and un-
seen class divisions for Sketchy: the one proposed by (Liu
et al. 2017a) randomly selects 25 classes as unseen classes,
while the one proposed by (Yelamarthi et al. 2018) selects
classes that do not overlap with ImageNet categories as un-
seen classes. For simplicity, we refer to the former one as
Sketchy and the latter one as Sketchy-NO. TU-Berlin is
similar to Sketchy in that 30 randomly selected classes are
used as unseen classes. However, QuickDraw is similar to
Sketchy-NO in that it selects 30 classes that do not overlap
with ImageNet categories as unseen classes. The output of
the fusion token is taken as the retrieval feature. In addition,
we binarize the real features by iterative quantization (ITQ)
(Gong et al. 2012) for comparison. The cosine and hamming
distance metrics are used to compute the similarities for real
and binary embedding, respectively.

Implementation Details. We implement TVT with the
popular PyTorch toolkit. For our network architecture, the
ViTs consist of 12 Transformer blocks (an MSA and an
FFN) with 6 heads in multi-head self-attention. The pro-
jection heads contain three fully connected layers with di-
mensions [2048, 2048, 256] followed by l2 normalization
and an additional output layer for distillation (fixed 65536-
D) or classification. We train the model in 50 epochs with
Adam optimizer with weight decay that is initially 0.04 and
is ramped up to 0.4 by a cosine schedule. The batch size of
512 samples is distributed over two GPUs with 16 steps of
gradient accumulation. The base value of the learning rate µ
is set to 0.0005 * (batch size/256). µ is raised linearly to the
base value during the first 5 epochs and is decayed to 1e-6 by
a cosine schedule as well. Especially, the learning rates are
set to 0.1*µ for the ViTs but µ for the projection heads. The
temperature τs is always 0.1 while τt increases linearly from
0.04 to 0.07 during the initial 5 epochs. We follow the data
augmentations of DINO (Caron et al. 2021), which consist
of color jittering, Gaussian blur, and solarization. The fixed
t in Eq. 6 is set to 2 according to (Wang and Isola 2020).
What’s more, sketch ViT and class centers are updated with
ζ = 0.996 and λ = 0.9, respectively. Finally, λ1 and λ2 are set
to 2.0 and 0.5 in all experiments, unless specified otherwise.
Further implementation codes and additional experimental
analyses can be found in the supplementary material.

Comparison with the State-of-the-Arts
We compare our TVT method with 10 state-of-the-art meth-
ods relevant to the ZS-SBIR task, including CAAE (Yela-
marthi et al. 2018), CVAE (Yelamarthi et al. 2018), SEM-
PCYC (Dutta and Akata 2019), Dey et al. (Dey et al. 2019),
SAKE (Liu et al. 2019), IIAE (Hwang et al. 2020), LCALE
(Lin et al. 2020), OCEAN (Zhu et al. 2020), and DSN (Wang
et al. 2021). We report the results on Sketchy-NO, Sketchy,
and TU-Berlin in Table 1 and the results on QuickDraw in
Table 2. Since IIAE and DSN are the two latest competi-
tive approaches, we implement them according to their pub-
lic codes and instructions, and we report their results on
Sketchy-NO, in addition to IIAE on TU-Berlin.

As we can see, our TVT method shows a consistent
and significant improvement over all of the state-of-the-art
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Methods Dim Sketchy-NO Sketchy TU-Berlin
mAP@200 Prec@200 mAP@all Prec@100 mAP@all Prec@100

CAAE (ECCV’2018) 4096 0.156 0.260 0.196 0.284 - -
CVAE (ECCV’2018) 4096 0.225 0.333 - - 0.005 0.001
ZSIH (CVPR’2018) 64 - - 0.254 0.340 0.220 0.291

SEM-PCYCb (CVPR’2019) 64 - - 0.344 0.399 0.293 0.392
SEM-PCYC (CVPR’2019) 64 - - 0.349 0.463 0.297 0.426

Dey et al. (CVPR’2019) 256 0.369 0.370 - - 0.110 0.121
SAKEb (ICCV’2019) 64 0.356 0.477 0.364 0.487 0.359 0.481
SAKE (ICCV’2019) 512 0.497 0.598 0.547 0.692 0.475 0.599

LCALE (AAAI’2020) 64 - - 0.476 0.583 - -
OCEAN (ICME’2020) 64 - - 0.462 0.590 0.333 0.467
IIAE (NeurIPS’2020) 64 0.373 0.485 0.573 0.659 0.412 0.503
DSNb (IJCAI’2021) 64 0.367 0.481 0.436 0.553 0.385 0.497
DSN (IJCAI’2021) 512 0.501 0.597 0.583 0.704 0.481 0.586

TVTb (Ours) 64 0.447 0.554 0.553 0.727 0.396 0.606
TVT (Ours) 384 0.531 0.618 0.648 0.796 0.484 0.662

Table 1: Comparison of our method and 10 compared approaches on Sketchy and TU-Berlin. The subscript “b” denotes results
obtained by binary hashing codes, and “-” means that the results are not reported in the original papers. “Sketchy-NO” is short
for Sketchy with non-overlapping classes. The best and second-best results are marked in bold and underlined, respectively.

(SOTA) methods. Most of ZS-SBIR methods only experi-
mented on Sketchy and TU-Berlin, which share the same
way of randomly selecting unseen classes. Specifically, on
these two datasets, TVT consistently beats the SOTA (DSN)
with 11.1% and 0.5% improvements of mAP@all scores,
respectively. However, few of them experimented on more
realistic and challenging datasets: Sketchy-NO and Quick-
Draw guarantee that the unseen classes do not overlap
with ImageNet, in addition to QuickDraw being a very
large dataset. On Sketchy-NO, our approach improves the
mAP@200 score from 0.501 to 0.531 compared with DSN.
Moreover, on the large-scale QuickDraw, it achieves a huge
improvement of almost 100% mAP@all score. Given the
large-scale nature of these datasets and the limitation of the
fixed class splits, these results effectively prove that the dra-
matic improvement of our method is not by chance or by
split bias. Compared with hashing methods, our method also
gets the best results. When we compare the results using
metrics that consider only top k candidates, the improvement
achieved by our method is more pronounced. On Sketchy
and TU-Berlin, our approach surpasses DSN with 13.1%
and 13.0% improvements of Prec@100 scores, respectively.
On QuickDraw, it gains increases of 112.2% and 330.9%

Methods QuickDraw

mAP@all mAP@200 Prec@200

CVAE 0.003 0.006 0.003
Dey et al. 0.075 0.090 0.068

TVT (Ours) 0.149 0.191 0.293

Table 2: Overall comparison of TVT and 2 compared ap-
proaches on large-scale QuickDraw. The best results are
shown in bold.

of mAP@200 and Prec@200 scores, respectively. These re-
sults mean that the true positive examples have a higher
probability of appearing in the top 100 (or 200) retrieved
results, which is well suited to the retrieval task.

All these comparisons can demonstrate that our method
can effectively align intra- and inter-modal distributions
without loss of uniformity and then achieves satisfactory
generalization on unseen classes.

Further Analysis on TVT
Ablation Study. We first investigate the effect of each loss
term in Eq. 7 by ablating it in Eq. 7 in the training phase. The
results of these variants, the full TVT and pre-trained DINO-
S/8 on Sketchy and TU-Berlin are shown in Table 3, where
“w/o” means the ablating behavior.

From the comparison of these models, we can draw the
following conclusions: 1) TVT w/o LCLS performs worse
than the other variants as it fails to consider inter-modal
alignment. However, it is better than DINO-S/8, demonstrat-
ing that the center alignment and three-way training pipeline
can align inter-modal distributions to some extent. 2) The
performance of TVT w/o LKD shows that learning by fo-

Models Sketchy TU-Berlin
DINO-S/8 0.101 0.084

TVT w/o LCLS 0.286 0.244
TVT w/o LKD 0.599 0.452
TVT w/o LCA 0.630 0.476

TVT w/o LUNI 0.634 0.479
Full TVT 0.648 0.484

Table 3: Ablation results (mAP@all) for each loss term on
Sketchy and TU-Berlin. The best results are shown in bold.
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Figure 3: Retrieval examples of ZS-SBIR results on unseen
data of TU-Berlin.

cusing only on the fusion ViT will inevitably lead to catas-
trophic forgetting, which clarifies the need for three-way
training through distillation tokens. 3) The results of TVT
w/o LCA indicate that explicitly required overlap of class
centers on the hypersphere facilitates the elimination of the
modal gap. 4) The results of TVT w/o LUNI suggest that
uniformity effectively prevents the reduction of generaliza-
tion caused by dimensional collapse on the hypersphere. 5)
The full model achieves the best results with both advan-
tages of knowledge distillation and hypersphere learning.

Qualitative Analysis. Fig. 3 shows the top 10 retrieved
candidates of sketches queries, where correct and incorrect
candidates are marked with checkmarks and crosses, respec-
tively. Our model successfully retrieves the correct candi-
dates in most cases, except for some structurally similar in-
correct candidates. For example, the hot air balloons (penul-
timate row) are so similar to the parachutes in structure and
background that they are retrieved incorrectly.

Fig. 4 visualizes the distributions of seen and unseen data
of Sketchy by t-SNE (Van der Maaten and Hinton 2008). We
can see that the seen data are well clustered together regard-
less of modalities, but with a certain degree of uniformity.
Besides, all classes are separated by proper distances. The
unseen data are not involved in the training, but they are also
able to cluster together at relatively small distances based on
the classes.

Analysis on Parameter Sensitivity. As shown in Fig.
5, we analyze the effect of center alignment and unifor-
mity with varying hyper-parameters λ1 and λ2 in Eq. 7 on
Sketchy and TU-Berlin. We can observe that the effect of
center alignment is less influenced by λ1 and reach the peak
at λ1 = 2. However, the effect of uniformity shows a dif-
ferent trend: it accelerates the deterioration of the retrieval
results when λ2 grows too large. It indicates the different
importance of alignment and uniformity.

(a) Seen data (b) Unseen data

Figure 4: The t-SNE visualization for seen and unseen data
of Sketchy, where the colored circles (•) and upper trian-
gles (N) represent images and sketches (zoom in for better
viewing), respectively.

Conclusions
In this paper, we took the first step to leverage ViT to model
the global structure of objects, which is essential for ZS-
SBIR. We firstly proposed a novel yet effective Three-Way
Vision Transformer that integrates modality-specific ViTs
and our proposed fusion ViT into a three-way pipeline.
Then, we trained the fusion ViT by a devised token-based
strategy with distillation, which aims to prevent catastrophic
forgetting, and multi-modal hypersphere learning, which en-
courages the representations to be well clustered without
loss of uniformity according to their class. We conducted ex-
tensive experiments on three benchmark datasets to demon-
strate the superiority of our approach and establish new
state-of-the-art performance. In the future, we will investi-
gate the performance of our approach on other multi-modal
multi-view datasets.
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with different values of λ1 and λ2 for center alignment and
uniformity, respectively.

2376



References
Caron, M.; Touvron, H.; Misra, I.; Jégou, H.; Mairal, J.; Bo-
janowski, P.; and Joulin, A. 2021. Emerging Properties in
Self-Supervised Vision Transformers. arXiv:2104.14294.

Davidson, T. R.; Falorsi, L.; De Cao, N.; Kipf, T.; and
Tomczak, J. M. 2018. Hyperspherical Variational Auto-
Encoders. 34th Conference on Uncertainty in Artificial In-
telligence (UAI-18).

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255. Ieee.

Dey, S.; Riba, P.; Dutta, A.; Llados, J.; and Song, Y.-Z. 2019.
Doodle to search: Practical zero-shot sketch-based image re-
trieval. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2179–2188.

Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2021.
An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. arXiv:2010.11929.

Dutta, A.; and Akata, Z. 2019. Semantically tied paired cy-
cle consistency for zero-shot sketch-based image retrieval.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 5089–5098.

Dutta, T.; and Biswas, S. 2019. Style-Guided Zero-Shot
Sketch-based Image Retrieval. In British Machine Vision
Conference 2019, 209–213.

Eitz, M.; Hildebrand, K.; Boubekeur, T.; and Alexa, M.
2010. An evaluation of descriptors for large-scale image re-
trieval from sketched feature lines. Computers & Graphics,
34(5): 482–498.

El-Nouby, A.; Neverova, N.; Laptev, I.; and Jégou, H.
2021. Training Vision Transformers for Image Retrieval.
arXiv:2102.05644.

Gong, Y.; Lazebnik, S.; Gordo, A.; and Perronnin, F. 2012.
Iterative quantization: A procrustean approach to learning
binary codes for large-scale image retrieval. IEEE transac-
tions on pattern analysis and machine intelligence, 35(12):
2916–2929.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.

Hu, J.; Shen, L.; and Sun, G. 2018. Squeeze-and-excitation
networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 7132–7141.

Hwang, H.; Kim, G.-H.; Hong, S.; and Kim, K.-E. 2020.
Variational Interaction Information Maximization for Cross-
domain Disentanglement. Advances in Neural Information
Processing Systems, 33.

Kozachenko, L.; and Leonenko, N. N. 1987. Sample esti-
mate of the entropy of a random vector. Problemy Peredachi
Informatsii, 23(2): 9–16.

Li, X.; Wang, W.; Hu, X.; and Yang, J. 2019. Selective ker-
nel networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 510–519.
Lin, K.; Xu, X.; Gao, L.; Wang, Z.; and Shen, H. T. 2020.
Learning Cross-Aligned Latent Embeddings for Zero-Shot
Cross-Modal Retrieval. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 11515–11522.
Liu, L.; Shen, F.; Shen, Y.; Liu, X.; and Shao, L. 2017a.
Deep sketch hashing: Fast free-hand sketch-based image re-
trieval. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2862–2871.
Liu, Q.; Xie, L.; Wang, H.; and Yuille, A. L. 2019. Semantic-
aware knowledge preservation for zero-shot sketch-based
image retrieval. In Proceedings of the IEEE International
Conference on Computer Vision, 3662–3671.
Liu, W.; Zhang, Y.-M.; Li, X.; Liu, Z.; Dai, B.; Zhao, T.; and
Song, L. 2017b. Deep Hyperspherical Learning. In NIPS,
3953–3963.
Lu, P.; Huang, G.; Fu, Y.; Guo, G.; and Lin, H. 2018. Learn-
ing large euclidean margin for sketch-based image retrieval.
arXiv preprint arXiv:1812.04275.
Ramachandran, P.; Parmar, N.; Vaswani, A.; Bello, I.; Lev-
skaya, A.; and Shlens, J. 2019. Stand-Alone Self-Attention
in Vision Models. In Wallach, H.; Larochelle, H.; Beygelz-
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