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Abstract

Attention mechanism has been widely believed as the key
to success of vision transformers (ViTs), since it provides
a flexible and powerful way to model spatial relationships.
However, is the attention mechanism truly an indispensable
part of ViT? Can it be replaced by some other alternatives?
To demystify the role of attention mechanism, we simplify
it into an extremely simple case: ZERO FLOP and ZERO
parameter. Concretely, we revisit the shift operation. It does
not contain any parameter or arithmetic calculation. The only
operation is to exchange a small portion of the channels
between neighboring features. Based on this simple opera-
tion, we construct a new backbone network, namely ShiftViT,
where the attention layers in ViT are substituted by shift op-
erations. Surprisingly, ShiftViT works quite well in several
mainstream tasks, e.g., classification, detection, and segmen-
tation. The performance is on par with or even better than
the strong baseline Swin Transformer. These results suggest
that the attention mechanism might not be the vital factor that
makes ViT successful. It can be even replaced by a zero-
parameter operation. We should pay more attentions to the
remaining parts of ViT in the future work. Code is available
at github.com/microsoft/SPACH.

Introduction
Designing backbone networks plays a fundamental role
in computer vision. Since the revolutionary progress of
AlexNet (Krizhevsky, Sutskever, and Hinton 2012), convo-
lution neural networks (CNNs) have dominated this area
for nearly 10 years. However, the recently developed Vision
Transformers (ViTs) have shown potential to challenge this
throne. The advantage of ViT was first demonstrated in im-
age classification task (Dosovitskiy et al. 2020), where the
ViT backbone outperforms its CNN counterparts by a re-
markable margin. Thanks to the promising results, the flour-
ish of ViT variants rapidly broadcasts to many other com-
puter vision tasks, such as object detection, semantic seg-
mentation, and action recognition.

Despite the impressive performances of recent ViT vari-
ants, it is still not yet clear what makes ViT good for vi-
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Figure 1: An illustration of our shift building block. We pro-
pose to replace the attention layer with a simple shift oper-
ation in vision transformers. It spatially shifts a small por-
tion of the channels along four directions, and the rest of the
channels remain unchanged.

sual recognition tasks. Some conventional wisdom leans to
credit the success to the attention mechanism, since it pro-
vides a flexible and powerful way to model spatial relation-
ships. Concretely, the attention mechanism leverages a self-
attention matrix to aggregate features from arbitrary loca-
tions. Compared with the convolution operation in CNN, it
has two significant strengths. First, this mechanism opens a
possibility to simultaneously capture both short- and long-
ranged dependencies, and get rid of the local restriction of
the convolution. Second, the interaction between two spatial
locations dynamically depends on their own features, rather
than a fixed convolutional kernel. Due to such good proper-
ties, some pieces of work believe it is the attention mecha-
nism that facilitates the powerful expressive ability of ViTs.

However, are these two advantages truly the key to suc-
cess? The answer is probably NOT. Some existing work
proves that, even without these properties, the ViT variants
can still work well. For the first one, the fully-global depen-
dencies may not be inevitable. More and more ViTs intro-
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duce a local attention mechanism to restrict their attention
scope within a small local region, e.g., Swin Transformer
(Liu et al. 2021b) and Local ViT (Li et al. 2021). The exper-
iments show that the performance does not drop due to the
local restriction. Besides, another line of research investi-
gates the necessity of the dynamic aggregation. MLP-Mixer
(Tolstikhin et al. 2021) proposes to substitute the attention
layer with a linear projection layer, where the linear weights
are not dynamically generated. In this case, it can still reach
a leading performance on the ImageNet dataset.

Now that both global and dynamic properties might not be
crucial for the ViT framework, what is the essential reason
for the success of ViT? To figure it out, we further simplify
the attention layer into an extremely simple case: NO global
scope, NO dynamics, and even NO parameter and NO arith-
metic calculation. We desire to know whether ViT can retain
the good performance under this extreme case.

Conceptually, this zero-parameter alternative must rely on
the handcrafted rule to model spatial relationships. In this
work, we revisit the shift operation, which we believe is one
of the simplest spatial modeling module. As depicted in Fig-
ure 1, the standard ViT building block consists of two parts:
the attention layer and the feed-forward network (FFN). We
replace the former attention layer with a shift operation,
while keeping the latter FFN part untouched. Given an input
feature, the proposed building block will first shift a small
portion of the channels along four spatial directions, namely
left, right, top, and down. As such, the information of neigh-
boring features is explicitly mingled by the shifted channels.
Then, the subsequent FFN performs channel-wise mixing to
further fuse the information from neighbors.

Based on this shift building block, we construct a ViT-like
backbone network, namely ShiftViT. Surprisingly, this back-
bone can also work well for the mainstream visual recog-
nition tasks. The performance is on par with or even bet-
ter than the strong Swin Transformer baseline. Concretely,
within the same computational budgets as Swin-T model,
our ShiftViT achieves a top-1 classification accuracy of
81.7% (against Swin-T’s 81.3%) on ImageNet dataset. For
the dense prediction task, it attains a mean average precision
(mAP) score of 45.7% (against Swin-T’s 43.7%) on COCO
detection dataset, and a mean IoU (mIoU) score of 46.3%
(against Swin-T’s 44.5%) on ADE20k segmentation dataset.

Since the shift operation is already the simplest spatial
modelling module, the excellent performance must come
from the remaining components, e.g., the linear layers and
the activation function in FFN. These components are less
studied in existing work, because they look trivial. However,
to further demystify the reasons why ViT works, we argue
that we should pay more attentions to these components, in-
stead of just focusing on the attention mechanism. We hope
our work can shed a new light on the ViT research. As a
summary, the contributions of this work are two folds:

• We present a ViT-like backbone, where the vanilla atten-
tion layer is replaced by an extremely simple shift op-
eration. The proposed model can achieve an even better
performance than Swin Transformer.

• We analyze the reasons behind the success of ViTs. It

hints that the attention mechanism might not be the vital
factor that makes ViT work. We should take the remain-
ing components seriously in the future study of ViTs.

Related Work
Attention and Vision Transformers
Transformer architecture (Vaswani et al. 2017) is first in-
troduced in the area of natural language processing (NLP).
It solely adopts attention mechanism to build the connec-
tions between different language tokens. Thanks to the great
performance, Transformers have rapidly dominated the NLP
area and become the de facto standard.

Inspired by the successful application in NLP, attention
mechanism has also received increasing interests from the
computer vision community. The early explorations can be
roughly divided into two categories. On the one hand, some
literature considers attention as a plug-and-play module,
which can be seamlessly integrated into the existing CNN ar-
chitectures. The representative work includes non-local net-
work (Wang et al. 2018), relation network (Hu et al. 2018),
and CCNet (Huang et al. 2019). On the other hand, some
pieces of work aim to substitute all convolution operations
with the attention mechanism, such as local relation network
(Hu et al. 2019) and self-attention network (Zhao, Jia, and
Koltun 2020).

Although these two kinds of work have shown promis-
ing results, they are still built on the CNN architecture. ViT
(Dosovitskiy et al. 2020) is the pioneering work that lever-
ages a pure transformer architecture for visual recognition
tasks. Thanks to its impressive performance, the community
recently bursts out a rising wave of research on vision trans-
formers. Along this line of research, the main focus is to
improve the attention mechanism, so that it can satisfy the
intrinsic properties of visual signals. For example, MSViT
(Fan et al. 2021) builds hierarchical attention layers to obtain
multi-scale features. Swin Transformers (Liu et al. 2021b)
introduces a locality constrain into its attention mechanism.
The related efforts also include pyramid attention (Wang
et al. 2021), local-global attention (Li et al. 2021), cross at-
tention (Chen, Fan, and Panda 2021), to name a few.

Unlike the particular interests in attention mechanism, the
remaining components of ViT are less studies. DeiT (Tou-
vron et al. 2020) has setup a standard training pipeline for vi-
sion transformers. Most follow-up work inherits its setting,
and only make some modifications on the attention mech-
anism. Our work also follows this paradigm. However, the
goal of this work is not to complex the design of attention.
On the contrary, we aim to show that the attention mecha-
nism might not be the critical part of making ViTs work. It
can be even replaced by an extremely simple shift operation.
We hope these results can inspire researchers to rethink the
role of attention mechanism.

MLP Variants
Our work is related to the recent multi-layer-perceptron
(MLP) variants. Specifically, MLP variants propose to ex-
tract image features through a pure MLP-like architecture.
They also jump out of the attention-based framework in
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Figure 2: (a) The overall architecture of our ShiftViT. We follow Swin Transformer (Liu et al. 2021b) to build hierarchical
representations. (b) The detail design of a shift block. We only use a simple shift operation to model spatial relationships.

ViT. For example, instead of using the self-attention ma-
trix, MLP-Mixer (Tolstikhin et al. 2021) introduces a token-
mixing MLP to directly connect all spatial locations. It elim-
inates the dynamic property of ViT, but without losing accu-
racy. The follow-up work investigates more MLP designs,
like the spatial gating unit (Liu et al. 2021a) or cyclic con-
nection (Chen et al. 2021).

Our ShiftViT can be also categorized into the pure MLP
architecture, where the shift operation is viewed as a spe-
cial token-mixing layer. Compared with the existing MLP
work, our shift operation is even much simpler, since it con-
tains no parameter and no FLOP. Moreover, the vanilla MLP
variants fail to handle variable input size because of the fixed
linear weights. Our shift operation overcomes this obstacle
and therefore make the backbone feasible for more vision
tasks like object detection and semantic segmentation.

Shift Operation

Shift operation is not new in computer vision. As early as
in 2017, it was proposed to be an efficient alternative to the
spatial convolution operation (Wu et al. 2018). Concretely, it
uses a sandwich-like architecture, two 1×1 convolutions and
a shift operation, to approximate a K × K convolution. In
the follow-up work, the shift operation is further extended
into different variants, such as active shift (Jeon and Kim
2018), sparse shift (Chen et al. 2019) and partial shift (Lin,
Gan, and Han 2019).

In this work, we adopt the partial shift operation (Lin,
Gan, and Han 2019). It is notable that the goal of this work
is not to present a novel operation. Instead of that, we inte-
grate the existing shift operation with the popular ViT to ver-
ify the effectiveness of attention mechanism. The similar vi-
sion are shared with the concurrent work ShiftMLP (Yu et al.
2021) and AS-MLP (Lian et al. 2021), but the design details
are quite different. Their building blocks are more complex,
which involve some auxiliary layers like pre-transformation
and post-transformation.

Shift Operation Meets Vision Transformer
Architecture Overview
For a fair comparison, we follow the architecture of Swin
Transformer (Liu et al. 2021b). The architecture overview is
illustrated in Figure 2 (a). Specifically, given an input image
of shape H × W × 3, it first splits the images into non-
overlapping patches. The patch size is 4 × 4 pixels. There-
fore, the output of patch partition is is H

4 × W
4 tokens, where

each token has a channel size of 48.
The modules followed by can be divided into 4 stages.

Each stage contains two parts: embedding generation and
stacked shift blocks. For the embedding generation of the
first stage, a linear projection layer is used to map each token
into an embedding of channel size C. For the rest stages, we
merge neighbouring patches through the convolution with a
kernel size of 2× 2. After patch merging, the spatial size of
the output is half down-sampled, while channel size is twice
the input, i.e., from C to 2C.

The stacked shift block is built by some repeated basic
units. The detail design of each shift block is shown in Fig-
ure 2 (b). It composes of a shift operation, a layer normaliza-
tion and a MLP network. This design is almost the same as
the standard transformer block. The only difference is that
we use a shift operation rather than a attention layer. For
each stage, the number of shift blocks can be various, which
is denoted as N1, N2, N3, N4 respectively. In our implemen-
tation, we carefully choose the value of Ni so that the overall
model share a similar number of parameters with the base-
line Swin Transformer model.

Shift Block
The detail architecture of our shift block is depicted in
Figure 2 (b). Specifically, this block consists of three
sequentially-stacked components: shift operation, layer nor-
malization and MLP network.

Shift operation has been well studied in CNNs. It can have
many design choices, such as active shift (Jeon and Kim
2018) and sparse shift (Chen et al. 2019). In this work, we
follow the partial shift operation in TSM (Lin, Gan, and Han
2019). The illustration is presented in Figure 1 (b). Given an
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input tensor, a small portion of channels will be shifted along
4 spatial directions, namely left, right, top, and down, while
the remaining channels keep unchanged. After shifting, the
out-of-scope pixels are simply dropped and the vacant pixels
are zero padded. In this work, the shift step is set to 1 pixel.

Formally, we assume that the input feature z is of shape
H ×W ×C, where C is the number of channels, H and W
are spatial height and width, respectively. The output feature
ẑ has the same shape as input. It can be written as:

ẑ[0 : H, 1 : W, 0 : γC]← z[0 : H, 0 : W − 1, 0 : γC]

ẑ[0 : H, 0 : W − 1, γC : 2γC]← z[0 : H, 1 : W,γC : 2γC]

ẑ[0 : H − 1, 0 : W, 2γC : 3γC]← z[1 : H, 0 : W, 2γC : 3γC]

ẑ[1 : H, 0 : W, 3γC : 4γC]← z[0 : H − 1, 0 : W, 3γC : 4γC]

ẑ[0 : H, 0 : W, 4γC : C]← z[0 : H, 0 : W, 4γC : C]

where γ is a ratio factor to control how many percentages of
channels will be shifted. In most experiments, the value of γ
is set to 1

12 .
It is notable that shift operation does not hold any param-

eter or arithmetic calculation. The only implementation is
memory copying. Therefore, shift operation is highly effi-
cient and it is very easy to implement. The pseudo code is
presented in Algorithms 1. Compared with the self-attention
mechanism, shift operation is clean, neat, and more friendly
to deep learning inference library like TensorRT.

The rest of the shift block is the same as the standard
building block of ViT. The MLP network has two linear lay-
ers. The first one increases the channel of the input feature
to a higher dimension, e.g., from C to τC. Then the sec-
ond linear layer projects the high-dimensional feature into
the original channel size of C. Between these two layers, we
adopt GELU as the non-linear activation function.

Architecture Variants
For a fair comparison with the baseline Swin Transformer,
we also build multiple models with various number of pa-
rameters and computational complexity. Specifically, we in-
troduce Shift-T(iny), Shift-S(mall), Shift-B(ase) variants 1,
which is corresponded to Swin-T, Swin-S and Swin-B, re-
spectively. Shift-T is the smallest one, which shares a simi-
lar size with Swin-T and ResNet-50. Another two variants,
Shift-S and Shift-B, are roughly 2× and 4× more complex
than ShiftViT-T. The detail configurations of basic embed-
ding channels C and number of blocks {Ni} are presented
as following:
• Shift-T: C = 96, {Ni} = {6, 8, 18, 6}, γ = 1/12

• Shift-S: C = 96, {Ni} = {10, 18, 36, 10}, γ = 1/12

• Shift-B: C = 128, {Ni} = {10, 18, 36, 10}, γ = 1/16

Beside the model size, we also have a closer look at the
model depth. In our proposed model, nearly all parameters
are concentrated in the MLP part. Therefore, we can control
the expand ratio of MLP τ to obtain a deeper network depth.
If not specified, the expand ratio τ is set to 2. We have an
ablation analysis to show that the deeper model achieve a
better performance.

1For simplification, we ignore the suffix of “ViT” and use Shift-
T to denote ShiftViT-T in this work.

Algorithm 1: Pytorch-like pseudo code of shift
1 def shift(x, gamma=1/12):
2 # x is a tensor with a shape of
3 # [Batch, Channel, Height, Width]
4 B, C, H, W = x.shape
5 g = int(gamma * C)
6 out = zeros_like(x)
7 # spatially shift
8 out[:,0*g:1*g,:,:-1]= x[:,0*g:1*g,:,1:]
9 out[:,1*g:2*g,:,1:]= x[:,1*g:2*g,:,:-1]

10 out[:,2*g:3*g,:-1,:]= x[:,2*g:3*g,1:,:]
11 out[:,3*g:4*g,1:,:]= x[:,3*g:4*g,:-1,:]
12 # remaining channels
13 out[:,4*g:,:,:]= x[:,4*g:,:,:]
14 return out

Experiments
Implementation Details
We conduct experiments on three mainstream visual recog-
nition benchmarks: image classification on ImageNet-1k
dataset (Deng et al. 2009), object detection on COCO dataset
(Lin et al. 2014) and semantic segmentation on ADE20k
dataset (Zhou et al. 2019).

For image classification task, we exactly follow the pro-
tocol as in Swin Transformer (Liu et al. 2021b). An average
pooling layer and a linear classification layer are appended
after the backbone network. All the parameters are randomly
initialized and trained for 300 epochs with an AdamW op-
timizer. The learning rate starts from 0.001 and gradually
decay to 0 with a cosine schedule. We include all data aug-
mentations and regularization tricks as in Swin Transformer
(Liu et al. 2021b). The batch size is set to 1024.

For object detection task, there exists many off-the-shelf
detection frameworks, such as Faster R-CNN, Mask R-CNN
and RetinaNet. For a fair comparison with other methods,
we follow the common practice of using Mask R-CNN and
Cascade Mask R-CNN. In such detection frameworks, the
backbone is our proposed Shift network, while the rest of
components like FPN and detection head remain the same.
We initialize the backbone with pretrained weights of the
ImageNet-1k classifier. The training duration lasts for 12
epochs (denoted as 1× schedule) or 36 epochs (denoted
as 3× schedule). The optimizer is AdamW, with an initial
learning rate 0.0001. The batch size is 16. During train-
ing period, we utilize the multi-scale training trick, i.e., the
shorter side of the input image is resized into a range from
480 pixels to 800 pixels. We report the mean average preci-
sion (mAP) metrics on the validation set of COCO dataset.

For semantic segmentation task, we evaluate our method
on ADE20K dataset, which contains 20K images for training
and 2K images for validation. In these experiments, the base
segmentation framework is UperNet. The model is trained
on the training set of ADE20K and the evaluation metric is
the mean IoU (mIoU) score on the validation set. Similar to
the setting of object detection, our Shift backbones are also
pretrained on ImageNet-1k. The rest of settings are same as
Swin-Transformer. The training batch size is 16 and we train
the model for 160k iterations. For the comparison with the
state-of-the-arts, we adopt the multi-scale testing strategy.
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Model Param
(M)

ImageNet COCO ADE20k
FLOPs Speed Top-1 Mask R-CNN 1× Mask R-CNN 3× UpperNet

(G) (FPS) Acc.(%) APb APm APb APm mIoU

ResNet-50 26 4.1 676 76.1 38.0 34.4 41.0 37.1 -

Swin-T 29 4.5 356 81.3 43.7 39.5 46.0 41.6 44.5
Shift-T/light 20 3.0 790 79.4 41.3 38.0 43.2 39.2 42.6
Shift-T 29 4.5 396 81.7 (+0.4) 45.4 (+1.7) 40.9 (+1.4) 47.1 (+1.1) 42.3 (+0.7) 46.3 (+1.8)

Swin-S 50 8.7 217 83.0 46.4 41.7 48.5 43.3 47.6
Shift-S/light 34 5.7 457 81.6 44.8 40.4 46.0 41.1 45.4
Shift-S 50 8.8 215 82.8 (-0.2) 47.2 (+0.8) 42.2 (+0.5) 48.6 (+0.1) 43.4 (+0.1) 47.8 (+0.2)

Swin-B 88 15.4 158 83.5 46.9 42.1 48.7 43.4 48.1
Shift-B/light 60 10.2 312 82.3 45.7 41.0 46.0 41.2 45.8
Shift-B 89 15.6 154 83.3 (-0.2) 47.7 (+0.8) 42.7 (+0.6) 48.0 (-0.7) 42.8 (-0.6) 47.9 (-0.2)

Table 1: Comparison with the baseline Swin Transformer on three mainstream tasks: image classification, object detection and
semantic segmentation. The suffix /light denotes the lightweight version of our ShiftViT, where we only replace attention
layers with the shift operation and keep remaining parts unchanged. The throughput speed is evaluated on a single NVidia
GTX1080-Ti GPU.

Model Input # Params FLOPs Top-1
resolution (M) (B) Acc. (%)

CNN-based

RegNetY-4G 2242 21 4.0 80.0
RegNetY-8G 2242 39 8.0 81.7
RegNetY-16G 2242 84 16.0 82.9
EfficientNet-B4 3802 19 4.2 82.9
EfficientNet-B5 4562 30 9.9 83.6
EfficientNet-B6 5282 43 19.0 84.0

ViT-based and MLP-based

DeiT-S 2242 22 4.6 79.8
DeiT-B 2242 86 17.5 81.8
PVT-S 2242 25 3.8 79.8
PVT-L 2242 61 9.8 81.7
Swin-T 2242 29 4.5 81.3
Swin-S 2242 50 8.7 83.0
Swin-B 2242 88 15.4 83.5

MLP-Mixer-B/16 2242 79 - 76.4
gMLP-S 2242 20 4.5 79.4
gMLP-B 2242 73 15.8 81.6
S2-MLP-D 2242 71 14.0 80.0
S2-MLP-W 2242 51 10.5 80.7
AS-MLP-T 2242 28 4.4 81.3
AS-MLP-S 2242 50 8.5 83.1
AS-MLP-B 2242 88 15.2 83.3

Ours

Shift-T 2242 28 4.4 81.7
Sfhit-S 2242 50 8.5 82.8
Sfhit-B 2242 88 15.2 83.3

Table 2: Comparison with state-of-the-art methods on the
ImageNet-1k classification task.

Comparison with Baseline

The goal of this work is to demystify the role of attention
mechanism and explore whether it can be replaced by an
extremely simple shift operation. Concretely, our proposed
backbones are based on the architecture of Swin Trans-
former, which is one of the most representative ViT vari-
ants. We therefore consider Swin Transformer as the base-
line model, and compare our ShiftViT to it.

For an apple-to-apple comparison, we first build a
lightweight version of ShiftViT. It is nearly the same as the
Swin Transformer counterpart, except that the attention lay-
ers are substituted by the shift operations. We denote this
backbone with a suffix /light, because replacing attention
with shift will lead to a reduction in parameters and FLOPs.
The experimental results are presented in Table 1. We ex-
haustively compare all variants in three different sizes. The
results show that the shift operation is weaker than the atten-
tion mechanism, because it does not contain any learnable
parameter or arithmetic calculation. For example, the Shift-
T/light model has only 20M parameters and 3.0 FLOPs,
which are nearly 33% less than the Swin-T model. There-
fore, there is no wonder that its performance is marginally
worse than the baseline. Despite the relative gap to the base-
line, it is worth noting that the absolute accuracy of the
lightweight ShiftViT is not bad. Compared with the typi-
cal ResNet-50 backbone, Shift-T/light is more powerful and
more efficient.

To remedy the complexity gap between shift operation
and attention mechanism, we can adopt more building
blocks in ShiftViT to make sure it has a similar number
of parameters with the Swin baseline. In such fair com-
parisons, our models achieve even better results than Swin-
Transformer. For the small-size models, our Shift-T back-
bone attains an mAP score of 45.4% on COCO and an mIoU
score of 46.3% on ADE20k, which outperform the Swin-T
backbone by a remarkable margin. For the large-size mod-

2427



els, ShiftViT seems to be saturated. But the performance is
still on par with the Swin baseline.

Although the shift operation is weaker than the atten-
tion mechanism in spatial modelling, its simple architec-
ture allows the network to grow deeper. As such, the weak-
ness of the shift operation is greatly alleviated. Within
the same computational budget, the overall performance of
ShiftViT is comparable to the attention-based Swin Trans-
former. These experiments prove that the attention mecha-
nism might not be necessary for ViTs. Even an extremely
simple operation can achieve the similar results.

Comparison with State-of-the-Art
To further demonstrate the effectiveness, we compare
ShiftViT backbones with existing state-of-the-art methods.
For image classification task on ImageNet-1k, our proposed
models are compared to three different types of models,
namely CNN, ViT and MLP. The results are detailed in Ta-
ble 2. Overall, our method can achieve a comparable perfor-
mance with the state-of-the-arts. For ViT-based and MLP-
based methods, the best performances are around 83.5% top-
1 accuracy, while our model achieves an accuracy of 83.3%.
For CNN-based methods, our model is slightly worse than
EfficientNet series, but the comparison is not fully fair be-
cause EfficientNet takes a larger input size.

Another interesting thing is the comparison with two con-
current work S2-MLP (Yu et al. 2021) and AS-MLP (Lian
et al. 2021). These two pieces of work share the similar idea
on shift operation , but they introduce some auxiliary mod-
ules into the building block, e.g., the pre- and post-projection
layers. In Table 2, our performances are slightly better than
these two work. It justifies our design choice that build-
ing backbone solely with a simple shift operation is good
enough.

Beside the classification task, the similar performance
tread can be also observed in the object detection task and
semantic segmentation task. It is notable that some ViT-
based and MLP-based methods cannot be easily extended to
such dense prediction tasks, because the high-resolution in-
puts yield unaffordable computational burdens. Our method
does not suffer from this obstacle thanks to the high effi-
ciency of shift operation. As shown in Table 3 and Table 4,
the advantages of our ShiftViT backbones are clear. Shift-
T attains an mAP score of 47.1 on object detection and an
mIoU score of 47.8 on semantic segmentation, which out-
perform other methods by a considerable margin.

Ablation Analysis
In this section, we aim to explore what factors contribute
to the good performance of ShiftViT. We first analyze the
impact of two hyper-parameters in ShiftViT. Then, we dive
into the training scheme of ViT series.

Expand ratio of MLP The previous experiments have
justified our design principle, i.e., a great model depth can
remedy the weakness of each building block. Generally,
there exists a trade-off between the model depth and the
complexity of building blocks. With a fixed computational

Backbone Params (M) FLOPs (G) APb APm

Mask R-CNN 3×
Res-50 44 260 41.0 37.1
PVT-S 44 245 43.0 39.9
AS-MLP-T 48 260 46.0 41.5
Swin-T 48 264 46.0 41.6
Shift-T 48 265 47.1 42.3

Res-101 63 336 42.8 38.5
PVT-M 64 302 44.2 40.5
AS-MLP-S 69 346 47.8 42.9
Swin-S 69 354 48.5 43.3
Shift-S 70 350 48.6 43.4

Cascade Mask R-CNN 3×
Res-50 82 739 46.3 40.1
AS-MLP-T 86 745 50.1 43.5
Swin-T 86 739 50.4 43.7
Shift-T 86 743 50.3 43.4

ResX-101 101 819 48.1 41.6
AS-MLP-S 107 824 51.1 44.2
Swin-S 107 838 51.8 44.7
Shift-S 107 827 50.9 44.0

Table 3: Comparison with state-of-the-art methods on the
COCO object detection task. Following the common prac-
tice, we couple the backbones with two detection frame-
works, namely Mask R-CNN and Cascade Mask R-CNN.

Method Backbone Params FLOPs val
(M) (G) mIoU

DANet ResNet-101 69 1119 45.2
DNL ResNet-101 69 1249 46.0
DeepLabV3 ResNet-101 63 1021 44.1
OCRNet ResNet-101 89 1381 44.9
DeepLabV3 ResNeSt-101 66 1051 46.9
DeepLabV3 ResNeSt-200 88 1381 48.4
OCRNet HRNet-w64 71 664 45.7

UperNet ResNet-101 89 1029 44.9
UperNet Swin-T 60 945 45.8
UperNet AS-MLP-T 60 937 46.5
UperNet Shift-T 60 942 47.8

UperNet Swin-S 81 1038 49.5
UperNet AS-MLP-S 81 1024 49.2
UperNet Shift-S 81 1029 49.6

UperNet Swin-B 121 1188 49.7
UperNet AS-MLP-B 121 1166 49.5
UperNet Shift-B 121 1174 49.2

Table 4: Comparison with state-of-the-art methods on the
ADE20k semantic segmentation task. We report the mIoU
metrics on the validation set.
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Expand Depth ImgNet COCO ADE20k
Ratio Acc. (%) APb APm mIoU

Swin 48 81.3 43.7 39.5 44.5

4 57 81.3 44.0 39.8 44.4
3 75 81.5 44.4 40.2 45.5
2 114 81.7 45.4 40.9 46.3
1 225 81.8 45.2 40.6 47.3

Table 5: Ablation analysis on the expand ratio of MLP. The
first row shows the Swin-T baseline. All entries share the
same number of parameters and FLOPs.

SGD ReLU BN 90ep ImageNet
↓ ↓ ↓ ↓ Top-1 Acc.

AdamW GELU LN 300ep (%)

76.4
✓ 77.9
✓ ✓ 78.5
✓ ✓ ✓ 78.4
✓ ✓ ✓ ✓ 81.7

Table 6: Ablation analysis on the typical configurations of
CNNs and ViTs. We gradually transfer the training configu-
ration from the CNN’s setting to the ViT’s setting, and inves-
tigate how these factors influence the model performances.

budget, a lightweight building block can enjoy a deeper net-
work architecture.

To further investigate this trade-off, we present some
ShiftViT models with different depths. For ShiftViT, most
parameters exist in the MLP part. We can change the ex-
pand ratio of MLP τ to control the model depth. As shown
in Table 5, we choose Shift-T as our baseline model. We
explore the expand ratio τ within a range from 1 to 4. It is
worth noting that the parameters and FLOPs for different
entries are almost the same. From Table 5, we can observe
a trend that a deeper model results in a better performance.
When the depth of ShiftViT increases to 225, it outperforms
the 57-layer counterpart by 0.5%, 1.2% and 2.9% absolute
gains on classification, detection and segmentation, respec-
tively. This trend supports our conjecture that a powerful-
and-heavy module, like attention, may not be the optimal
choice for backbone. We hope it can help the future work to
rethink such trade-off when designing backbones.

Percentage of shifted channels The shift operation has
only one hyper-parameter, namely the percentage of shifted
channels. By default, it is set to 33%. In this section, we ex-
plore some other settings. Specifically, we set the percent-
age of shifted channels to 20%, 25%, 33% and 50%, re-
spectively. The results are presented in Figure 3. It shows
that the final performance is not very sensitive to this hyper-
parameter. Shifting 25% of channels only results in 0.3%
absolute loss compared to the best setting. Within the rea-
sonable range (from 25% to 50%), all the settings achieve a
better accuracy than the Swin-T baseline.

20% 25% 33% 50%
Percentage of shifted channels

81.0

81.2

81.4

81.6

81.8

To
p-

1 
ac

c.
 (%

)

Figure 3: Ablation analysis on the percentage of shifted
channels. We plot the top-1 classification accuracy on
ImageNet-1k. The red line indicates Swin-T baseline.

ViT-style training scheme Shift operation has been well
studied in CNNs. However, the previous work does not show
the impressive performance as ours. Shift-ResNet-50 (Wu
et al. 2018) only achieve an accuracy of 75.6% on ImageNet,
which is far behind our 81.7% accuracy. This gap raise a
natural concern about what makes good for our ShiftViT.

We suspect the reason might lie in the ViT-style training
scheme. Specifically, most existing ViT variants follow the
setting as in DeiT (Touvron et al. 2020), which is quite dif-
ferent from the standard pipeline of training CNNs. For ex-
ample, ViT-style scheme adopts AdamW optimizer and the
training duration lasts for 300 epochs on ImageNet. As a
comparison, CNN-style scheme prefers SGD optimizer and
the training schedule is usually 90 epochs only. Since our
model inherit the ViT-style training scheme, it is interesting
to see how such differences affect the performance.

Due to the resource limitation, we cannot fully align all
settings between ViT-style and CNN-style. Therefore, we
pick four important factors that we believe can bring some
insights, i.e. optimizer, activation function, normalization
layer and training schedule. From Table 6, we can observe
that such factors can significantly influence the accuracy, es-
pecially the training schedule. These results shows that the
good performance of ShiftViT is partly brought by the ViT-
style training scheme. Similarly, the success of ViT may be
also related to its special training scheme. We should take it
seriously in the future study of ViTs.

Conclusion

In this work, we move a small step toward demystifying the
essential reason why ViT works. The experiments show that
the attention mechanism might not be the vital factor for
the success of ViT. We can even use an extremely simple
shift operation to replace the attention layer. The proposed
backbone, namely ShiftViT, can work as well as the Swin
Transformer baseline. Since the shift operation is already the
simplest spatial modelling module, we argue that the good
performance must come from the remaining components of
ViT, e.g., the FFN and the training scheme. In future work,
we plan to have more analysis on such factors and investi-
gate more ViT variants.
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