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Abstract

Single image deraining is an important and challenging task
for some downstream artificial intelligence applications such
as video surveillance and self-driving systems. Most of the
existing deep-learning-based methods constrain the network
to generate derained images but few of them explore fea-
tures from intermediate layers, different levels, and differ-
ent modules which are beneficial for rain streaks removal.
In this paper, we propose a high-order collaborative net-
work with multi-scale compact constraints and a bidirec-
tional scale-content similarity mining module to exploit fea-
tures from deep networks externally and internally for rain
streaks removal. Externally, we design a deraining framework
with three sub-networks trained in a collaborative manner,
where the bottom network transmits intermediate features to
the middle network which also receives shallower rainy fea-
tures from the top network and sends back features to the
bottom network. Internally, we enforce multi-scale compact
constraints on the intermediate layers of deep networks to
learn useful features via a Laplacian pyramid. Further, we
develop a bidirectional scale-content similarity mining mod-
ule to explore features at different scales in a down-to-up
and up-to-down manner. To improve the model performance
on real-world images, we propose an online-update learn-
ing approach, which uses real-world rainy images to fine-
tune the network and update the deraining results in a self-
supervised manner. Extensive experiments demonstrate that
our proposed method performs favorably against eleven state-
of-the-art methods on five public synthetic datasets and one
real-world dataset.

Introduction
Outdoor images taken in rainy conditions have limited vis-
ibility, which degrades the performance of various applica-
tions such as video surveillance and self-driving systems.
Hence, it is essential to recover the degraded images to im-
prove scene visibility and the performance of downstream
applications. This paper considers single image deraining.

A rainy image O can be modeled as a linear combination
of a rain-free image B and a rain streaks image R:

O = B +R. (1)
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Figure 1: Results on the real-world image (b-d) and the syn-
thetic Rain200H dataset (e). Our proposed method gener-
ates a better deraining result on the real-world image and
achieves the best performance-parameter trade-off on the
synthetic dataset.

Many deraining approaches have been developed based on
this simple rainy image model, including prior-based meth-
ods and deep-learning-based methods. Prior-based methods
usually explore empirical statistical properties of rain streaks
and rain-free images, such as image decomposition (Kang,
Lin, and Fu 2012), sparse coding (Luo, Xu, and Ji 2015;
Zhang and Patel 2017), low-rank representation (Chen and
Hsu 2013), and Gaussian mixture model (Li et al. 2016).
However, since the priors are based on empirical statisti-
cal observations, they do not hold when real-world complex
rainy conditions deviate from the simplified assumptions.

Recent years have witnessed the successful application of
deep learning methods to image deraining (Fu et al. 2017;
Yang et al. 2017; Li et al. 2018b; Zhang and Patel 2018;
Pan et al. 2018; Wang et al. 2019a; Jiang et al. 2020; Wang
et al. 2020b; Zamir et al. 2021; Wang et al. 2021; Pan
et al. 2021). Most of these methods develop joint learn-
ing networks (Zhang and Patel 2018; Hu et al. 2019; Jiang
et al. 2020) or explore multi-scale architectures (Wang et al.
2020b; Zhu et al. 2020; Zamir et al. 2021) for image de-
raining. The methods based on joint learning networks in-
clude density-guided multi-stream networks (Zhang and Pa-
tel 2018) and progressive networks motivated by patch sim-
ilarity and guided by multi-scale architectures (Jiang et al.
2020). While these methods are able to remove rain streaks
with the guiding networks, they do not perform well when
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the guiding process is not accurately estimated. In addition,
although multi-scale architectures have been demonstrated
to be effective, existing methods usually adopt a straight-
forward way to fuse features from different scales and do
not explore the properties of multi-scale features. Last but
not least, existing methods commonly use synthetic datasets
to train the deep models due to the lack of well-constructed
real-world datasets. However, the gap between synthetic and
real data limits the performance of these methods in real-
world applications.

Due to the difficulty of single image deraining, how to
fully utilize convolutional features from both shallow and
deep layers of a deep model and explore multi-scale fea-
tures are important for rain streaks removal. In addition, it
is essential to develop an effective algorithm to improve the
deraining performance on real-world images.

To this end, we propose a high-order collaborative net-
work with multi-scale compact constraints and a bidirec-
tional scale-content mining module to remove rain streaks.
The high-order collaborative design allows exploring fea-
tures from the shallower and deeper layers of different
sub-networks collaboratively, while the multi-scale compact
constraints are used to effectively learn features from in-
termediate convolutional layers and the bidirectional scale-
content mining module is embedded in an encoder-decoder
network to explore features of different scales.

Specifically, the high-order collaborative design contains
three sub-networks (bottom, middle, and up) which are
learned in a collaborative manner, where the bottom network
transmits intermediate features to the middle network which
also receives shallower rainy features from the top network
and sends back features to the bottom network. The middle
and top networks provide deep supervision for the bottom
network to better learn and transmit shallow rainy features to
higher layers to facilitate deraining. To generate more use-
ful features from a deep network internally, we propose to
enforce multi-scale compact constraints on the intermediate
layers to learn better features with Laplacian pyramid im-
ages. In addition, we develop a bidirectional scale-content
similarity mining module in a down-to-up (down2up) and
up-to-down (up2down) manner to capture long-range depen-
dencies between features at different scales, which is em-
bedded in an encoder-decoder architecture to explore useful
features.

Finally, to improve the model performance on real-world
images, we propose a simple yet effective online-update
learning approach, to fine-tune the model trained on syn-
thetic datasets using real-world data in a self-supervised
manner with a KL-Divergence loss function. The proposed
network design and online-update learning approach enable
our model to achieve state-of-the-art deraining performance,
especially on real-world images, as illustrated in Fig. 1.

The main contributions of this paper include:

• We propose a collaborative deraining framework with
multi-scale compact constraints to control the learning
process in an external and internal manner, with a new
bidirectional scale-content similarity mining module to
adaptively learn richer feature representations.

• We present a simple yet effective online-update learn-
ing approach to fine-tune the model trained on syn-
thetic datasets to adapt to real rainy conditions in a self-
supervised manner for real-world image deraining.

• We conduct extensive experiments and ablation studies
to evaluate the proposed method. The results demonstrate
that our method performs favorably against state-of-the-
art methods with fewer parameters on both synthetic and
real-world datasets.

Related Work
In this section, we briefly review recent works on image de-
raining, which are based on deep learning, as well as some
image restoration methods based on similarity mining.

Single Image Deraining
In recent years, deep-learning-based approaches have domi-
nated the research of image deraining due to the strong rep-
resentation learning ability of deep neural networks. Fu et al.
(2017) observe that high-frequency details provide more
rain streaks details and less background interference and
design a deep detail residual network to learn rain streaks.
Some deraining methods explore the properties of multi-
scale images. Wang et al. (2020b) propose a cross-scale
framework to fuse features of different scales from sub-
networks. Jiang et al. (2020) design a multi-scale progres-
sive fusion network to transmit and fuse small-scale features
to the original scale based on the similarity of multi-scale
images. Recurrent networks are also used for deraining. Li
et al. (2018b) develop a recurrent squeeze-and-excitation
network with dilation convolution to model channel con-
text relation. Ren et al. (2019) propose a progressive re-
current network to remove rain streaks stage by stage and
analyze the effect of inputs, outputs, and loss functions for
image deraining. Some non-local methods are based on at-
tention mechanisms. Li et al. (2018a) propose to embed a
non-local module to an encoder-decoder framework to cap-
ture long-range feature dependency for improving represen-
tation learning. Wang et al. (2020a) attempt to combine self-
attention and scale-aggregation in a self-calibrated network.
Besides, some semi-supervised approaches have been pro-
posed for removing rain streaks in real-world images. For
example, Wei et al. (2019) develop a semi-supervised trans-
fer learning approach, and Yasarla, Sindagi, and Patel (2020)
design a Gaussian-process-based model that learns on both
synthetic and real data.

Different from the above works, our proposed method
aims to explore inner structures and useful features of the
deraining network in an external and internal manner to train
the network for better rain streaks removal. We also propose
an effective online-update learning approach to fine-tune the
model trained with synthetic data on real data for real-world
image deraining.

Similarity Mining
Similarity mining aims to find the most matched content at
the feature level. Mei et al. (2020b) study cross-scale feature
mining by exploring the inherent properties of images for
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Figure 2: Proposed high-order collaborative networks with
multi-scale compact constraints. Each network moduleNmn
has a same encoder-decoder structure with the bidirectional
scale-content similarity minding module shown in Fig. 3.

single image super-resolution. Mei et al. (2020a) mine the
similarity from coarser to finer levels in a multi-scale man-
ner for image restoration. Different from these works that
only explore single directional mining (from coarser to finer
levels), we in this paper design a bidirectional scale-content
similarity mining module to adaptively learn richer features
for better deraining.

Proposed Method
In this section, we introduce each element of the proposed
method including high-order collaborative network, multi-
scale compact constraint, encoder-decoder structure with a
bidirectional scale-content similarity mining module, super-
vised loss function, and online-update learning.

High-order Collaborative Networks
How to exploit features from the intermediate layers and dif-
ferent modules in a collaborative manner is important for
image restoration. Here, we design an effective high-order
collaborative network1 to assist each sub-network to learn
features in an external manner for better image deraining.
The overall network structure of the high-order collabora-
tive network is shown in Fig. 2, which consists of three
sub-networks with similar structure. The bottom (B), middle
(M), and top (T ) sub-networks respectively contain three,
two, and one encoder-decoder component with a bidirec-
tional scale-content similarity mining module that will be
explained in detail in Sec. .

The three sub-networks can transmit shallower and deeper
rainy features to each other in a collaborative manner to im-
prove the performance of the deraining network B. Note that
M and T are supervised by ground truth, which can be re-
garded as a sort of deep supervision in an external manner
such thatM and T can transmit useful features to assist B
to learn better features for deraining. The three sub-networks
are trained by:

Lcollaborative =
∑3
i=1 αi

(
− SSIM(B̂i, B)

)
, (2)

1We regard two-stream networks as collaborative networks and
three-stream networks as high-order.

where {B̂i} (i = 1, 2, 3) denote the output of networks B,
M, and T respectively, B is the ground truth, and αi are
weight parameters.

Multi-Scale Compact Constraints
Although the high-order collaborative design enables the
bottom sub-network B to exploit deeper and shallower fea-
tures from the other two sub-networks, the features of each
intermediate convolutional layer are learned without any
constraints, making the solution space too large.

To regularize the solution space of intermediate convo-
lutional layers, we design multi-scale compact constraints
(MSCC) in an internal manner to enforce the network mod-
ulesN11,N12, andN21, which are parts of the sub-networks
B and M, to learn more useful features to facilitate im-
age deraining. The multi-scale compact constraints are moti-
vated by the multi-scale Laplacian images which can better
model image structures than the original scale image. We
use them to constrain the intermediate convolutional layers
of the network.

We first obtain the Laplacian pyramid images and then use
the scaled images to constrain the modulesN11,N12,N21 as
shown in Fig. 2. Specifically, the multi-scale compact con-
straints are enforced by:

Lmscc =
∑2
j=1 βj

(
− SSIM(B̂ 1

2j
, B 1

2j
)
)
, (3)

where B̂ 1

2j
are the output of intermediate layers as denoted

in Fig. 2, B 1

2j
are the corresponding 1

2j scale Laplacian
pyramid rain-free images, and βj are weight parameters.

Encoder and Decoder with BiSCSM
Further, we develop a bidirectional scale-content similarity
mining module (BiSCSM) to explore similar features from
different scales, which is motivated by Mei et al. (2020c,b).
The architecture is shown in Fig. 3.

The proposed BiSCSM contains Down2Up mining and
Up2Down mining modules. The Up2Down mining module
is defines as:

yp×pi,j = 1
σ(x,z)

∑
g,h φ(x

p×p
i,j , zp×pu,v )θ(xp×pg,h ), (4)

where φ(xp×pi,j , zp×pu,v ) = e(Wfx
p×p
i,j )T (Wgz

p×p
u,v ), θ =

Wθx
p×p
g,h , σ =

∑
u,v φ(x

p×p
i,j , zp×pu,v ), yp×pi,j is a p × p fea-

ture patch located at (i, j), and Wf ,Wg,Wθ are learnable
filters. The Down2Up mining module is defined similarly as
shown in Fig. 4.

Our proposed BiSCSM is different from the one in Mei
et al. (2020c,b) which only mines patch similarity in a sin-
gle direction. Our Down2Up mining and Up2Down mining
modules enable capturing bidirectional similar content from
large to small scales and from small to large scales to mine
rich rainy features. The BiSCSM is embedded in an encoder-
decoder framework as in Fig. 3 to learn useful features for
rain streaks removal. We also use positional embedding to
encode relations among rain streak features. Finally, we fuse
the learned features at difference scales.
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Figure 3: Proposed encoder and decoder with a bidirectional
scale-content similarity mining module. The Down2Up and
Up2Down mining modules are shown in Fig. 4.
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Figure 4: The scale-content similarity mining modules.

Supervised Loss Function
Based on the above network design, the overall loss function
for training on synthetic datasets is:

Lsynthetic = Lcollaborative + Lmscc. (5)

Online-update Learning
Since a deraining model trained on synthetic data normally
does not generalize well to real-world images, we propose
an online-update learning approach to fine-tune the model
on real-world rainy images. The key challenges are two-fold.
The first is that there are no ground-truth images available
for training. The second is how to keep the training stable
and improve the model performance. To address these is-
sues, we use the derained results of real-world images gen-
erated by the model trained on synthetic data as pseudo
ground truth and update the pseudo ground truth at each
epoch with the fine-tuned model. The loss function is based
on Kullback-Leibler divergence and defined as:

Lreal = ||B̂k − B̂k−1||1︸ ︷︷ ︸
content term

+λKLLoss(R̂
k, R̂k−1

random)︸ ︷︷ ︸
regularization term

,
(6)

where B̂k and B̂k−1 are the deraining results of a real-world
rainy imageO generated by the model B at epoch k and k−1
respectively. Note that B̂0 is the initial deraining result pro-
duced by B after training on synthetic data. R̂k = O− B̂k is
the estimated rain streaks of O. R̂k−1

random = Orandom− B̂k−1
random

Real-world Rainy Images

Synthetic Rainy Images

푘 = 푘+ 1

푘 = 푘+ 1

Supervision

Supervision

Figure 5: Proposed online-update learning approach.

Algorithm 1: Online-update Learning on Real-world Data

Preparation: The initial deraining result B̂0 of a real-world
image O generated by the model trained on synthetic data.
Input: {O, B̂0}.
Output: Derained image {B̂}.
1: While k ≤ EpochReal do:
2: Randomly crop training image pairs {O, B̂k−1}
3: Randomly select a real-world rainy image Orandom

and obtain R̂k−1
random = Orandom − B̂k−1

random
4: Update the deraining model by Eq. (6)
5: Output the current deraining result: {B̂k}
6: Update the pseudo ground truth:{B̂k−1} ←{B̂k}
7: k← k + 1
8: End while

is the estimated rain streaks of a randomly selected real-
world rainy image Orandom and B̂k−1

random is the deraining re-
sult of Orandom at epoch k − 1. The first term of Eq. (6) en-
sures the content of image background consistent between
different epochs and keeps the training stable, and the sec-
ond term is a regularization term that enforces similarity in
rain streaks and improves the deraining performance as the
training proceeds (see Fig. 11). The fine-tuning process is
illustrated in Fig. 5 and described in Alg. 1.

Experiments
We compare the proposed approach with 11 state-of-
the-art methods (SOTAs), including RESCAN (Li et al.
2018b), NLEDN (Li et al. 2018a), SSIR (Wei et al. 2019),
PreNet (Ren et al. 2019), SpaNet (Wang et al. 2019b),
DCSFN (Wang et al. 2020b), MSPFN (Jiang et al. 2020),
DRDNet (Deng et al. 2020), RCDNet (Wang et al. 2020c),
Syn2Real (Yasarla, Sindagi, and Patel 2020), and MPR-
Net (Zamir et al. 2021), on five widely used synthetic
datasets and a real-world dataset.

Datasets and Evaluation Criteria
Synthetic dataset We use Rain200H (Yang et al. 2017),
Rain200L (Yang et al. 2017), Rain1200 (Zhang and Patel
2018), Rain1400 (Fu et al. 2017), and Rain12 (Li et al.
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Methods Rain200H Rain200L Rain1200 Rain1400 Rain12 # ParamPSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
RESCAN (ECCV’18) 26.661 0.8419 36.993 0.9788 32.127 0.9028 30.969 0.9117 32.965 0.9545 0.15M
NLEDN (MM’18) 27.315 0.8904 36.487 0.9792 32.473 0.9198 31.014 0.9206 33.028 0.9615 1.01M
SSIR (CVPR’19) 14.420 0.4501 23.476 0.8026 24.427 0.7713 25.772 0.8224 24.138 0.7768 0.06M
PreNet (CVPR’19) 27.525 0.8663 34.266 0.9660 30.456 0.8702 30.984 0.9156 35.095 0.9400 0.17M
SpaNet (CVPR’19) 25.484 0.8584 36.075 0.9774 27.099 0.8082 29.000 0.8891 33.217 0.9546 0.28M
DCSFN (MM’20) 28.469 0.9016 37.847 0.9842 32.275 0.9228 31.493 0.9279 35.803 0.9683 6.45M
MSPFN (CVPR’20) 25.553 0.8039 30.367 0.9219 30.382 0.8860 31.514 0.9203 34.253 0.9469 21.00M
DRDNet (CVPR’20) 15.102 0.5028 37.465 0.9806 28.386 0.8574 28.359 0.8574 25.435 0.7550 5.23M
RCDNet (CVPR’20) 28.698 0.8904 38.400 0.9841 32.273 0.9111 31.016 0.9164 31.038 0.9069 3.67M
Syn2Real (CVPR’20) 14.495 0.4021 31.035 0.9365 28.812 0.8400 28.582 0.8586 28.434 0.9038 2.62M
MPRNet (CVPR’21) 29.949 0.9151 36.610 0.9785 33.655 0.9310 32.257 0.9325 36.578 0.9696 3.64M
Ours 29.985 0.9218 39.284 0.9875 33.718 0.9327 32.617 0.9334 36.851 0.9714 2.04M

Table 1: Quantitative results on five synthetic datasets. ↑ denotes higher is better.

(a) Input (b) DCSFN (c) MSPFN (d) DRDNet (e) RCDNet (f) Syn2Real (g) MPRNet (h) Ours (i) GT

Figure 6: Comparison with state-of-the-art methods on synthetic datasets. The proposed network is able to restore better texture.

2016) as the synthetic datasets for training and evaluation.
Rain200H is the most challenging dataset, which has 1800
image pairs for training and 200 pairs for testing. Rain200L
is the easiest dataset with the same number of training and
testing samples as Rain200H. Rain1200 has images with
heavy, middle, and light rain, and there are 4000 training
images and 400 testing images for each density. Rain1400
has 12600 training samples and 1400 testing samples. Since
Rain12 only contains 12 testing samples, we use the model
trained on Rain200H to test the deraining results. We use
Rain200H as the dataset for ablation study and analysis.

Real-world dataset Yang et al. (2017), Li et al. (2019),
and Wang et al. (2020a) provide a large body of real-world
rainy images. We use them to evaluate the deraining results
on real-world data.

Evaluation criteria We use two widely used metrics, peak
signal to noise ratio (PSNR) (Huynh-Thu and Ghanbari
2008) and structural similarity index measure (SSIM) (Wang
et al. 2004) to evaluate the quality of restored images on syn-
thetic datasets. As there are no ground-truth for real-world
rainy images, we only compare the results visually.

Implementation Details
We set the number of channels of each convolutional layer
except the last one as 20, and LeakyReLU with α = 0.2
is used after each convolutional layer except for the last
one. For the last layer, we use 3 × 3 convolution without
any activation function in B,M, and T . We randomly crop
128×128 image patches as input, and the batch size is set as
12. We use ADAM optimizer (Kingma and Ba 2015) to train
the network. The initial learning rate is 0.0005, which will be
divided by 10 at the 300-th and 400-th epochs, and the model
training terminates after 500 epochs. We set λ = 0.0001,
α1 = 1, α2 = 1, α3 = 1, β1 = 0.05, and β2 = 0.001. We

train the model for 30 epochs on the real-world dataset, i.e.,
EpochReal = 30. Our model is trained with four NVIDIA
RTX TITAN GPUs on the Pytorch platform.

Results and Analysis on Synthetic Datasets
Comparisons with SOTAs on Synthetic Datasets Tab. 1
reports the results of our method and SOTAs on five syn-
thetic datasets. We can see that our method achieves the best
results on all tested datasets in PSNR and SSIM. We further
show some deraining results in Fig. 6. It can be observed
that our method can restore better details and textures and
obtain clearer background images, while other approaches
hand down some rain streaks or lose some details.

Analysis on BiSCSM We analyze the effect of different
components of BiSCSM and report the results in Tab. 2.
Note that the method (M1) does not generate better results if
we remove BiSCSM from the encoder-decoder framework.
Furthermore, we replace the Down2Up and Up2Down op-
erations in BiSCSM by element-wise summation (M2) and
1 × 1 convolution (M3) to fuse features at different scales.
We find that both operations do not perform well compared
to the proposed ones, demonstrating the effectiveness of the
mining modules. Fig. 7 visualizes the feature maps before
and after BiSCSM. One can see that the features are sig-
nificantly enhanced after BiSCSM. We also test the single-
directional mining modules, i.e., using Down2Up (M4) or
Up2Down (M5) mining module alone, and the results show
the bidirectional manner is better and can mine richer fea-
tures for better deraining (M4 and M5 vs. M7). Finally, we
observe that position awareness can improve the deraining
performance (M6 vs. M7).

Analysis on MSCC Compared with deep models that
have no constraints on intermediate layers, our proposed
MSCC can make the deep network more compact and learn
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M1 M2 M3 M4 M5 M6 M7

Sum % " % % % % %

Conv1×1 % % " % % % %

Down2Up % % % " % % %

Up2Down % % % % " % %

BiSCSM % % % % % " "

Position % " " " " % "
PSNR ↑ 29.583 29.625 29.541 29.393 29.828 29.953 29.985
SSIM ↑ 0.9168 0.9177 0.9156 0.9172 0.9201 0.9218 0.9218

Table 2: Ablation study of BiSCSM. "and %denote that
the corresponding component is adopted and not adopted,
respectively.

(a) Input (b) Before (c) After

Figure 7: Visualization of the feature maps before and after
BiSCSM.

R1 R2 R3 R4 R5

1/2 Scale % " % % "

1/4 Scale % % " % "

Full Scale % % % " %
PSNR ↑ 29.824 29.879 29.839 29.970 29.985
SSIM ↑ 0.9195 0.9209 0.9204 0.9211 0.9218

Table 3: Ablation study of the multi-scale compact con-
straints.

more useful features. Tab. 3 shows the results of different
types of constraints. We observe that the model without any
contraints (R1) performs the worst, while the results get bet-
ter as we add different constraints and reach the best when
both 1/2 (R2) and 1/4 (R3) scale constraints are added.

We also consider replacing the 1/2 and 1/4 scale images
with full-scale images to constrain the network. The com-
parison between R4 and R5 demonstrates that full-scale im-
ages are less effective than the multi-scale images, which is
probably due to the better structures of Laplacian pyramid
images.

Ablation Study on Collaborative Learning We conduct
an ablation study of the proposed collaborative network in
Tab. 4. The results show that the model achieves the best
performance when the sub-networks T and M are learned
with B in a collaborative manner.

We also consider a case by cascading the three sub-
networks to form a deep network model. Specifically, we
cascade the network modulesN11,N12,N13,N21,N22, and
N31 and ensure the cascaded network has roughly the same
number of parameters as the collaborative network. We find
that the cascaded network does not perform as well as the
collaborative network, which further demonstrates the effec-
tiveness of the proposed collaborative learning manner.

w/o T &M w/o T Cascaded w/ T &M
PSNR ↑ 29.563 29.355 29.642 29.985
SSIM ↑ 0.9158 0.9146 0.9188 0.9218

Table 4: Ablation study on collaborative learning.

(a) PSNR (b) SSIM

Figure 8: Comparison between single-stream learning and
collaborative learning.
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Figure 9: Further ablation study on collaborative learning
(CL) and multi-scale compact constraints (MSCC).

Comparison between Single-stream Learning and Col-
laborative Learning In Fig. 8, we provide the compar-
ison of the performance of each sub-network trained in
single-stream learning and collaborative learning manners
for image deraining. Single-stream learning means training
the sub-networks T , M, and B independently. The results
show that the sub-networks trained by collaborative learn-
ing preform much better than by single-stream learning. It
can be also observed that the sub-network T trained by col-
laborative learning generates comparable results as the sub-
network B trained by single-stream learning, while the size
of T is two-thirds of B.

Further Ablation Study on Collaborative Learning and
Multi-scale Compact Constraints Fig. 9 provides a fur-
ther ablation study of collaborative learning and multi-scale
compact constraints, where the learning curves of different
variants are plotted. The results show that both collabora-
tive learning and multi-scale compact constraints are use-
ful for improving the deraining performance. It can also be
observed that without either collaborative learning or multi-
scale compact constraints, the models perform worse than
the cascaded network, which further demonstrates the effec-
tiveness of the proposed external and internal learning man-
ners for the deraining task.
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(a) Input (b) DCSFN (c) MSPFN (d) DRDNet (e) RCDNet (f) Syn2Real (g) MPRNet (h) Ours

Figure 10: Comparisons with state-of-the-art methods on real-world images. Our proposed online-update learning approach is
able to deal with various rainy conditions to better remove rain streaks and even haze and recover clearer images.

(a) (b) (c) (d)

Figure 11: Ablation study of the proposed online-update
learning approach. (a) Input. (b) Only trained on syn-
thetic data. (c) Directly fine-tuned on real-world images. (d)
Online-update learning on real-world images.

Results and Analysis on Real-world Datasets
Comparisons with SOTAs on Real-world Images We
further demonstrate the effectiveness of our method on the
real-world dataset by comparing with state-of-the-art meth-
ods. Fig. 10 presents the deraining results of several chal-
lenging cases. It can be observed that our method produces
cleaner and clearer deraining results than others, demon-
strating its effectiveness in removing rain streaks of real-
world rainy images.

Effectiveness of the Online-update Learning Approach
Fig. 11 presents the ablation study of the online-update
learning manner. Compared with only using synthetic data to
train the model (Fig. 11(b)) or directly fine-tuning the model
on real-world images without updating the pseudo ground
truth (Fig. 11(c)), our proposed online-update learning man-
ner (Fig. 11(d)) is able to further improve the deraining per-
formance on real-world images, demonstrating its effective-
ness.

Generality of the Online-update Learning Approach
To further demonstrate the effectiveness of the online-update
learning approach for real-world image deraining, we apply
it on a state-of-the-art method, DCSFN (Wang et al. 2020b).
Similar to Fig. 11, Fig. 12 presents the results on a real-
world rainy image by different ways of learning. It can be
seen that the proposed online-update learning approach can
be successfully applied to DCSFN to significantly improve
its deraining performance on real-world images. Since the
online-update learning approach is generic, we believe it be

(a) (b) (c) (d)

Figure 12: Applying the proposed online-update learning ap-
proach on DCSFN (Wang et al. 2020b). (a) Input. (b) Only
trained on synthetic data. (c) Directly fine-tuned on real-
world images. (d) Online-update learning on real-world im-
ages.

applied to many other existing methods to improve their per-
formance in real-world image deraining.

Conclusion

In this paper, we have proposed a high-order collaborative
network with multi-scale compact constraints to control the
learning process in an external and internal manner for im-
age deraining. We have further developed a bidirectional
scale-content similarity mining module to learn useful fea-
tures at different scales in a down-to-up and up-to-down
way to facilitate rain streaks removal. Finally, to improve
the deraining performance on real-world images, we have
proposed an effective online-update learning approach to
fine-tune the deraining model on real-world rainy images in
a self-supervised manner. Extensive experiments show that
the proposed model outperforms state-of-the-art methods on
five public synthetic datasets and one real-world dataset.
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