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Abstract

Automatic delineation of organ-at-risk (OAR) and gross-
tumor-volume (GTV) is of great significance for radiother-
apy planning. However, it is a challenging task to learn pow-
erful representations for accurate delineation under limited
pixel (voxel)-wise annotations. Contrastive learning at pixel-
level can alleviate the dependency on annotations by learning
dense representations from unlabeled data. Recent studies in
this direction design various contrastive losses on the feature
maps, to yield discriminative features for each pixel in the
map. However, pixels in the same map inevitably share se-
mantics to be closer than they actually are, which may af-
fect the discrimination of pixels in the same map and lead
to the unfair comparison to pixels in other maps. To address
these issues, we propose a separated region-level contrastive
learning scheme, namely SepaReg, the core of which is to
separate each image into regions and encode each region sep-
arately. Specifically, SepaReg comprises two components: a
structure-aware image separation (SIS) module and an intra-
and inter-organ distillation (IID) module. The SIS is proposed
to operate on the image set to rebuild a region set under the
guidance of structural information. The inter-organ represen-
tation will be learned from this set via typical contrastive
losses cross regions. On the other hand, the IID is proposed
to tackle the quantity imbalance in the region set as tiny or-
gans may produce fewer regions, by exploiting intra-organ
representations. We conducted extensive experiments to eval-
uate the proposed model on a public dataset and two private
datasets. The experimental results demonstrate the effective-
ness of the proposed model, consistently achieving better per-
formance than state-of-the-art approaches. Code is available
at https://github.com/jcwang123/Separate CL.

Introduction
Accurate delineation of organ-at-risk (OAR) and gross-
tumor-volume (GTV) in CT scans is a crucial step in ra-
diotherapy treatment. However, manual volume delineation
is one of the most time-consuming and tedious tasks for
clinicians. Hence, automatic and accurate delineation tools
are highly demanded in clinical practice. Recent years,
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Figure 1: Motivation of building structure-aware image sep-
aration (SIS) module. (a) No separation, that forms compar-
ison of pixels in the feature map. Pixels in the same map
inevitably share semantics, which may affect the discrimina-
tion of pixels in the same map and lead to unfair comparison
to pixels in other maps. (b) Regular separation, that regularly
separates each image into square regions and encodes each
region as a discriminative feature. Structure has been broken
in the produced regions. (c) SIS, that separates each image
into regions by superpixel-based division to learn their struc-
tural information. Note that the region set has been shuffled
so that green region and orange region could be from dif-
ferent images. Evaluated DSC scores of two private datasets
are shown in the figure.

researchers have proposed many deep models for medi-
cal image segmentation, such as U-Net (Ronneberger, Fis-
cher, and Brox 2015), DenseUNet (Li et al. 2018), Hyper-
DenseNet (Dolz et al. 2018), nnUNet (Isensee et al. 2020).
Successfully training these models usually requires a large
number of pixel (voxel)-wise annotations. However, in clin-
ical practice, it is difficult, if not impossible, to acquire these
annotations owing to the need of extensive professional ex-
pertise for labelling and the busy schedule of clinicians. In
this regard, self-supervised learning, which attempts to learn
discriminative features from a small set of labelled data and
a large number of unlabeled data, becomes an important re-
search direction in medical image segmentation.

In recent years, contrastive learning (Chen et al. 2020a,b;
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Grill et al. 2020; Chen and He 2020), a learning strategy that
first extracts features from the unlabeled dataset and then
fine-tunes the network with a few labeled images, has dom-
inated the field of self-supervised learning. The main idea
of contrastive learning is to learn representations such that
make similar samples stay close to each other while dissimi-
lar ones far apart. Nevertheless, when transferred into down-
stream tasks that require dense prediction, i.e., object seg-
mentation, the representations learned by contrastive learn-
ing can only bring limited performance improvement, since
it can only discriminate images rather than pixels.

Latest studies attempt to address this issue by learning dis-
crimination of pixels in the feature maps (Chaitanya et al.
2020; Zhao et al. 2020; Xie et al. 2020; Chen et al. 2021;
Alonso et al. 2021). As shown in Figure 1(a), after encoding
an image into a feature map, each pixel in the map represents
a square region in the image. Typical contrastive loss is then
utilized to pull positive pixels together and push negative
pixels far apart. These methods differ in how to determine
whether a pixel is positive or negative, by pseudo label (Zhao
et al. 2020; Alonso et al. 2021) or spatial distance (Chai-
tanya et al. 2020; Xie et al. 2020; Chen et al. 2021), yet all
of them have neglected a pivotal problem that pixels in the
feature map are sharing semantics, which is harmful to the
pixel-level discrimination. Specifically, this issue has nega-
tive effects on both intra-image and inter-image discrimina-
tion. First, the objective of intra-image discrimination is to
distinguish an anchor pixel from other pixels in the same fea-
ture map; the sharing semantics, however, make them closer.
Second, the goal of inter-image discrimination is to find (dis-
) similar pixels in other images, yet pixels from the same
image are usually more similar than those from different im-
ages. The unfair comparison may destroy the exploration of
pixel comparison cross images.

To tackle this issue, we propose a novel separated region-
level contrastive learning scheme for the challenging tasks of
delineation of organ-at-risk (OAR) and gross-tumor-volume
(GTV) in CT scans; we call the proposed model as Sepa-
Reg. It is composed of two components: a structure-aware
image separation (SIS) module and an intra- and inter-organ
distillation (IID) module.

• SIS can be regarded as the core of the proposed Sepa-
Reg, in which we propose to produce a brand-new re-
gion set and learn representation from the region set in-
stead of the image set. Regions are produced with the
guidance of structural information in order to keep com-
plete anatomical structure to enhance the recognition of
boundaries. The representations are learned by perform-
ing region comparison. Besides regions from the same
image, each region is compared to more regions from
other images due to the separation, effectively enhancing
the regional diversity.

• IID is proposed to handle the quantity imbalance that
larger organs will produce more regions, which may
affect the representation learning of tiny organs (Tian,
Henaff, and van den Oord 2021). In IID, regions are clus-
tered into different subsets according to their learned fea-
tures; each subset represents a specific organ. The intra-

organ representations are learned on each subset and dis-
tilled into one model in the end.

Extensive experiments are performed on three typical
datasets, including one public dataset and two in-house
datasets. The two private datasets comprise OAR segmen-
tation for lung cancer and GTV segmentation for nasopha-
ryngeal cancer. We compare the proposed SepaReg to sev-
eral state-of-the-art image- and pixel-level contrastive learn-
ing schemes. The transfer segmentation performance on a
small labeled test set is used to assess the learned represen-
tation. Experimental results demonstrate the effectiveness of
the proposed model, consistently achieving better segmenta-
tion results than the state-of-the-art.

Related Work
Automatic Delineation in Radiation Therapy
A handful of studies have been proposed to address CT-
based automatic segmentation of OAR and GTV in the past
few years. Gradient-based image processing methods are
adopted in the early years (Geets et al. 2007; Day et al. 2009;
Kerhet et al. 2010). They can give coarse segmentation re-
sults on OAR whose boundary is clear to identify. While, it
is still difficult to achieve satisfactory segmentation of GTV
with ambiguous boundaries. Later, Deep Learning methods
to perform OAR and GTV segmentation are rapidly devel-
oping and have caught lots of concentration. These models
can easily obtain human-closed performance on most OARs
of nasopharyngeal cancer (Ibragimov and Xing 2017), lung
cancer (Zhu et al. 2019), and cervical cancer (Liu et al.
2020). As for GTV segmentation, the most popular research
direction is the fusion of different modalities, such as PET
and CT (Guo et al. 2019; Jin et al. 2019, 2021; Wang et al.
2020). However, models in these studies are trained un-
der full supervision, accounting for precise annotations for
each pixel (voxel). It is difficult to acquire these annotations
thanks to the need of extensive professional expertise for la-
beling and the busy schedule of clinicians. How to improve
the segmentation performance given limited annotations, is
still valuable to exploit till today. With this desirable consid-
eration, we make a comprehensive effort to introduce a quite
bleeding-edge technique, contrastive learning, in the field of
label-efficient OAR and GTV segmentation.

Representation Learning on CT Images
The lack of sufficient expert-annotated data for model opti-
mization, is one of the most general problems in the medical
vision field due to the expensive cost in both time and ex-
perience. Representation learning is a hot direction to solve
this issue as it can help the model explore general representa-
tion from the unlabeled dataset, which can significantly im-
prove the transfer performance on a relatively small labeled
set. The representation could be learned by solving manu-
ally designed tasks, such as Jigsaw puzzle (Zhuang et al.
2019), context restoration (Taleb et al. 2020), orientation
prediction (Taleb et al. 2020), or their combination (Zhou
et al. 2019, 2021). Most strategies work well on 3D net-
works but fail in 2D area (Zhou et al. 2019), indicating the
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scant perception of semantic contexts in these representa-
tions. The latest work has indicated the bright future of con-
trastive learning, which has dominated the field of represen-
tation learning in medical image segmentation (Chaitanya
et al. 2020). Despite its success in exploring global and lo-
cal features, this work is still limited by the condition that
all volumes should be aligned at first. Its setup for exploring
pixel-level discrimination on feature maps also suffers from
the sharing semantics. By contrast, SepaReg relies on no ex-
tra condition and avoids sharing semantics by its separated
learning design.

Contrastive Learning for Segmentation Tasks
Contrastive learning is a successful and developing variant
of representation learning, yet the investigation on segmen-
tation tasks has not been fully studied. Current work builds
this scheme by forming pixel pairs on feature maps, accord-
ing to pseudo label or spatial distance. The former is not suit-
able when given no class label during representation learn-
ing (Zhao et al. 2020; Alonso et al. 2021), so that we mainly
survey the latter. The earliest work explores local feature
comparison by determining dis-similar pixels in the feature
map if they are far away in spatial dimension (Chaitanya
et al. 2020). Instead, PixPro ignores the dis-similar pixels
and forms similar pixel pairs if they are closed (Xie et al.
2020). Considering the spatial continuity of organs in se-
quential or volumetric images, pixels at the same location in
neighbour slices are forced to stay close (Zeng et al. 2021;
Chen et al. 2021). No matter what measurement they use,
these studies adopt the same design that utilizes typical con-
trastive loss to discriminate each pixel in the feature map.
However, they have ignored a vital problem that pixels in
the same feature map inevitably share semantics to affect
the pixel discrimination. Our work aims to solve this issue
through a separated region-level learning scheme, in which
each region is encoded separately and shares no semantics.

Superpixel Segmentation
Generally, superpixel is generated by clustering local pixels
using low-level image properties such as color. These meth-
ods are based on (1) graph-cut algorithms (Felzenszwalb
and Huttenlocher 2004; Liu et al. 2011) that treat image as
un-directed graph and partition the graph based on edge-
weights, or (2) clustering algorithms (Achanta et al. 2010;
Neubert and Protzel 2014; Li and Chen 2015) such as k-
means, that are initialized by seeding pixels and use color,
spatial information to update the cluster centers.

Based on superpixel, there is plenty of downstream appli-
cation in medical imaging tasks (Qin et al. 2018; Jia et al.
2020; Ouyang et al. 2020; Li et al. 2020). It can be used for
classification of hyperspectral images (Jia et al. 2020), or-
gan segmentation in CT scans (Qin et al. 2018; Ouyang et al.
2020), label softening in brain MR images (Li et al. 2020),
and so on. Still, whether it is useful to introduce superpixel
into the area of building dense contrastive learning has not
been studied. We propose to utilize the superpixel-based di-
vision to guide the model to learn structural information to
enhance segmentation performance.

Method
In this section, we will give a detailed description of our
separated learning scheme. Overall framework has also been
illustrated in Figure 2. It contains two training steps, each of
which will be described in an individual subsection.

Structure-aware Image Separation
Current pixel-level contrastive learning schemes encode im-
ages into feature maps and form pixel pairs in the maps. Dif-
ferently, our approach starts by producing a set of regions
from the image set; each region in the produced set will be
embedded separately. We will describe the production in de-
tail, followed by a brief introduction to the learning setup.

Using superpixel to separate an image into regions for un-
supervised segmentation is widely adopted in previous liter-
ature (Qin et al. 2018; Ouyang et al. 2020), yet not applied
into the field of contrastive learning. Specifically, let Fs de-
note the superpixel operation. Given an image set X , our
target is to separate it into a set of regions R: R ← Fs(X ).
Firstly, we separate each image x in the image set into re-
gions by SLIC method (Achanta et al. 2010). It begins with
an initialization step where a certain number of cluster cen-
ters (set to 32 as default) are sampled on the regular grid
spaced of x. These centers are then moved to search loca-
tions with lowest gradient in a limited neighborhood, i.e.,
3 × 3. After the moving step, an update operation is per-
formed to adjust the cluster centers. The moving step and
update operation will repeat until the new cluster centers
move little, which is also similar to the k-means clustering
algorithm. After SLIC, each region produced from image x
will be padded with zero value to form a new square image
for subsequent learning setup. Till now, all produced regions
from different images are unionized and shuffled to obtain
the final region setR.

To learn regions’ representation, we perform a standard
image-level contrastive learning operation on the region set.
This operation is denoted as ΦCLR, set to SimSiam (Chen
and He 2020) as default. In formal, given a region r that
has been pre-processed with certain size (128 × 128 as de-
fault), two augmentation views v, v

′
are created by different

transformations T , T ′
. The first augmented view v is fed

into an encoder Fe, a standard ResNet-50 network (He et al.
2016) with removing its final two layers. The extracted fea-
ture is then projected into the projection space via a pro-
jector Fg , including two layers with a hidden dimension of
4096 and output size of 256. Between the two layers, there
is a sequence of Batch Normalization and Relu activation
to avoid the collapsing solution (Chen and He 2020). Simi-
larly, another augmented view v

′
is fed into the encoder and

projector to obtain its corresponding vector z
′
. An extensive

predictor Fq with same architecture as projector is used to
transfer z

′
into z by regression. The overall objective func-

tion is designed as

L =
1

2
(D(Fq(z), z

′
) +D(z,Fq(z

′
))) (1)

Here, D is used to measure the cosine similarity in the pro-
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Figure 2: Framework of our separated region-level contrastive learning, SepaReg, aimed at learning region-level representation
in a separated manner. It comprises two major components: a structure-aware image separation (SIS) module and an intra- and
inter-organ distillation (IID) module. SIS is proposed to solve the semantics sharing, by separating each image into several
regions under the guidance of structural information, to form a brand-new region set and learn regions’ representation from
the set. IID is introduced to tackle the quantity imbalance in the region set since larger organ will produce more regions, by
exploring intra-organ representations and distilling them into a student model. ΦCLR denotes a standard contrastive learning
operation, i.e., SimSiam. Fe,Fg denote the encoder and projector.

jection space, as

D(Fq(z), z
′
) = − Fq(z)

||Fq(z)||2
· z

′

||z′ ||2
, (2)

where || · ||2 is l2-norm. The error L is calculated for each
region and the total loss is averaged on all regions in a mini-
batch. As learned representation can coarsely discriminate
different organs, we refer to it as the inter-organ model:
(F inter

e ,F inter
g ).

Learn Intra-organ Representation
In this part, we extensively present a distillation-based mod-
ule to solve the quantity imbalance by learning intra-organ
representations. As the inter-organ model can tell semantic
difference of organs, we propose to cluster the region set
into several subsets according to what organs they are from.
For each organ, we will learn its specific representation by
performing ΦCLR on its corresponding subset so that tiny
organs’ representations could be learned well. After that, we
distill all intra-organ representations and the inter-organ rep-
resentation into a student model.

Formally, we cluster the region set into K (empirically
set to 5 as default) subsets according to their projection
by (F inter

e ,F inter
g ) based on k-means method, that are

R1,2...K . For each subset, we will train a new encoder from
scratch using the operator ΦCLR to learn its intra-organ rep-
resentation. In total, K encoders will be trained at this stage,
and we denote these intra-organ models as {(Fk

e ,Fk
g )|k =

1, 2...K}.

The distillation module is trained under intra-organ and
inter-organ regularization. As shown in Figure 2, it contains
two parts: (1) For intra-organ regularization, given a region
r from the region set R, the organ it belongs to could be
matched, as well as the intra-organ model corresponding to
it. By feeding this region into the encoder of its intra-organ
model,F intra

e , we could obtain the feature f̂ that the student
model should learn from. We minimize the KL-divergence
error between two features:

Lintra = KL (f || f̂), (3)

where f is the feature encoded by the student model. (2) For
the inter-organ regularization, telling the discrimination be-
tween different organs is more important to learn. Therefore,
we first feed the region into the inter-organ model to get its
projection ẑ, then use the inter-organ projector to project f
into latent space and let the projection consistent with ẑ. The
objective function is defined as

Linter = D (Fchair
g (f) , ẑ), (4)

where D is the same measurement as Eq.2.
In summary, Lintra is used to tell organ-specific feature

representation and Linter is used to learn the discriminative
relation between different organs. We combine these two
constraints to train our distillation network, that is,

Ldistill = Lintra + Linter . (5)

After distillation, we initialize a standard U-Net’s encoder
with the pretrained weight, followed by using Dice loss to
optimize the parameters of the entire model.
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Method DSC↑ HD95↓
|Xtr| = 1 |Xtr| = 10 |Xtr| = 50 |Xtr| = 1 |Xtr| = 10 |Xtr| = 50

Random Init. 61.26± 0.55 78.34± 0.12 82.03± 0.09 6.49± 6.94 2.48± 0.22 2.01± 0.16
SimCLR (Chen et al. 2020a) 63.03± 0.86 80.88± 0.13 83.61± 0.08 4.41± 2.71 2.07± 0.10 1.80± 0.18

BYOL (Grill et al. 2020) 61.66± 0.61 80.00± 0.11 82.90± 0.09 5.12± 2.42 2.35± 0.16 1.91± 0.27
SimSiam (Chen and He 2020) 61.67± 0.68 79.68± 0.11 83.16± 0.09 5.34± 5.08 2.22± 0.20 1.92± 0.36

GL (Chaitanya et al. 2020) 61.64± 0.79 80.11± 0.12 82.60± 0.09 6.04± 5.84 2.28± 0.15 1.84± 0.21
PixPro (Xie et al. 2020) 65.34± 0.51 79.65± 0.12 83.11± 0.07 5.13± 3.58 2.39± 0.35 1.87± 0.21

SepaReg 66.27± 0.50 81.59± 0.13 83.71± 0.09 4.05± 2.73 1.90± 0.13 1.69± 0.25

Table 1: Comparison results on our private dataset, LungOAR, with state-of-the-art contrastive learning methods, including
image-level and pixel-level methods. ”Random Init.” means training from scratch. We show the DSC score (%) and HD95
value (voxel) as well as the standard error in patient-wise.

Method DSC↑ HD95↓
|Xtr| = 1 |Xtr| = 10 |Xtr| = 50 |Xtr| = 1 |Xtr| = 10 |Xtr| = 50

Random Init. 42.87± 2.62 55.28± 3.19 61.05± 2.61 12.90± 55.33 8.90± 39.58 11.11± 234.00
SimCLR (Chen et al. 2020a) 47.41± 2.98 58.71± 2.51 62.46± 2.94 12.96± 45.53 8.52± 32.17 7.36± 29.96

BYOL (Grill et al. 2020) 47.23± 2.94 59.01± 2.54 63.62± 2.81 12.81± 52.39 8.23± 28.98 7.32± 31.35
SimSiam (Chen and He 2020) 46.06± 2.94 58.34± 2.76 63.45± 2.73 14.81± 56.71 8.28± 32.54 7.34± 26.18

GL (Chaitanya et al. 2020) 48.30± 2.71 59.06± 2.91 61.88± 2.59 13.70± 85.04 8.25± 32.44 7.25± 31.66
PixPro (Xie et al. 2020) 48.52± 2.82 57.18± 2.72 60.79± 2.44 12.92± 53.45 9.40± 40.74 8.00± 30.12

SepaReg 50.30± 2.12 60.03± 2.33 63.98± 2.06 12.31± 44.06 7.54± 33.18 6.77± 30.27

Table 2: Comparison results on our private dataset, NasoGTV, with state-of-the-art contrastive learning methods, including
image-level and pixel-level methods. ”Random Init.” means training from scratch. We show the DSC score (%) and HD95
value (voxel) as well as the standard error in patient-wise.

Experiments
Datasets
We compare our method with several state-of-the-art con-
trastive learning methods on three CT datasets, including
one public dataset and two in-house clinical datasets.
PDDCA is a public dataset consisting of 32 Head&Neck CT
scans with six OAR segmentation labels, i. e., submandibu-
lar gland (left and right), parotid (left and right), brain stem,
and mandible (Raudaschl et al. 2017). However, the dataset
is a bit small, lacks concrete and consistent annotations.
Hence, we also collect two larger clinical datasets to vali-
date the performance of our method.
LungOAR is a clinical dataset, collected by Philips scan-
ner in a local hospital. It contains 97 volumes and the tar-
get of this dataset is to segment the esophagus of lung
cancer. For the annotation, one junior radiologist helps the
first-round annotations, and one senior radiologist helps the
second-round check to ensure accuracy. All data has been
anonymized, and we have received approval from local hos-
pitals for research purposes.
NasoGTV is a clinical dataset, consisting of 93 volumes.
The images are collected by the CMS scanner. The target of
this dataset is to segment the GTV of nasopharyngeal car-
cinoma. The same annotation process is performed by local
radiologists and we have also received the approval.

Experimental Setup and Comparison
Pretrain stage Following (Chaitanya et al. 2020), we split
each dataset into a pre-training set Xpre and a test set Xts,
where the volumetric images in Xpre are used for pre-
training, and those in Xts are only used to assess the seg-
mentation performance. We randomly choose 77, 73, 22 vol-
umes to form Xpre for LungOAR dataset, NasoGTV dataset

and PDDCA dataset, respectively. The rest of volumes in
each dataset will be used to form the test set.

Finetune stage As for the stage of fine-tuning, we choose
a certain number of samples out of Xpre, consisting of
both volumetric images and segmentation labels, to form the
training set Xtr and the validation set Xvl, where |Xvl| = 7
in LungOAR, |Xvl| = 3 in NasoGTV, and |Xvl| = 2 in
PDDCA. We experiment with different sizes of Xtr to assess
the pre-trained representation. For instance, in LungOAR
and NasoGTV, we build three experiments with |Xtr| =
1, 10, 50. PDDCA is so small that we only test the transfer
performance with |Xtr = 1|.

We compare our method to several contrastive learning
methods: (I) image-level methods: SimCLR (Chen et al.
2020a), BYOL (Grill et al. 2020), SimSiam (Chen and
He 2020). (II) region-level methods: the scheme explor-
ing global and local features, dubbed GL (Chaitanya et al.
2020), and PixPro (Xie et al. 2020). ResNet-50 and stan-
dard U-Net are used in all these experiments, and we imple-
ment these methods on three datasets by using the official
code. We pre-train all the models for 100k iterations in to-
tal, and each mini-batch contains 32 images/regions. As for
finetuning, we train the model for 200 epochs in all settings,
save the best model of the validation set, and evaluate it on
the test set in the end. Dice similarity coefficient (DSC) and
95% Hausdorff Distance (HD95) are used to evaluate the
segmentation performance at the patient level.

Comparison with the State-of-the-Art Methods
Table 1 shows the results of our method on LungOAR
dataset. We can observe: (1) contrastive learning indeed
brings improvements. Compared with ”Random Init.”, it is
found that all methods have given better DSC score and
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Method All OARs SMG Parotid Brain Stem MandibleLt Rt Lt Rt
Random Init. 54.48± 0.35 38.61± 3.99 25.03± 2.27 58.34± 0.18 63.06± 0.38 64.45± 2.15 77.38± 0.19

SimCLR 57.10± 0.22 33.45± 5.98 21.81± 2.15 62.30± 0.34 68.23± 0.25 75.11± 0.28 81.71± 0.16
BYOL 57.34± 0.27 40.21± 6.49 25.32± 0.86 59.40± 0.56 66.84± 0.33 73.63± 0.61 78.65± 0.32

SimSiam 54.83± 0.14 33.25± 6.57 25.78± 2.54 65.79± 0.23 56.63± 0.87 68.25± 1.38 79.27± 0.23
GL 52.03± 0.12 44.06± 2.54 6.01± 0.35 54.34± 0.28 61.39± 0.45 65.05± 0.79 81.30± 0.20

PixPro 51.12± 0.65 37.78± 5.04 18.40± 1.57 48.95± 2.19 59.00± 2.07 62.26± 1.65 80.33± 0.26
SepaReg 58.43± 0.10 45.29± 5.98 27.99± 1.55 58.42± 0.35 67.65± 0.16 73.58± 0.42 77.64± 0.33

Table 3: Comparison results on a small public dataset, PDDCA, with state-of-the-art contrastive learning methods, including
image-level and pixel-level methods. We report the results when |Xtr| = 1 as there is little available data. ”Random Init.”
means training from scratch. We show the DSC score (%) and standard error of each organ as well as the averaged value on all
OARs in patient-wise.

LungOAR NasoGTV
no separation 60.63± 0.97 46.22± 2.58

regular separation 63.78± 0.69 47.14± 2.91
SIS 65.32± 0.48 48.41± 2.79

Table 4: Comparison of different separation strategies: no
separation, regular separation, and structure-aware separa-
tion (SIS). We report the DSC score (%) and standard error
in patient-wise.

HD95 value, and the improvement is larger with a smaller
labeled set. (2) our method outperforms other methods with
1% ∼ 2% improvement on DSC score when |Xtr| = 1, 10,
and has also better result when |Xtr| = 50. For example,
when |Xtr| = 1, our methods have improved the DSC score
by 5.01%, which is significantly larger than the image-level
method, i.e. 1.77% by SimCLR, also obviously larger than
region-level method, i.e., 4.08% by PixPro. (3) it is also
noteworthy that PixPro can outperform other image-level
contrastive learning methods when |Xtr| = 1, while show
inferior results when enlarging the training set. It indicates
that the representation learned by PixPro is not suitable for
the downstream segmentation task. In contrast, our method
brings larger improvement even when |Xtr| = 50.

As shown in Table 2, the results on NasoGTV keep consis-
tent with those from Table 1, validating the effectiveness of
our method to extract self-learned features for the segmenta-
tion task. Since GTV segmentation is more challenging than
OAR segmentation, we note that our method achieves out-
standing improvements.

Table 3 summarizes the results on PDDCA dataset. We
can observe the best average score of all OARs achieved by
our method. The results further indicate the robustness of
our method. It is noteworthy that GL and PixPro yield worse
segmentation results compared to the random initialization.
This is because organs in this dataset have no square shape,
i.e., parotid that is spindly, leading to mistakes in obtain-
ing the region pairs. Instead, our proposed separated learn-
ing scheme can take advantage of structural information and
thus enable the network to learn shape-adaptive knowledge.

Ablation Study
In this part, we analyze the effectiveness of each module
in our method. For simplification, we only present the DSC
score when |Xtr| = 1.

SIS IID LungOAR NasoGTV
61.26± 0.55 42.87± 2.62

✓ 65.32± 0.48 48.41± 2.79
✓ ✓ 66.27± 0.50 50.30± 2.12

Table 5: Ablation study of SIS and IID. The first row with
no modules denotes training with random initialization. The
combination of SIS and IID, is our separated region-level
contrastive learning scheme, SepaReg. We report the DSC
value (%) and standard error in patient-wise.

Lintra Linter LungOAR NasoGTV
65.32± 0.48 48.41± 2.79

✓ 65.80± 0.65 48.79± 2.82
✓ ✓ 66.27± 0.50 50.30± 2.12

Table 6: Analytical study of two objectives in our distillation
network. Basic scheme without any objectives is the separate
learning scheme using superpixel method.

How important the structure-aware separation is? As
shown in Table 4, we first compare with three learning
schemes to verify the effectiveness of superpixel-based sep-
arable feature extraction. They have also been visualized in
Figure 1, and the result has been shown in Table 4. No sepa-
ration refers to form positive region pairs at the same lo-
cation of two feature maps. It can be regarded as PixPro
with removing its PPM module. Regular separation refer
to separate each image into regular grid regions, and SIS is
the structure-aware image separation. We can see that the
separation can improve transfer segmentation performance,
demonstrating the effectiveness of separating the feature ex-
traction. SIS extensively increases the DSC scores, indicat-
ing that structural-aware separation can extract structural in-
formation for better segmentation.

How do two major components affect? SepaReg is com-
posed of two major parts, and we make an analytical study
about their influence in Table 5. Firstly, compared to the
model trained from scratch, it is observed that the SIS has
already yielded good segmentation improvement. The DSC
value has been improved by 4.06% and 5.54%, indicat-
ing the powerful ability in learning region-level representa-
tion. Secondly, after learning intra-organ representations, the
transfer performance reaches the best, since IID can break
the quantity imbalance between regions of different organs.
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Figure 3: The transfer performance of models pre-trained
at different amount of iterations on OAR and GTV datasets
(left: LungOAR; right: NasoGTV).

Design of intra- and inter-organ distillation. We con-
duct an ablation experiment about these two objectives of
IID, Lintra and Linter, in Table 6. It could be seen that con-
straints from the intra-organ models can significantly im-
prove the transfer performance and constraint from inter-
organ model can further improve it, demonstrating the com-
plementary advantage of both objectives.

Other Analysis

How does training iteration matter? Dividing images
into regions can help the model learn to discriminate dif-
ferent regions. Still, it needs more iterations to update the
parameters, as one mini-batch of regions contains much less
information than that of images. We evaluate the transfer
segmentation performance of pretrained weights at differ-
ent iterations, i.e. 10k, 50k and 100k. According to the re-
sult in Figure 3, it is observed that when trained at a small
number of iterations, SIS performs not so good. While meet-
ing more samples and trained at larger iterations, the perfor-
mance grows to the best.

(a) Graph-based 

(b) Ours

Figure 4: Regions in lung CT scans produced by (a) gragh-
based superpixel method, and (b) our method. It’s found that
the gragh-based method can produce regions that best fit the
boundary but have large variety in shape and size, not suit-
able for subsequent learning scheme. Regions produced by
our method have more regular shape and can also provide
complete structural information to discriminate different or-
gans, i.e., lung and heart.

SepaReg M&T LungOAR NasoGTV
✓ 66.27± 0.50 50.30± 2.12

✓ 62.92± 0.48 45.19± 2.58
✓ ✓ 67.11± 0.30 50.80± 2.80

Table 7: Extensive experiment about the comparison of Se-
paReg and Mean Teacher (M&T). Here, we report the DSC
score (%) and standar error in patient-wise.

Different superpixel methods. SIS applies a cluster-
based superpixel method to guide the image separa-
tion. However, some work argues that using the graph-
based method can represent the structural information bet-
ter (Ouyang et al. 2020). We give several typical results gen-
erated by two types of superpixel methods in Figure 4. It is
found that the graph-based methods can yield regions that
fit the boundary better than our produced regions. Despite
it, regions created by the graph-based method have more ir-
regular shapes and sizes at the same time, not suitable for
subsequent learning schemes.

Combination with semi-supervised method. Contrastive
learning aims to provide suitable initialized parameters for
better transfer performance on a small amount of labeled
data. With the same goal, semi-supervised method, i.e.,
Mean Teacher, is also helpful. In this part, we make an ex-
tensive experiment to verify two points: (i) SepaReg can give
better segmentation performance on limited labeled data, (ii)
SepaReg and Mean Teacher can provide complementary in-
formation to boost the segmentation performance further.
Specifically, we construct this experiment on both datasets
with |Xtr| = 1. The same unlabeled dataset is used for Mean
Teacher (M&T) training (Xpre). We combine SepaReg and
M&T by initializing the ”Teacher-Student” model in M&T
with parameters trained by SepaReg. It is found that (1) on
both datasets, SepaReg outperforms Mean Teacher signif-
icantly, i.e. 3.35% and 5.11% improvements on DSC sore,
and (2) the combination can further improve the DSC scores,
indicating the valuable potential of their complementary in-
formation.

Conclusion
In this paper, we devise a separated region-level contrastive
learning scheme, named SepaReg, to solve the problem of
sharing semantics in latest pixel-level contrastive learning
schemes. SepaReg comprises two components: structure-
aware image separation (SIS) and intra- and inter-organ dis-
tillation module (IID). SIS proposes to produce a brand-new
region set by separating each image into regions under the
guidance of structural information, and learn their represen-
tations by forming region comparison. IID is proposed to
boost the representation learning of tiny organs, since tiny
organs produce few regions in the set, by exploring inra-
organ representations. SepaReg is evaluated on one public
dataset and two clinical datasets, achieving the best DSC
score and HD95 value on all test sets, compared to several
image- and pixel-level contrastive learning methods.

2465



Acknowledgements
This work was supported by Ministry of Science and Tech-
nology of the People’s Republic of China (2021ZD0201900)
(2021ZD0201903).

References
Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; and
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