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Abstract

This paper proposes a novel active boundary loss for seman-
tic segmentation. It can progressively encourage the align-
ment between predicted boundaries and ground-truth bound-
aries during end-to-end training, which is not explicitly en-
forced in commonly used cross-entropy loss. Based on the
predicted boundaries detected from the segmentation results
using current network parameters, we formulate the boundary
alignment problem as a differentiable direction vector pre-
diction problem to guide the movement of predicted bound-
aries in each iteration. Our loss is model-agnostic and can be
plugged in to the training of segmentation networks to im-
prove the boundary details. Experimental results show that
training with the active boundary loss can effectively improve
the boundary F-score and mean Intersection-over-Union on
challenging image and video object segmentation datasets.

Introduction
Semantic segmentation is a fine-grained, pixel-wise clas-
sification task that assigns each pixel a semantic class la-
bel to facilitate high-level image analysis and processing.
Recently, the accuracy of semantic segmentation has been
substantially improved with the introduction of fully con-
volutional networks (FCNs) (Long et al. 2015; Minaee
et al. 2021). FCNs leverage convolutional layers and down-
sampling operations to achieve a large receptive field. Al-
though these operations can encode context information sur-
rounding a pixel, they tend to propagate feature informa-
tion throughout the image, leading to undesirable feature
smoothing across object boundaries. Thus, the segmentation
results might be blurred and lack fine object boundary de-
tails. To address this issue, boundary-aware information flow
control and multi-task training methods have been proposed
to improve the discriminative power of features belonging
to different objects (Bertasius et al. 2016; Takikawa et al.
2019; Zhu et al. 2019). Alternatively, the segmentation er-
rors at boundaries can be remedied by learning the corre-
spondence between a boundary pixel and its corresponding
interior pixel (Yuan et al. 2020b). Despite the empirical suc-
cess of boundary-aware methods in improving the segmen-
tation accuracy, there still exist a significant amount of seg-
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Figure 1: Segmentation results of an internet image. CE:
Produced by DeeplabV3 (Chen et al. 2017a) trained with
cross-entropy loss on Cityscapes (Cordts et al. 2016) dataset.
CIBL: Produced by DeeplabV3 trained with cross-entry loss
+ lovász-softmax (Berman et al. 2018) + Boundary Loss
(Kervadec et al. 2019) on Cityscapes dataset. DenseCRF:
Refined results of column ‘CE’ by DenseCRF (Krähenbühl
et al. 2011). Segfix: Refined results of column ‘CE’ by Seg-
fix (Yuan et al. 2020b). Ours: Re-trained by adding our loss.

mentation errors at object boundaries, especially for small
and thin objects. The mutual dependence between seman-
tic segmentation and boundary detection should be further
studied to improve the quality of segmentation results.

In this paper, we propose a novel active boundary loss
(ABL) to progressively encourage the alignment between
predicted boundaries (PDBs) and ground-truth boundaries
(GTBs) during end-to-end training, in which the PDBs are
semantic boundaries detected in the segmentation results of
the current network. To facilitate end-to-end training, the
loss is formulated as a differentiable direction vector pre-
diction problem. Specifically, for a pixel on the PDBs, we
first determine a direction pointing to the closest GTB pixel,
and then move the PDB at this pixel towards the direction in
a probabilistic manner. Moreover, we also propose to detach
the gradient flow to suppress possible conflicts. Overall, the
behavior of ABL is dynamic because the PDBs are changing
with the updated network parameters during training. It can
be viewed as a variant of classical active contour methods
(Kass et al. 1988), since our method first determines the di-
rection vectors in accordance with the PDBs in the current
iteration and lets the PDBs move along the direction vectors
to reach the GTBs.

Unlike the cross-entropy loss that only supervises pixel-
level classification accuracy, ABL supervises the relation-
ship between PDB and GTB pixels. It embeds boundary in-
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formation such that the network can pay attention to bound-
ary pixels to improve the segmentation results. Moreover,
Intersection-over-Union (IoU) loss pays more attention to
overall regions of semantic classes but does not focus on the
boundary matching. Thus, ABL can provide complementary
information during the training of the network. As a result, it
can be combined with other loss terms to further improve se-
mantic boundary quality. In our work, we let the ABL work
with the most commonly used cross-entropy loss and the
lovász-softmax loss (Berman et al. 2018), a surrogate IoU
loss, to significantly improve the boundary details in image
segmentation. The lovász-softmax loss is introduced to regu-
larize the training so that the ABL can be used even when the
PDBs might be noisy and far from the GTBs. The advantage
of ABL is that it is model-agnostic and can be plugged into
the training of image segmentation networks to improve the
boundary details. As illustrated in Fig. 1, it is beneficial to
preserve the boundaries of thin objects that contain a small
number of interior pixels.

We tested the ABL with state-of-the-art image segmenta-
tion networks, including CNN-based networks DeepLabV3
(Chen et al. 2017a), OCR network (Yuan et al. 2020a)
and Transformer-based network SwinTransformer (Liu et al.
2021). We have also tested the ABL with STM (Oh et al.
2019), a video object segmentation (VOS) network, to show
that our loss can be applied to improve VOS results as
well. The forward inference stage of these networks remains
the same during testing. The experimental results show that
training with the ABL can effectively improve the boundary
F-score and mean Intersection-over-Union (mIoU) on chal-
lenging segmentation datasets.

Related Work
FCN-based semantic segmentation. FCNs (Long et al.
2015) for semantic segmentation frequently utilize encoder-
decoder structure to generate pixel-wise labelling results for
high-resolution images. Successor methods (Ronneberger
et al. 2015; Ding et al. 2018; Minaee et al. 2021) are ded-
icated to a better fusion of multi-scale features to enhance
the accuracy of localization and handle small objects.

FCN-based methods have also been widely used in VOS,
including propagation-based methods (Hu et al. 2017; Oh
et al. 2019; Voigtlaender et al. 2019) and detection-based
methods (Caelles et al. 2017; Li et al. 2017; Shin Yoon et al.
2017). The key challenge is how to leverage temporal co-
herence and learn discriminative features of target objects to
handle occlusion, appearance change, and fast motion. Since
our loss is model-agnostic, it can also be applied to VOS for
the purpose of boundary refinement.
Boundary-aware semantic segmentation. One way to ex-
ploit boundary information in deep learning-based semantic
segmentation is through multi-task training, in which addi-
tional branches are often inserted to detect semantic bound-
aries (Chen et al. 2020; Gong et al. 2018; Ruan et al. 2019;
Su et al. 2019; Xu et al. 2018a; Takikawa et al. 2019; Zhu
et al. 2021). A key challenge in these methods is how to ef-
ficiently fuse features from a boundary detection branch to
improve semantic segmentation.

There are also works focusing on the control of informa-
tion flow through boundaries (Bertasius et al. 2016; Ke et al.
2018; Bertasius et al. 2017; Ding et al. 2019; Chen et al.
2016; Borse et al. 2021). These methods usually learn pair-
wise pixel-level affinity to maintain the feature difference for
pixels near semantic boundaries, while enhancing the simi-
larity of features for interior pixels simultaneously.

The boundary details of the segmentation results can also
be improved in post-refinement. DenseCRF (Krähenbühl
et al. 2011) is often used to refine the segmentation results
around boundaries. Segfix (Yuan et al. 2020b) trains a sepa-
rate network to predict the correspondence between bound-
ary and interior pixels. Thus, labels of interior pixels can be
transferred to boundary pixels. Although these methods can
efficiently refine most boundaries, they fail to model the re-
lationship of pixels inside thin objects that contain a small
number of interior pixels, which may downgrade the quality
of slender object boundaries, as shown in Fig. 1. In contrast,
the ABL encourages the alignment of PDBs and GTBs. Our
experiment shows that it can handle such boundaries well.

The uniqueness of our ABL is that it allows propagating
the GTB information with a distance transform for regulat-
ing the network behavior at the PDBs, while the network
structure can remain the same. As a loss, ABL can save
efforts in network design. Kervadec et al. (2019) proposed
Boundary Loss (BL) for image segmentation, which is most
related to our work. However, this loss is designed for unbal-
anced binary segmentation and actually a regional IoU loss.
In our implementation, the ABL is coupled with an IoU loss
in (Berman et al. 2018) to further refine the boundary details.

Active Boundary Loss
The ABL continuously monitors the changes on the PDBs
in segmentation results to determine the plausible moving
directions. Its computation is divided into two phases. First,
for each pixel i on the PDBs, we determine its next candidate
boundary pixel j closer to the GTBs in accordance with the
relative location between the PDBs and GTBs. Second, we
use the KL divergence as logits to encourage the increase in
KL divergence between the class probability distribution of
i and j. Meanwhile, this process reduces the KL divergence
between i and the rest of its neighboring pixels. In this way,
the PDBs can be gradually pushed towards the GTBs. Un-
fortunately, candidate boundary pixel conflicts might occur,
severely degrading the performance of the ABL. Thus, we
carefully reduce the conflicts through gradient flow control
in the computation of ABL, which is crucial to its success.

The overall pipeline of ABL is illustrated in Fig. 2. Each
phase and how to suppress the conflicts are detailed as fol-
lows. Hereafter, we use Ai to denote the value stored at pixel
i of a map A.
Phase I. This phase starts with detecting the PDBs using the
class probability map P ∈ RC×H×W output by the current
network, where C denotes the number of semantic classes,
and the image resolution is H × W . Specifically, we com-
pute a boundary map B through the computation of KL-
divergence to indicate the locations of PDBs. For a pixel i
in B, its value Bi is computed as follows:
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Figure 2: Pipeline of ABL. Boundary distance map is obtained via the distance transform of GTBs, taken an image in the
ADE20K (Zhou et al. 2017) dataset as an example. The overlayed white and red lines in the boundary distance map indicate
the GTBs and PDBs, respectively. Local distance map: the number indicates the closest distance to the GTBs. Local probability
map: X and Yi, i ∈ {0, 1, ..., 7} denote the class probability distribution for these pixels.

Bi =
{

1 if ∃KL(Pi,Pj) > ϵ, j ∈ N2(i) ;
0 Otherwise ,

(1)

where 1 indicates the existence of PDBs, and Pi is the
C-dimensional vector extracted from the probability map
at pixel i. N2(i) indicates the 2-neighborhood of pixel i.
Specifically, the offsets of pixels in N2(i) to pixel i are
{{1, 0}, {0, 1}}. Since it’s difficult to define a perfect fixed
threshold ϵ to detect PDBs, we choose an adaptive thresh-
old to ensure that the number of boundary pixels in B is
less than 1% of the total pixels of the input image, where
1% is a ratio to approximate the number of boundary pix-
els in an image. Empirically, we observe that setting ϵ in
this adaptive way can largely avoid the emergence of exces-
sive misleading pixels in B far from the GTBs, especially in
the early training period. Controlling boundary pixel number
also helps to save the computational cost of ABL.

Subsequently, for a pixel i on PDBs, its next candidate
boundary pixel j is selected as its neighboring pixel with the
smallest distance value computed by the distance transform1

of the GTBs. The GTBs are also determined using Eq. 1,
but the KL divergence is replaced by checking whether
the ground-truth class labels are equal between pixel i and
j ∈ N2(i). To represent the coordinate of pixel j in the com-
putation of ABL, we convert it into an offset to pixel i and
then encode it as a one-hot vector. Specifically, we compute
a target direction map Dg ∈ {0, 1}8×H×W , where the one-
hot vector for a pixel i stored at Dg

i is 8D, because we use
8-neighborhood in this operation. The formula to compute
Dg

i can be written as:

Dg
i = Φ(argminj Mi+∆j

) , j ∈ {0, 1, ..., 7}, (2)

where ∆j represents the jth element in the set of directions
∆ = {{1, 0}, {−1, 0}, {0,−1}, {0, 1}, {−1, 1}, {1, 1},
{−1,−1}, {1,−1}}, and M is the result of distance trans-
form of GTBs. The pixel i + ∆j with the smallest distance
is selected as the next candidate boundary pixel. The func-
tion Φ converts index j into a one-hot vector. For instance, if
j = 1, Φ(j) should be {0, 1, 0, 0, 0, 0, 0, 0}, which is similar
to the direction representation used in Segfix. In implemen-
tation, we dilate B with 1 pixel and perform this operation
for all the pixels in dilated B to accelerate the movement of
the PDBs, since more pixels are covered.

1scipy.ndimage.morphology.distance transform edt is
used in the implementation of distance transform.

Phase II. The 8D vector Dg
i computed in Eq. 2 is set to

be the target distribution in the cross-entropy loss. We aim
to increase the KL divergence between the class probability
distribution of i and j, and simultaneously reduce the KL di-
vergence between i and the rest of its neighboring pixels. An
8D vector using the KL divergence between pixel i and its
neighboring pixel j as logits, denoted by Dp

i , is then com-
puted as follows:

Dp
i =

{
eKL(Pi,Pi+∆k

)∑7
m=0 e

KL(Pi,Pi+∆m )
, k ∈ {0, 1, ..., 7}

}
, (3)

where KL indicates the function to compute the KL diver-
gence using Pi and Pi+∆k

.
For those pixels on the PDBs, the ABL is computed as the

weighted cross-entropy loss:

ABL =
1

Nb

Nb∑
i

Λ(Mi)CE (Dp
i ,D

g
i ) . (4)

The weight function Λ is computed as Λ(x) = min(x,θ)
θ ,

where Nb is the number of pixels on the PDBs and θ is a
hyper-parameter set to 20. The closest distance to the GTBs
at pixel i is used as a weight to penalize its deviation from
the GTBs. If Mi is 0, indicating that the pixel is already on
the GTBs, this pixel will be discarded in the ABL.
Conflict suppression. Determining pixels on the PDBs us-
ing KL divergence might lead to the conflict case, as shown
in Fig. 3. In this case, pixels V1 and V2 are deemed to be on a
PDB (indicated by the red curve) because the KL divergence
values computed for (V1,W1) and (V2, V3) are larger than
the threshold. However, the GTB (indicated by the green
curve) leads to the conflict when computing the ABL for V1

and V2 because the GTB is to the right of V1 and V2. Thus,
for pixel V1, we need to increase KL(PV1

,PV2
) because V2

is the closest to the GTB and it should be the next candidate
pixel in the neighborhood of V1. In contrast, for pixel V2,
we need to decrease KL(PV2 ,PV1) because pixel V3 is the
next candidate boundary pixel for V2 rather than V1. Thus,
the gradients of the ABL computed for PV1 and PV2 might
contradict with each other.

While it might be possible to design a global search al-
gorithm to remove such kind of conflicts, it will signifi-
cantly slow down the training. Thus, we choose to suppress
the conflicts through the easy-to-implement detaching oper-
ation in Pytorch. Specifically, through the detaching opera-
tion, the gradient of ABL is computed only for the pixels on
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Figure 3: An example of conflict. V4: pixel on a GTB. ↑:
increase. ↓: decrease. The KL divergence between V1 and V2

is required to increase for V1 but to decrease for V2, resulting
in contradictory gradients for V1 and V2.

the PDBs, but not for its neighboring pixels. This process
indicates that, for a 3× 3 patch, we focus on the adjustment
of the class probability distribution of pixels on the PDBs
only so as to move the PDBs towards the GTBs. As a result,
the conflicting gradient flow from KL(PV2

,PV1
) to PV1

is
blocked in this case, and vice versa. Empirically, we found
the mIoU drops around 3% without the detaching operation.

Furthermore, we use label smoothing (Szegedy et al.
2016) to regularize the ABL by setting the largest probabil-
ity of the one-hot target probability distribution to 0.8 and
the rest to 0.2/7 (the parameters, 0.8 and 0.2/7 are deter-
mined through experiments). This process can avoid over-
confident decisions of network parameter updating, espe-
cially when there exist several pixels with the same distance
value in the neighborhood of pixels on the PDBs. The de-
taching operation is also beneficial in this case to avoid con-
flicts in the gradient flow.

Training Loss
The training loss Lt we mainly used to train a semantic seg-
mentation network consists of three terms:

Lt = CE+ IoU+ waABL, (5)

where CE is the most commonly used cross-entropy (CE)
loss, which focuses on the per-pixel classification. The com-
bination of lovász-softmax loss, namely IoU, and our ABL
are two loss terms that are added to improve the boundary
details, and wa is a weight. The lovász-softmax loss is ex-
pressed as follows (Berman et al. 2018):

IoU =
1

|C|
∑
c∈C

∆Jc(m(c)), (6)

where C is the number of classes, and m(c) is the vector of
prediction errors for class c ∈ C. ∆Jc indicates the lovász
extension of the Jaccard loss ∆Jc

.
The reason for introducing the lovász-softmax loss is

twofold: 1) This loss tends to prevent small objects from be-
ing ignored in segmentation such that the ABL can be used
to improve their boundary details, since the ABL relies on
the existence of predicted boundaries as the beginning step
of its computation. 2) It can balance with the noisy predicted
boundary pixels, especially at the early training period. The
improvement of ABL over CE plus IoU is verified in the
Experiments section.

Experiments
We implemented the ABL on a GPU server (2 Intel Xeon
Gold 6148 CPUs, 512GB memory) with 4 Nvidia Tesla
V100 GPUs. In this section, we report ablation studies,
quantitative and qualitative results obtained from the eval-
uation of the ABL in image segmentation experiments and a
test of fine-tuning VOS network.
Baselines. We use the OCR network (Yuan et al. 2020a)
[backbone: HRNetV2-W48 (Wang et al. 2019)], DeeplabV3
(Chen et al. 2017a) [backbone: ResNet-50 (He et al. 2016)],
and UperNet (Xiao et al. 2018) [backbone: SwinTrans-
former (Liu et al. 2021)] as the baseline models for the task
of semantic image segmentation. To verify that our ABL can
be applied to the task of video object segmentation, we use
STM (Oh et al. 2019) as the baseline, since its pre-trained
model is publicly available.
Dataset. We evaluate our loss mainly on the image segmen-
tation dataset Cityscapes (Cordts et al. 2016) and ADE20K
(Zhou et al. 2017). These two datasets provide densely
annotated images that are important for the training of our
method to align semantic boundaries. Cityscapes dataset
contains high-quality dense annotations of 5000 images
with 19 object classes, and ADE20K is a more challenging
dataset with 150 object classes. There are 20210/2000/3000
images for the training/validation/testing set in ADE20K,
respectively. Following the training protocol of (Yuan
et al. 2020a), we use random crop, scaling (from 0.5 to 2),
left-right flipping and brightness jittering between −10 and
10 degrees in data augmentation. In multi-scale inference,
we apply scales {0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0} and
{0.5, 0.75, 1.0, 1.25, 1.5, 1.75} as well as their mirrors.
Training parameters. We use stochastic gradient descent
as the optimizer and utilize a “ploy” learning rate policy
similar to Chen et al. (2017b) in the training. Hence, the
initial learning rate is multiplied by (1 − iter

maxiter )
power

with power = 0.9. Sync Batch Normalization (Zhang et al.
2018) is used in all our experiments to improve stability.
The detailed training and testing settings are as follows:
• ADE20K: the parameters are set as follows: initial
learning rate = 0.02, weight decay = 0.0001, crop size =
520 × 520, batch size = 16, and 150k training iterations,
which are the same as the setting in Yuan et al. (2020a).
• Cityscapes: the parameters are set as follows: initial
learning rate = 0.01 or 0.04, crop size = 512 × 1024 (used
in OCR) or 769 × 769 (used in DeeplabV3), weight decay
= 0.0005, batch size = 8, and 80K training iterations. The
parameter setting is the same as the setting in Yuan et al.
(2020b), but we do not use coarse data in experiments.

Evaluation Metrics. Three metrics, i.e. pixel accuracy (pix-
Acc), mean Intersection-over-Union (mIoU), and boundary
F-score (Perazzi et al. 2016a; Yuan et al. 2020b), are used
to demonstrate the performance of the ABL. The first two
metrics are used to evaluate the pixel-level and region-level
accuracy of a segmentation result, respectively. Boundary
F-scores are used to measure the quality of boundary align-
ment and computed within the area of the dilated GTBs. The
dilation parameters are set to 1, 3, 5 pixels in our implemen-
tation. To better preserve boundary details in the evaluation,
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loss mIoU pixAcc
CE 79.5 96.3
CE + ABL(20%) 79.6 96.3
CE + IoU 80.2 96.3
CE + IoU + BL 80.2 96.4
CE + IABL 80.5 96.4
CE + IABL w/o detach 76.0 95.6

Table 1: The influence of loss terms on Cityscapes dataset.
These experiments are conducted using DeeplabV3 net-
work and single-scale inference. ABL(20%): addin addi-
tional ABL in the last 20% epochs.

Method loss mIoU pixAcc
SS MS SS MS

OCR (2020a)
[HRNetV2
-W48 (2019)]

CE 44.51 45.66 81.66 82.20
CE + IoU 44.73 46.54 81.52 82.29
CE + IABL 45.38 46.88 81.63 82.43
CE + IFKL 45.11 45.96 81.61 82.28

UperNet (2018)
[Swin-T (2021)]

CE 44.51 45.81 81.09 81.96
CE + IoU 45.39 47.15 81.20 82.22
CE + IABL 45.98 47.58 81.34 82.39
CE + IoU + BL 45.72 47.50 81.33 82.39

Table 2: The influence of loss terms on ADE20K dataset.
SS: single-scale inference. MS: multi-scale inference.

we do not use resize operation in the testing.
Combination of loss terms. To ease the description of the
ablation study, we denote different combinations of loss
terms used in the training as follows: CE = cross-entropy;
CE+IoU = cross-entropy + lovász-softmax; CE+IABL =
cross-entropy + lovász-softmax + ABL. wa is set to 1.0 for
ADE20K dataset but 1.5 for Cityscapes dataset, since train-
ing images’ resolution is much larger for Cityscapes.

In addition, we rely on the KL divergence of the class
probability distributions of adjacent pixels, which can be
viewed as the pair-wise term used in condition random
field (Lafferty et al. 2001). Hence, it is necessary to verify
how simply enforcing the KL divergence loss at each edge
of an image works in the image segmentation, i.e. enforcing
the loss for each edge between a pair of adjacent pixels, not
only at semantic boundaries. To this end, we define a full
KL-divergence (FKL) loss as follows:

FKL = 1
Ne

∑
e BCE( 1

1+e
KL(Pei

,Pej
) , (Gei ̸= Gej )), (7)

where e denotes an image edge that connects a pair of pixels
ei and ej , Ne is the total number of edges in an image, and
(Gei ̸= Gej ) returns 1 if the ground-truth label of pixel
ei is not equal to the label of ej , otherwise 0. If the FKL
loss is used with cross-entropy and lovász-softmax loss in
the training, we denote this combination as CE+IFKL.

Ablation Studies
Loss terms. We first test the influence of loss terms on the
Cityscapes validation dataset by re-training the DeepLabV3
network and show the results in Tab. 1. Since the gradient

Method Backbone OS mIoU pixAcc
CPN (2020) ResNet-101+CPL 8× 46.27 81.85

PyConv (2020) PyConvResNet-101 8× 44.58 81.77
DNL (2020) HRNetV2-W48 4× 45.82 -

OCR (2020a) HRNetV2-W48 4× 45.66 82.20
OCR+IABL HRNetV2-W48 4× 46.88 82.43

UperNet (2018) Swin-B (2021) 4× 51.66 84.06
UperNet+IABL Swin-B 4× 52.40 84.11

Table 3: Results on ADE20K validation set. OS: Output
stride. All results are obtained using multi-scale inference.

Method Backbone OS mIoU
GSCNN (2019) WideResNet-38+ASPP 8× 80.8
DANet (2019a) ResNet-101+MG 8× 81.5
ACNet (2019b) ResNet-101+MG 4× 82.0

OCR (2020a) HRNetV2-W48 4× 82.2
OCR+IABL HRNetV2-W48 4× 82.9

Table 4: Results on Cityscapes validation set. OS: Output
stride. All results are obtained using multi-scale inference.

of ABL is not useful when PDBs are far from the GTBs,
adding ABL at the beginning of the training does not im-
prove network performance. Thus, we start to add ABL at
the last 20% epochs to verify its effect, but only obtain a
0.1% improvement over mIoU. Then, we re-train the net-
work with CE+IoU and CE+IABL. It shows that adding
ABL to CE+IoU in training can increase the mIoU by 0.3%,
and the combination of IoU loss and ABL, i.e. CE+IABL
contribute 1% improvement on mIoU in this study. Although
the ABL does not contribute most to mIoU in this case, we
do see the obvious improvement of boundary alignment in
qualitative comparisons. In Tab. 2, we test the contribution
of each loss term on ADE20K dataset by re-training the
OCR network. While the mIoU and pixel accuracy can both
be improved after adding IoU loss and ABL, CE+IABL con-
tributes most of the improvement to mIoU by around 0.65%
over CE+IoU in the single-scale inference, which verifies
the contribution of the proposed ABL in this experiment. We
argue that the ABL can contribute more to a dataset with a
large number of semantic classes and hence more GTBs. For
instance, ADE20K has 150 classes, while Cityscapes only
has 19 classes. More GTBs give the ABL more space to ad-
just the network’s behavior.
Detaching operation. We verify the effectiveness of the de-
taching operation in Tab. 1. Significant drops of pixel accu-
racy and mIoU can be observed when training without the
aforementioned detaching operation to suppress conflicts.
Hence, it is important to control the gradient flow when there
exist contradictory targets for KL divergence between two
neighboring pixels.
FKL loss. In Tabs. 2 and 7, it can be seen that the com-
bination of IoU loss and FKL, denoted by IFKL in the 3rd

row, can also improve the pixel accuracy and mIoU quan-
titatively. However, CE+IFKL does not perform as well as
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80k iterations

CE [Boundary]
80k iterations

CE+IABL [Boundary]
80k iterations

Figure 4: Progressive refinement of boundary details in the
training. Dataset: Cityscapes. Network: DeepLabV3. The in-
put image is taken from the Cityscapes training set as an ex-
ample. The GTBs are in blue and PDBs in red.
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Figure 5: Qualitative results taken from Cityscapes and
ADE20K validation set.

CE+IABL. We speculate that it is because FKL treats every
pixel equally, while the ABL pays more attention to the pix-
els on the PDB. Such design allows the network to adjust
its behavior in a progressive way, avoiding over-confident
decisions when updating the network parameters.
The degree of ABL’s dependence on IoU loss. To evaluate
ABL’s contribution further, we design an IoU weight decay
experiment, which linearly decreases the weight of IoU loss
from 1 to 0 during training but increase the weight of ABL
from 0 to 1. It achieves mIoU 75.65% on the Cityscapes
validation set with the FCN [backbone: HRNetV2-W18s],
comparable to the mIoU 75.59% trained with CE+IoU+ABL
without weight decay. It can be seen that the decreased IoU
weight does not lead to the downgrade of segmentation per-
formance. Moreover, we do observe that ABL can refine the
semantic boundary for thin structures and complex bound-
aries, as shown in Tab. 6 and Figs. 4–6.

Quantitative Evaluation
Results on ADE20K and Cityscapes validation sets. In
Tabs. 3 and 4, we show that training with IABL along with
cross-entropy loss can improve the pixel accuracy and mIoU
over state-of-the-art image segmentation networks. For the
ADE20K dataset, training the OCR network with additional
IABL improves the mIoU and pixel accuracy by 1.22% and
0.23% over that trained with cross-entropy only on the vali-
dation set. Not only effective on CNN-based network, ad-
ditional IABL supervision on Transformer-based network
UperNet [backbone: SwinTransformer-B] also brings an im-
provement in the mIoU by 0.74% on the validation set,

#2
5

#2
6

#2
7

GT STM FT CE+IoU FT CE+IABL

Figure 6: Qualitative results taken from DAVIS-2016 valida-
tion set. VOS Network: STM. FT: STM fine-tuning. Video:
scooter-black (43 frames in total). #N: frame number.

which ranks the first place in the Tab. 3. Similarly, for the
Cityscape dataset, training the OCR network with IABL im-
proves the mIoU by 0.7% on the validation set.
Comparison with Segfix. We compare our method with
Segfix (Yuan et al. 2020b) on the Cityscapes validation set
by using mIoU and boundary F-score metrics, since both
methods focus on improving boundary details in semantic
segmentation. In Tab. 5, our method achieves comparable
performance when using DeepLabV3 as the segmentation
network, but improves the mIoU over Segfix by 0.3% when
using the OCR network. In Tab. 6, we show the class-wise
boundary F-scores of Segfix and our method. The scores are
computed using the GTB dilation parameters 1, 3, and 5 pix-
els. While Segfix outperforms in the cases of 1 pixel, our
method achieves a higher score in the cases of 3, 5 pixels.

Segfix is an elegant boundary refinement solution that
propagates the interior labels to class boundaries. However,
the propagation operation might downgrade the segmenta-
tion performance for thin objects that contain a small num-
ber of interior pixels. In contrast, the ABL is an end-to-end
training loss that encourages the alignment of PDBs and
GTBs, which achieves better mIoU and boundary F-scores,
even for thin structures. Taking the class of traffic light as an
example (Tab 6, 9th column), our method achieves a consis-
tent improvement of the boundary F-score over Segfix in all
parameter settings, which shows that our method can han-
dle boundaries of thin objects well. Since Segfix is a post-
processing method, it can also be used to improve the seg-
mentation results of our method.
Comparison with Boundary Loss. We train ABL + gen-
eralized Dice loss (GDL) (Sudre et al. 2017) on the white
matter hyperintensities (WMH) dataset with the same net-
work architecture and training parameters as (Kervadec et al.
2019) for a fair comparison. We also use the same loss con-
junction method: Loss = α ∗ GDL + (1 − α) ∗ ABL,
where α linearly decreases from 1 to 0.01. In Tab. 8, we
show that training with ABL + GDL achieves higher dice
similarity coefficient (DSC) and smaller Hausdorff distance
(HD) than Boundary Loss (BL) + GDL. Moreover, we ex-
tend BL to a multiple-class loss and make a further compari-
son on Cityscapes validation set. In Tabs. 1 and 2, IoU+ABL
archieves higher mIoU than IoU+BL.

The motivation of BL is to minimize the distance between
GTBs and PDBs. With the geo-cuts optimization techniques
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method road walk buil-
ding wall fen-

ce pole traffic
light

traffic
sign

vege-
tation

terr-
ain sky per-

son rider car truck bus train moto-
rcycle

bic-
ycle mean

DLV3 98.4 86.5 93.1 63.9 62.6 66.1 72.2 80.0 92.8 66.3 95.0 83.3 65.5 95.3 74.5 89.0 80.0 67.4 78.4 79.5
+Segfix 98.5 87.1 93.5 64.6 63.1 69.0 74.9 82.4 93.2 66.7 95.3 84.9 66.9 95.8 75.0 89.6 80.7 68.4 79.7 80.5 (↑1.0)
+IABL 98.1 84.9 93.1 59.9 63.1 68.3 75.4 82.3 92.7 64.6 95.0 84.6 69.4 95.6 79.9 87.8 83.3 70.6 80.2 80.5 (↑1.0)
OCR 98.4 86.8 93.3 62.2 66.0 70.0 73.9 82.0 93.0 67.2 95.0 84.3 66.3 95.6 82.9 91.7 85.0 67.7 79.2 81.1
+Segfix 98.5 87.3 93.5 62.6 66.4 71.4 75.7 83.3 93.3 67.6 95.3 85.2 67.2 96.0 83.3 92.2 85.5 68.6 80.0 81.7 (↑0.6)
+IABL 98.3 86.7 93.6 63.9 64.9 70.2 76.9 83.2 93.2 69.0 95.3 85.6 70.7 96.0 80.0 93.3 86.6 69.3 80.8 82.0 (↑0.9)

Table 5: Class-wise mIoU results obtained using single-scale inference on the Cityscapes validation set. DLV3: DeepLabV3.
+Segifx: Segfix is use to refine the baseline output. +IABL: the network is trained with additional loss IABL.

scale road walk buil-
ding wall fen-

ce pole traffic
light

traffic
sign

vege-
tation

terr-
ain sky per-

son rider car truck bus train moto-
rcycle

bic-
ycle mean

1px
OCR 74.1 50.2 57.2 56.8 54.6 61.0 64.8 60.6 55.6 51.3 65.7 56.3 65.9 64.7 84.3 89.8 96.8 77.3 56.1 65.4
+Segfix 76.0 52.6 59.3 58.1 55.5 64.2 67.8 64.1 57.7 52.9 67.1 59.3 67.6 68.7 84.7 89.8 97.0 78.4 58.6 67.3 (↑1.9)
+IABL 74.6 51.0 57.4 53.7 50.8 62.1 74.7 65.1 55.7 52.3 66.8 60.1 68.9 67.0 84.6 90.3 96.4 79.5 61.5 67.0 (↑1.6)

3px
OCR 86.5 70.1 75.7 62.5 60.1 79.6 77.8 78.9 76.4 58.6 82.9 73.9 76.7 84.6 86.5 92.8 97.4 80.4 71.3 77.5
+Segfix 87.2 71.0 76.4 63.0 60.7 79.7 78.5 79.3 77.3 60.0 83.5 74.5 77.4 85.9 86.6 92.3 97.5 81.1 72.3 78.1 (↑0.6)
+IABL 86.2 70.1 75.4 59.4 56.3 80.7 86.9 81.9 76.5 60.1 84.1 77.6 80.4 86.1 87.2 93.2 97.0 83.1 76.9 78.9 (↑1.4)

5px
OCR 90.3 76.4 82.3 65.0 62.9 82.8 81.7 82.6 84.4 62.1 88.1 78.9 80.8 89.5 87.5 93.7 97.7 81.9 77.7 81.4
+Segfix 90.6 76.9 82.5 65.1 63.0 82.6 81.8 82.3 84.6 63.1 88.2 78.7 81.1 90.1 87.3 93.1 97.7 82.3 77.8 81.5 (↑0.1)
+IABL 89.8 76.4 81.8 61.7 58.6 83.8 89.9 84.9 84.3 63.3 89.1 82.2 84.1 90.6 88.1 94.0 97.2 84.6 82.5 82.5 (↑1.1)

Table 6: Class-wise Boundary F-score results obtained using multi-scale inference on the Cityscapes validation set.

Fine-tuning No YES YES YES YES
Loss CE CE CE+IoU CE+IFKL CE+IABL
J -mean 88.67 88.81 89.08 89.08 89.29
F -mean 89.86 90.25 90.66 90.63 90.82

Table 7: VOS results on DAVIS-2016 validation set.

(Boykov et al. 2006), this problem is converted to minimize
the regional integral. This behavior will weaken the influ-
ence of pixels near GTBs since the distance weights there
are much smaller, and the ratio of these pixels is small com-
pared to the image size. In contrast, ABL focuses on PDB
pixels, which can achieve better alignment.
VOS results. We fine-tune the state-of-the-art VOS network
STM (Oh et al. 2019) with our loss to verify that our method
can also be applied to VOS. Specifically, the STM is fine-
tuned for 1k iterations with batch size 4 on both DAVIS-
2016 (Perazzi et al. 2016b) and YouTube-VOS (Xu et al.
2018b) training data. The learning rate is set to 5e−8, and
the weight wa is set to 5.0. In Tab. 7, it can be seen that
fine-tuning with addition IABL can improve region similar-
ity metric J -mean and contour accuracy F -mean by around
0.7% and 1%, respectively, when testing on Davis-2016 val-
idation set. The definition of J -mean and F -mean can be
found in the DAVIS-2016 dataset. Similar to image segmen-
tation, training with CE+IABL can improve over CE+IoU
loss, which also verifies ABL’s contribution in VOS. How-
ever, adding FKL loss does not show superior performance.

Qualitative Results
Fig. 4 illustrates the progressive refinement of boundary
details when using IABL as the additional training loss.

Loss GDL GDL+BL GDL+ABL
DSC 0.727 0.748 0.768

HD(mm) 1.045 0.987 0.980

Table 8: BL vs. ABL on WMH validation set.

This result is obtained when training DeepLabV3 on the
Cityscapes dataset. It can be seen that the PDBs (red lines)
of the traffic light and other objects are pushed toward the
GTBs (blue lines). In Figs. 1 and 5, we show how adding
loss terms influences the quality of semantic boundaries.
The results show that the proposed ABL can greatly im-
prove the semantic boundary details. Fig. 6 illustrates the
improved boundary details when fine-tuning STM with ad-
ditional IABL. It also shows that fine-tuning with CE+IABL
can further improve the boundary details over CE+IoU, such
as the tail of motorcycle.

Conclusion
In this work, we proposed an active boundary loss to be used
in the end-to-end training of segmentation networks. Its ad-
vantage is that it allows the propagation of the ground-truth
boundary information using a distance transform so as to
regulate the network behavior at predicted boundaries. We
have demonstrated that integrating the ABL into the network
training can substantially improve the boundary details in
semantic segmentation.

In the future, it would be interesting to investigate how
to reduce conflicts in our loss to further control the network
behavior around boundaries efficiently. In addition, we plan
to explore how to design boundary-aware loss to improve
the boundary details in the task of depth prediction.
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Cremers, D.; and Van Gool, L. 2017. One-shot video object
segmentation. In IEEE Conf. Comput. Vis. Pattern Recog.,
221–230.
Chen, L.; Papandreou, G.; Schroff, F.; and Adam, H. 2017a.
Rethinking Atrous Convolution for Semantic Image Seg-
mentation. arXiv:1706.05587.
Chen, L.-C.; Barron, J. T.; Papandreou, G.; Murphy, K.; and
Yuille, A. L. 2016. Semantic image segmentation with task-
specific edge detection using cnns and a discriminatively
trained domain transform. In IEEE Conf. Comput. Vis. Pat-
tern Recog., 4545–4554.
Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; and
Yuille, A. L. 2017b. Deeplab: Semantic image segmenta-
tion with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE Trans. Pattern Anal. Mach. In-
tell., 40(4): 834–848.
Chen, X.; Lian, Y.; Jiao, L.; Wang, H.; Gao, Y.; and Shi,
L. 2020. Supervised Edge Attention Network for Accurate
Image Instance Segmentation. In Vedaldi, A.; Bischof, H.;
Brox, T.; and Frahm, J., eds., Eur. Conf. Comput. Vis., vol-
ume 12372 of Lecture Notes in Computer Science, 617–631.
Springer.
Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler,
M.; Benenson, R.; Franke, U.; Roth, S.; and Schiele, B.
2016. The cityscapes dataset for semantic urban scene un-
derstanding. In IEEE Conf. Comput. Vis. Pattern Recog.,
3213–3223.
Ding, H.; Jiang, X.; Liu, A. Q.; Thalmann, N. M.; and Wang,
G. 2019. Boundary-aware feature propagation for scene seg-
mentation. In Int. Conf. Comput. Vis., 6819–6829.

Ding, H.; Jiang, X.; Shuai, B.; Qun Liu, A.; and Wang, G.
2018. Context contrasted feature and gated multi-scale ag-
gregation for scene segmentation. In IEEE Conf. Comput.
Vis. Pattern Recog., 2393–2402.
Duta, I. C.; Liu, L.; Zhu, F.; and Shao, L. 2020. Pyra-
midal Convolution: Rethinking Convolutional Neural Net-
works for Visual Recognition. arXiv:2006.11538.
Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; and Lu, H.
2019a. Dual attention network for scene segmentation. In
IEEE Conf. Comput. Vis. Pattern Recog., 3146–3154.
Fu, J.; Liu, J.; Wang, Y.; Li, Y.; Bao, Y.; Tang, J.; and Lu, H.
2019b. Adaptive context network for scene parsing. In Int.
Conf. Comput. Vis., 6748–6757.
Gong, K.; Liang, X.; Li, Y.; Chen, Y.; Yang, M.; and Lin,
L. 2018. Instance-level human parsing via part grouping
network. In Eur. Conf. Comput. Vis., 770–785.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In IEEE Conf. Comput. Vis.
Pattern Recog., 770–778.
Hu, Y.-T.; Huang, J.-B.; and Schwing, A. 2017. Maskrnn:
Instance level video object segmentation. In Adv. Neural
Inform. Process. Syst., 325–334.
Kass, M.; and Witkin, A. 1988. Snakes: Active contour mod-
els. Int. J. Comput. Vis., 1: 321–331.
Ke, T.-W.; Hwang, J.-J.; Liu, Z.; and Yu, S. X. 2018. Adap-
tive affinity fields for semantic segmentation. In Eur. Conf.
Comput. Vis., 587–602.
Kervadec, H.; Bouchtiba, J.; Desrosiers, C.; Granger, E.;
Dolz, J.; and Ayed, I. B. 2019. Boundary loss for highly
unbalanced segmentation. In International conference on
medical imaging with deep learning, 285–296.
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