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Abstract

Vision transformers (ViTs) have been an alternative design
paradigm to convolutional neural networks (CNNs). How-
ever, the training of ViTs is much harder than CNNs, as it
is sensitive to the training parameters, such as learning rate,
optimizer and warmup epoch. The reasons for training dif-
ficulty are empirically analysed in the paper Early Convolu-
tions Help Transformers See Better, and the authors conjec-
ture that the issue lies with the patchify-stem of ViT models.
In this paper, we further investigate this problem and extend
the above conclusion: only early convolutions do not help for
stable training, but the scaled ReLU operation in the convolu-
tional stem (conv-stem) matters. We verify, both theoretically
and empirically, that scaled ReLU in conv-stem not only im-
proves training stabilization, but also increases the diversity
of patch tokens, thus boosting peak performance with a large
margin via adding few parameters and flops. In addition, ex-
tensive experiments are conducted to demonstrate that previ-
ous ViTs are far from being well trained, further showing that
ViTs have great potential to be a better substitute of CNNs.

Introduction
Visual recognition has been dominated by convolutional
neural networks (CNNs) (He et al. 2016; Howard et al.
2017; Zhang et al. 2018; Tan and Le 2019; Li et al. 2021a;
Zhou et al. 2021c) for years, which effectively impose spa-
tial locality and translation equivalence. Recently the pre-
vailing vision transformers (ViTs) are regarded as an alter-
native design paradigm, which target to replace the inductive
bias towards local processing inherent in CNNs with global
self-attention (Dosovitskiy et al. 2020; Touvron et al. 2020;
Wang et al. 2021b; Fan et al. 2021).

Despite the appealing potential of ViTs for complete data-
driven training, the lack of convolution-like inductive bias
also challenges the training of ViTs. Compared with CNNs,
ViTs are sensitive to the choice of optimizer, data augmen-
tation, learning rate, training schedule length and warmup
epoch (Touvron et al. 2020, 2021; Chen, Hsieh, and Gong
2021; Xiao et al. 2021). The reasons for training difficulty
are empirically analysed in (Xiao et al. 2021), and the au-
thors conjecture that the issue lies with the patchify stem of
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ViT models and propose that early convolutions help trans-
formers see better. Recent works (Graham et al. 2021; Guo
et al. 2021; Yuan et al. 2021c) also introduce the conv-stem
to improve the robustness of training vision transformer, but
they lack the deep analysis why such conv-stem works.

In this paper, we theoretically and empirically verify
that scaled ReLU in the conv-stem matters for the robust
ViTs training. Specifically, scaled ReLU not only improves
the training stabilization, but also increases the diversity
of patch tokens, thus boosting the final recognition perfor-
mances by a large margin. In addition, extensive experi-
ments are conducted to further unveil the effects of conv-
stem and the following interesting observations are made:
firstly, after adding conv-stem to the ViTs, the SAM opti-
mizer (Foret et al. 2020) is no longer powerful as reported
in (Chen, Hsieh, and Gong 2021); secondly, with conv-stem,
the supervised ViTs (Touvron et al. 2020) are better than its
corresponding self-supervised trained models (Caron et al.
2021) plus supervised finetuning on Imagenet-1k; thirdly,
using conv-stem the better trained ViTs improve the perfor-
mance of downstream tasks. All of these observations reflect
that previous ViTs are far from being well trained and ViTs
may become a better substitute for CNNs.

Related Work
Convolutional neural networks (CNNs). Since the break-
through performance on ImageNet via AlexNet (Krizhevsky,
Sutskever, and Hinton 2012), CNNs have become a dom-
inant architecture in computer vision field. Following the
primary design rule of stacking low-to-high convolutions
in series by going deeper, many popular architectures are
proposed, such as VGG (Simonyan and Zisserman 2014),
GoogleNet (Szegedy et al. 2015) and ResNet (He et al.
2016). To further exploit the capacity of visual repre-
sentation, many innovations have been proposed, such as
ResNeXt (Xie et al. 2017), SENet (Hu, Shen, and Sun 2018),
EfficientNet (Tan and Le 2019) and NFNet (Brock et al.
2021). For most of these CNNs, Conv+BN+ReLU becomes
a standard block. In this paper, we investigate this basic
block for training vision transformers as a lightweight stem.

Vision Transformers (ViTs). Since Dosovitskiy et
al. (Dosovitskiy et al. 2020) first successfully applies trans-
former for image classification by dividing the images
into non-overlapping patches, many ViT variants are pro-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

2495



posed (Wang et al. 2021b; Liu et al. 2021; Zhang et al. 2021;
Xie et al. 2021; Gao et al. 2021; Rao et al. 2021; Zhou et al.
2021b; El-Nouby et al. 2021; Wang et al. 2021c; Xu et al.
2021; Zhou et al. 2021d). In this section, we mainly review
several closely related works for training ViTs. Specifically,
DeiT (Touvron et al. 2020) adopts several training tech-
niques (e.g. truncated normal initialization, strong data aug-
mentation and smaller weight decay) and uses distillation to
extend ViT to a data-efficient version; T2T ViT (Yuan et al.
2021b), CeiT (Yuan et al. 2021a), and CvT (Wu et al. 2021)
try to deal with the rigid patch division by introducing con-
volution operation for patch sequence generation to facili-
tate the training; DeepViT (Zhou et al. 2021a), CaiT (Tou-
vron et al. 2021), and PatchViT (Gong et al. 2021) inves-
tigate the unstable training problem, and propose the re-
attention, re-scale and anti-over-smoothing techniques re-
spectively for stable training; to accelerate the convergence
of training, ConViT (d’Ascoli et al. 2021), PiT (Heo et al.
2021), CeiT (Yuan et al. 2021a), LocalViT (Li et al. 2021b)
and Visformer (Chen et al. 2021) introduce convolutional
bias to speedup the training; LV-ViT (Jiang et al. 2021)
adopts several techniques including MixToken and Token
Labeling for better training and feature generation; the SAM
optimizer (Foret et al. 2020) is adopted in (Chen, Hsieh, and
Gong 2021) to better train ViTs without strong data aug-
mentation; KVT (Wang et al. 2021a) introduces the k-NN
attention to filters out irrelevant tokens to speedup the train-
ing; conv-stem is adopted in several works (Graham et al.
2021; Xiao et al. 2021; Guo et al. 2021; Yuan et al. 2021c)
to improve the robustness of training ViTs. In this paper, we
investigate the training of ViTs by using the conv-stem and
demonstrate several properties of conv-stem in the context
of vision transformers, both theoretically and empirically.

Vision Transformer Architectures
ViT. ViT (Dosovitskiy et al. 2020) first divides an input im-
age into non-overlapping pxp patches and linearly projects
each patch to a d-dimensional feature vector using a learned
weight matrix. The typical patch and image size are p =
16 and 224x224, respectively. The patch embeddings to-
gether with added positional embeddings and a concate-
nated classification token are fed into a standard transformer
encoder (Vaswani et al. 2017) followed by a classification
head. Similar as (Xiao et al. 2021), we name the portion of
ViT before the transformer blocks as ViT-stem, and call the
linear projection (stride-p, pxp kernel) as patchify-stem.

Conv-stem. Unless otherwise specified, we adopt the
conv-stem from VOLO (Yuan et al. 2021c). The full conv-
stem consists of 3Conv+3BN+3ReLU+1Proj blocks, and the
kernel sizes and strides are (7,3,3,8) and (2,1,1,8), respec-
tively. The detailed configurations are shown in Algorithm
1 of supplemental material. The parameters and FLOPs of
conv-stem are slightly larger than patchify-stem. For exam-
ple, the parameters of DeiT-Small increase from 22M to
23M, but the increase is very small as the kernel size in
last linear projection layer decreases from 16*16 in patchify-
stem to 8*8 in conv-stem. The reason why we adopt the
VOLO conv-stem rather than that in (Xiao et al. 2021) is
that we want to keep the layers of encoders the same as in

ViT, but not to remove one encoder layer as in (Xiao et al.
2021).

ViTp and ViTc. To make easy comparisons, the original
ViT model using patchify-stem is called ViTp. To form a ViT
model with a conv-stem, we simply replace the pathify-stem
with conv-stem, leaving all the other unchanged, and we call
this ViT as ViTc. In the following sections, we theoretically
and empirically verify that ViTc is better than ViTp in stabi-
lizing training and diversifying the patch tokens, due to the
scaled ReLU structure.

Scaled ReLU Structure
In this section, we first introduce the Scaled ReLU structure
and then analyze how scaled ReLU stabilizes training and
enhances the token diversification respectively.

For any input x, we defined the scaled ReLU structure
with scaling parameters α, β, ReLUα,β(·) for shorthand, as
follow:

ReLUα,β(x) = βmax {x+ α, 0} .
The scaled ReLU structure can be achieved by combining
ReLU with normalization layers, such as Batchnorm or Lay-
ernorm that contain trainable scaling parameters, and one
can view the Batchnorm + ReLU in the conv-stem as a vari-
ant of the scaled ReLU. Intuitively, the ReLU layer may cut
out part of input data and make the data focus on a smaller
range. It is necessary to scale it up to a similar data range as
of its input, which helps stabilize training as well as main-
tain promising expression power. For simplicity, we will fo-
cus on the scaled ReLU in this paper and our analysis could
be extended to the case with commonly used normalization
layers.

Training Stabilization
Let’s assume Xi,c ∈ RHW be the output of channel c in the
CNN layer from the last conv-stem block for i-th sample,
where H and W are height and width. Based on the defini-
tion of the Batchnorm, the output Xout

i,c of the last conv-stem
is

Xout
i,c = ReLU

 Xi,c − µce√∑B
i=1 ‖Xi,c − µce‖2

βc + αce


= ReLUαc

βc
,βc

 Xi,c − µce√∑B
i=1 ‖Xi,c − µce‖2


= ReLUαc

βc
,βc(X̃i,c), (1)

where X̃i,c =
Xi,c−µce√∑B
i=1 ‖Xi,c−µce‖2

, µc is the mean of Xi,c

within a batch and B is the batch size. Next, we concate-
nate Xout

i,c over channel as Xout
i and reshape it to Xin

i ∈
RB×n×d, where n is the token (patch) length and d is the
embedding dimension. Finally, we compute Qi,Ki, Vi as
follow:

[Qi Ki Vi] = Xin
i [WQ WK WV ]

.
= Xin

i Wtrans
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and start to run the self attention.
To illustrate how the scaled ReLU can stabilize training,

we consider a special case which we freeze all parameters
except the scaling parameters αc, βc for c = 1, 2, ..., C in
the last batchnorm layer, and WQ, WK and WV in the first
transformer block. Note that Q, K and V are computed by
the production of Xin and Wtrans. In order to maintain the
same magnitude of Q, K and V , Wtrans will be closer to 0
if Xin is scaled with larger αc and βc parameters. In other
words, the Scaled ReLU may give the Wtrans an implicit
regularization with respect to its scaling parameters. The re-
sult is summarized in the following Theorem 1.
Theorem 1 Let αc, βc be the parameters in scaled ReLU
structures in the last conv-stem block with c = 1, 2, ..., C
and Wtrans

.
= [WQ WK WV ] be the attention param-

eters in the first transformer block. If we freeze all other
parameters and introduce the l2 weight decay in the op-
timizer, then the optimization problem is equivalent to the
weighted l1 penalized learning on Wtrans. Moreover, let
Wtrans,c be the parameters associated with channel c and
the penalty weights corresponding to Wtrans,c are propor-
tional to

√
β2
c + α2

c .
The theorem shows an implicit l1 regularization on atten-

tion weights from the scaled ReLU structure. In the modern
high-dimensional statistics, it is well known that l1 penalized
learning introduces significantly less model bias (e.g., expo-
nentially better dimensionality efficiency shown in Loh and
Wainwright 2015). Moreover, the regularization strength
that is on the order ofO(

√
α2
c + β2

c ) differs from channel to
channel and changes over time adaptively. For the channel
with larger magnitude in αc and/or βc, the scaled token has
higher divergence. In order to make the training processing
more stable, the updates for the corresponding parameters in
Wtrans need also be more careful (using larger penalties). It
distinguishes the scaled ReLU structure from directly using
l1 weights decay in the optimizer directly.

Proof of Theorem 11 We denote the loss function as fol-
low:

min
1

n

n∑
i=1

KL
(
f({ReLUαc

βc
,βc(X̃i,c)},Wtrans), yi

)
+ λ

(
C∑
c=1

(α2
c + β2

c ) + ‖Wtrans‖2F

)
,

where KL(·) is the KL-divergence, yi is the label for i-th
sample, f(·) denotes prediction function, λ is a positive con-
stant for l2 weight decays and {ReLUαc,βc(X̃i,c)} is the set
of ReLUαc,βc(X̃i,c) over all channels. Without loss of gen-
erality, we can find a function g to rewrite f function as:

f
({
ReLUαc

βc
,βc(X̃i,c)

}
,Wtrans

)
= g

({
ReLUαc

βc
,βc(X̃i,c)Wtrans,c

})
,

1The similar analysis procedure for implicit regularization are
also presented in (Ergen et al. 2021; Neyshabur, Tomioka, and Sre-
bro 2014; Savarese et al. 2019).

where we rearrangeWtrans,c to match the dimensions of the
conv-stem (i.e., C ×HW instead of n× d).

Next, we can re-scale the parameters with ηc > 0 as fol-
low:

β̃c = ηcβc, α̃c = ηcαc, W̃trans,c = η−1c Wtrans,c,

and it implies

g
({
ReLUαc

βc
,βc(X̃i,c)Wtrans,c

})
= g

({
ReLU α̃c

β̃c
,β̃c

(X̃i,c)W̃trans,c

})
.

Moreover, using the fact that (a2+ b2)+ c2 ≥ 2|c|
√
a2 + b2

one can verify

C∑
c=1

(α̃2
c + β̃2

c ) + ‖W̃trans‖2F

=

C∑
c=1

α̃2
c + β̃2

c + ‖W̃trans,c‖2

≥2
C∑
c=1

‖η−1c Wtrans,c‖1

√
η2cα

2
c + η2cβ

2
c

HW
(2)

=
2√
HW

C∑
c=1

‖Wtrans,c‖1
√
α2
c + β2

c , (3)

where the equality (2) holds when

ηc =

√
‖Wtrans,c‖1
α2
c + β2

c

, c = 1, 2, ..., C. (4)

Therefore the right hand-size of (3) becomes the l1 penalties
over the Wtrans,c with weights

√
α2
c + β2

c , i.e., WQ, WK

and WV are l1 penalized over the input channels with
different strength. �

Remark 1. The analysis of Theorem 1 is also capable of
combining the ReLU + Layernorm or Batchnorm + ReLU
+ MLP structures. In some types of transformer models, the
tokens will first go through Layernorm or be projected via
MLP before entering the self-attention. Via the similar anal-
ysis, we can also show the adaptive implicit l1 regularization
in these two settings.

Tokens Diversification
Next, we demonstrate the scaled ReLU’s token diversifica-
tion ability by consine similarity. Following (Gong et al.
2021) the consine similarity metric is defined as:

CosSim(B) =
1

n(n− 1)

∑
i6=j

BiB
T
j

‖Bi‖‖Bj‖
, (5)

whereBi represents the i-th row of matrixB and ‖·‖ denotes
the l2 norm. Note that if we can ensure ‖Bi‖ > bmin for
i = 1, 2, ..., n, the CosSim(B) will in turn be upper bounded
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by

CosSim(B) ≤ 1

n(n− 1)b2min

∑
i6=j

BiB
T
j

=
1

n(n− 1)b2min

[
eTBBT e−

∑
i

‖Bi‖22

]

≤ 1

n− 1

(
‖B‖2op
b2min

− 1

)
, (6)

where ‖ · ‖op denotes matrix operator norm. Based on (6),
as long as ‖B‖op and bmin change at the same order, the
consine similarity may decease. In the following Theorem
2, we analyze the order of ‖B‖op and mini ‖Bi‖.
Theorem 2 Let D be a zero mean probability distribution
and matrix A ∈ Rn×d be a matrix filled whose elements
are drawn independently from D and ‖A‖op ≤ R

√
nd with

R > 0. Furthermore, we denote B = ReLUα,β(A), µB =
E[Bi,j ] and σ2

B = Var[Bi,j ] for all i, j. Then for δ > 0 and
γ ∈ (0, c0) , with probability 1 − δ − 2 exp(−cc−20 γ2d +
log n), we have

‖B‖op ≤ O

(
µ log

(
1

δ

)
+ σ

√
log

(
1

δ

))
and

min
i
‖Bi‖2 ≥ O

(√
µ2 + (1− γ)σ2

)
,

where c, c0 are positive constants, O(·) suppresses the de-
pendence in n, d and R.

The above result shows that the operator norm and l2
norm for each row of the token matrix after scaled ReLU
is proportional to its element-wise mean and standard devia-
tion. Given the identity transformation (i.e.,B = A) is a spe-
cial case of the scaled ReLU, matrix A (token matrix before
scaled ReLU) enjoys the similar properties. As the ReLU
truncates the negative parts of its input, one has µB ≥ µA. If
we could maintain the same variance level in B and A, both
mini ‖Bi‖2 and ‖B‖op change at order of O(µ + σ) and
according to inequality (6), the cosine similarity becomes
smaller from A to B.

Proof of Theorem 2:
Upper Bound for ‖B‖op. Denote E ∈ Rn×d as the ma-

trix filled with 1 and X = B − µE. We have E[X] = 0,
‖X‖op ≤ (βR+βα+µ)

√
nd almost surely. Via the matrix

Bernstein inequality (e.g., Theorem 1.6 in Tropp 2012),

P
(
‖X‖op ≥ t

)
≤ (n+ d) exp

(
−t2/2

σ2
max +Rmaxt/3

)
,

(7)

where

σ2
max = max{‖E[XXT ]‖op, ‖E[XTX]‖op}

= max{nσ2, dσ2} ≤ (n+ d)σ2

Rmax ≥ ‖X‖op = (βR+ βα+ µ)
√
nd.

By setting δ = (n+ d) exp
(

−t2/2
σ2
max+Rmaxt/3

)
, we can repre-

sent t by δ as:

t =
1

3
Rmax log

(
n+ d

δ

)
+

√
1

9
R2

max log
2

(
n+ d

δ

)
+ 2σ2

max log

(
n+ d

δ

)

≤ 2

3
Rmax log

(
n+ d

δ

)
+

√
2σ2

max log

(
n+ d

δ

)
,

where last inequality uses the fact that
√
a+ b ≤

√
|a| +√

|b|.
Then inequality (7) implies the following result holds with

probability 1− δ:

‖X‖op ≤
2

3
Rmax log

(
n+ d

δ

)
+

√
2σ2

max log

(
n+ d

δ

)
.

(8)
Next, combine (8) with the facts ‖B‖op−‖µE‖op ≤ ‖X‖op
and ‖µE‖op = µ

√
nd, one has

‖B‖op ≤ O

(
µ log

(
1

δ

)
+ σ

√
log

(
1

δ

))
,

where we ignore the dependence in n, d and R.

Lower Bound for ‖Bi‖. Next, we derive the bound for
‖Bi‖. Since ‖A‖op is upper bounded, there exists a con-
stant c0 such that B2

ij − µ2 − σ2 being centered c0σ2 sub-
exponential random variable. Then we are able to apply the
Corollary 5.17 in Vershynin 2010, there exists c > 0, for
η > 0:

P

∣∣∣∣∣∣
d∑
j

B2
ij − d(µ2 + σ2)

∣∣∣∣∣∣ ≥ ηd


≤ 2 exp

(
−cmin

{
η2

c20σ
4
,
η

c0σ2

}
d

)
.

We then set η = γσ2 for some γ ∈ (0, c0) such that µ2 +

(1 − γ)σ2 > 0. Combining ‖Bi‖2 =
∑d
j B

2
ij with above

inequality, we have

P
(
‖Bi‖ ≤

√
d(µ2 + (1− γ)σ2)

)
≤ 2 exp

(
−cγ2c−20 d

)
.

Therefore via union bound, we have
min
i
‖Bi‖ ≥

√
d(µ2 + (1− γ)σ2) = O(

√
µ2 + (1− γ)σ2)

holds with probability 1− 2 exp(−cγ2c−20 d+ log n).
�

Experiments
In this section, we conduct extensive experiments to verify
the effects of conv-stem and scaled ReLU. The ImageNet-
1k (Russakovsky et al. 2015) is adopted for standard training
and validation. It contains 1.3 million images in the training
set and 50K images in the validation set, covering 1000 ob-
ject classes. The images are cropped to 224×224.
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model lr optimizer wm-ep Top1 acc

ViTp
DeiT-Small

5e-4 AdamW 5 79.8
1e-3 AdamW 5 crash
1e-3 AdamW 20 80.0
5e-4 SAM 5 79.9
1e-3 SAM 5 79.6
1e-4 SAM 5 77.8

ViTc
DeiT-Small

5e-4 AdamW 5 81.6
1e-3 AdamW 5 81.9
1e-3 AdamW 20 81.7
1e-3 AdamW 0 crash
5e-4 SAM 5 81.5
1e-3 SAM 5 81.7
1e-4 SAM 5 79.1

Table 1: The effects of conv-stem using different learning
rate (lr), optimizer, warmup epoch (wm-ep).

The Effects of Conv-Stem
We take DeiT-Small (Touvron et al. 2020) as our baseline,
and replace the patchify-stem with conv-stem. The batch-
size is 1024 for 8 GPUs, and the results are as shown in
Table 1. From the Table we can see that conv-stem based
model is capable with more volatile training environment:
with patchify-stem, ViTp can not support larger learning rate
(1e-3) using AdamW optimizer but only works by using
SAM optimizer, which reflects ViTp is sensitive to learn-
ing rate and optimizer. By adding the conv-stem, ViTc can
support larger learning rate using both AdamW and SAM
optimizers. Interestingly, ViTc achieves 81.9 top-1 accuracy
using lr=1e-3 and AdamW optimizer, which is 2.1 point
higher than baseline. With conv-stem, SAM is no longer
more powerful than AdamW, which is a different conclu-
sion as in (Chen, Hsieh, and Gong 2021). After adding conv-
stem, it still needs warmup, but 5 epochs are enough and
longer warmup training does not bring any benefit.

The Effects of Scaled ReLU in Conv-Stem
We adopt three vision transformer architectures, includ-
ing both supervised and self-supervised methods, to eval-
uate the value of scaled ReLU for training ViTs, namely,
DeiT (Touvron et al. 2020), DINO (Caron et al. 2021) and
VOLO (Yuan et al. 2021c). For DeiT and VOLO, we fol-
low the official implementation and training settings, only
modifying the parameters listed in the head of Table 2; for
DINO, we follow the training settings for 100 epoch and
show the linear evaluation results as top-1 accuracy. The
results are shown in Table 2. From the Table we can see
that scaled ReLU (BN+ReLU) plays a very important role
for both stable training and boosting performance. Specif-
ically, without ReLU the training will be crashed under 5
warmup epoch in most cases, for both AdamW and SAM
optimizers; increasing warmup epoch will increase the sta-
bilization of training with slightly better results; with scaled
ReLU, it can boost the final performance largely in stable
training mode. The full conv-stem boosts the performance
of DeiT-Small largely, 2.1 percent compared with the base-
line, but by removing ReLU or scaled ReLU the perfor-

mance will decrease largely; the same trend holds for both
DINO and VOLO. For the patchify-stem, after adding ReLU
or scaled ReLU it can stabilize the training by supporting a
large learning rate. In addition, scaled ReLU has faster con-
vergence speed. For DeiT-Small, the top-1 accuracy is 18.1
vs 10.6 at 5 epoch, 53.6 vs 46.8 at 20 epoch, 63.8 vs 60.9 at
50 epoch, for conv-stem and patchify-stem, respectively.

Scaled ReLU Diversifies Tokens

To analyze the property of scaled ReLU diversifying tokens,
we adopt the quantitative metric layer-wise cosine similar-
ity between tokens as defined in formula 5.

We regard the conv-stem as one layer and position embed-
ding as another layer in the ViT-stem, thus the total layers of
ViTc is 14 (plus 12 transformer encoder layers). The layer-
wise cosine similarity of tokens are shown in Figure 1. From
the Figure we can see that position embedding can largely
diversify the tokens due to its specific position encoding for
each token. Compared with baseline (1Proj) (Touvron et al.
2020), the full conv-stem (3Conv+3BN+3ReLU+1Proj) can
significantly diversify the tokens at the lower layers to
learn better feature representation, and converge better at
higher layers for task-specific feature learning. Interestingly,
3Conv+3ReLU+1Proj and 3Conv+1Proj+warmup20 have
the similar trend which reflects that ReLU can stabilize the
training as longer warmup epochs.

2.5 5.0 7.5 10.0 12.5

Layer depth

0.2

0.3

0.4
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m
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1Proj(baseline)

3Conv+3BN+3ReLU+1Proj

3Conv+3ReLU+1Proj

3Conv+1Proj+warmup20

Figure 1: Layer-wise cosine similarity of tokens for DeiT-
Small.

The Effects of Stride in Conv-Stem

According to the work (Xiao et al. 2021), the stride in the
conv-stem matters for the final performance. We also inves-
tigate this problem in the context of VOLO conv-stem for
DeiT-Small. We keep the kernel size unchanged, and only
adjust the stride and its corresponding padding. The default
warmup epoch is 5 unless otherwise noted. The results are
shown in Table 3. From this Table we can see that the aver-
age stride (2,2,2,2) is not better than (2,1,1,8), and it can not
stabilize the training either.
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model lr optimizer wm-epoch components in conv-stem stride Top acc

DeiT-Small

1e-3 AdamW 5 3Conv+3BN+3ReLU+1Proj (2,1,1,8) 81.9
1e-3 AdamW 5 3Conv+3BN+1Proj (2,1,1,8) crash
1e-3 AdamW 5 3Conv+3ReLU+1Proj (2,1,1,8) 81.5
1e-3 AdamW 5 3Conv+1Proj (2,1,1,8) crash
1e-3 AdamW 20 3Conv+1Proj (2,1,1,8) 80.0
1e-3 AdamW 5 3Conv+1Proj+1ReLU (2,1,1,8) 79.9
1e-3 AdamW 5 1Proj+1BN+1ReLU (16) 79.8
1e-3 AdamW 5 1Proj+1ReLU (16) 79.5
1e-3 AdamW 5 1Proj (16) crash
5e-4 AdamW 5 1Proj (baseline) (16) 79.8
1e-3 SAM 5 3Conv+3BN+3ReLU+1Proj (2,1,1,8) 81.7
1e-3 SAM 5 3Conv+3BN+1Proj (2,1,1,8) 80.2
1e-3 SAM 5 3Conv+3ReLU+1Proj (2,1,1,8) 80.6
1e-3 SAM 5 3Conv+1Proj (2,1,1,8) crash
1e-3 SAM 20 3Conv+1Proj (2,1,1,8) 80.4
1e-3 SAM 5 3Conv+1Proj+1ReLU (2,1,1,8) 80.3

DINO-S/16
100 epoch

5e-4 AdamW 10 3Conv+3BN+3ReLU+1Proj (2,1,1,8) 76.0
5e-4 AdamW 10 3Conv+3BN+1Proj (2,1,1,8) 73.4
5e-4 AdamW 10 3Conv+3ReLU+1Proj (2,1,1,8) 74.8
5e-4 AdamW 10 3Conv+1Proj (2,1,1,8) 74.1
5e-4 AdamW 10 1Proj+1ReLU (16) 73.6
5e-4 AdamW 10 1Proj+1BN+1ReLU (16) 73.3
5e-4 AdamW 10 1Proj (baseline) (16) 73.6

VOLO-d1-224

1.6e-3 AdamW 20 3Conv+3BN+3ReLU+1Proj (2,1,1,4) 84.1
1.6e-3 AdamW 20 3Conv+3BN+1Proj (2,1,1,4) 83.6
1.6e-3 AdamW 20 3Conv+3ReLU+1Proj (2,1,1,4) 84.0
1.6e-3 AdamW 20 3Conv+1Proj (2,1,1,4) crash
1.6e-3 AdamW 20 1Proj 8 83.4
1.6e-3 AdamW 20 1Proj+1ReLU 8 83.4
1.6e-3 AdamW 20 1Proj+1BN+1ReLU 8 83.5

Table 2: The effects of scaled ReLU under different settings using three methods.

components in conv-stem stride Top1 acc
3Conv+3BN+3ReLU+1Proj (2,1,1,8) 81.9
3Conv+3BN+3ReLU+1Proj (2,2,2,2) 81.0

3Conv+1Proj (2,1,1,8) crash
3Conv+1Proj (2,2,2,2) crash

3Conv+1Proj (wm-epoch=20) (2,1,1,8) 80.0
3Conv+1Proj (wm-epoch=20) (2,2,2,2) 79.7

3Conv+1Proj+1ReLU (2,1,1,8) 79.9
3Conv+1Proj+1ReLU (2,2,2,2) 79.9

Table 3: The effects of stride in conv-stem for DeiT-Small.

Transfer Learning: Object ReID
In this section, we transfer the DINO-S/16 (100 epoch) on
ImageNet-1k to object ReID to further demonstrate the ef-
fects of conv-stem. We fine-tune the DINO-S/16 shown in
Table 2 on Market1501 (Zheng et al. 2015) and MSMT17
(Wei et al. 2018) datasets. We follow the baseline (He et al.
2021) and follow the standard evaluation protocol to report
the Mean Average Precision (mAP) and Rank-1 accuracies.
All models are trained with the baseline learning rate (1.6e-
3) and a larger learning rate (5e-2). The results are shown in

Table 4. From the Table we can see that the full conv-stem
not only achieves the best performance but also supports
both the large learning rate and small learning rate training.
Without ReLU or BN+ReLU, in most cases, the finetuning
with a large learning rate will crash. Interestingly, the fine-
tuning with DINO is sensitive to the learning rate, a smaller
learning rate will achieve better performance.

Scaled ReLU/GELU in Transformer Encoder
In transformer encoder layer, the feed-forward layers (ffn)
adopt LayerNorm+GELU block, and in this section, we in-
vestigate this design using DeiT-Small (DeiT-S) and VOLO-
d1-224, using the training parameters for the best perfor-
mance in Table 2. The motivation to investigate ReLU and
GELU is to show whether GELU is better than ReLU for
conv-stem design, as GELU achieves better results than
ReLU for transformer encoder. We first remove the Layer-
Norm layer in ffn, the training directly crashes in the first
few epochs. And then, we replace the GELU with RELU, the
performance drops largely, which reflects that GELU is bet-
ter than ReLU for ffn. Next, we replace ReLU with GELU
in conv-stem, the performance drops a little bit, demonstrat-
ing that ReLU is better than GELU for conv-stem. Lastly,
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we rewrite the MLP implementation in ffn by replacing the
fc+act block with Conv1D+BN1D+GELU (Conv1D equals
to fc, and the full implementation is shown in supplemen-
tal material of Algorithm 2), and the performance drops,
especially for VOLO. It might confirm the conclusion in
NFNet (Brock et al. 2021) that batch normalization con-
strains the extreme performance, making the network sub-
optimal. All the results are shown in Table 5.

Market1501 MSMT17
components in conv-stem lr mAP R-1 mAP R-1

3Conv+3BN+3ReLU+1Proj

1.6*
e-3

84.3 93.5 56.3 78.7
3Conv+3BN+1Proj 83.6 92.9 55.1 77.8

3Conv+3ReLU+1Proj 81.7 91.9 51.5 75.2
3Conv+1Proj 83.0 92.7 52.1 74.0
1Proj+1ReLU 84.2 93.1 53.6 75.5

1Proj+1BN+1ReLU 84.1 92.8 55.7 77.5
1Proj (baseline) 84.1 93.1 54.9 76.8

3Conv+3BN+3ReLU+1Proj

5*
e-2

76.8 89.7 48.5 72.1
3Conv+3BN+1Proj crash

3Conv+3ReLU+1Proj crash
3Conv+1Proj crash
1Proj+1ReLU 69.5 86.1 36.1 36.0

1Proj+1BN+1ReLU 77.6 90.6 46.2 88.6
1Proj (baseline) crash

Table 4: The comparisons with different components in
conv-stem based on DINO for finetuning ReID tasks.

Self-Supervised + Supervised Training
We adopt the DINO self-supervised pretrained ViT-Small
model (Caron et al. 2021) on ImageNet-1k and use it to
initialize the ViT-Small model to finetune on ImageNet-1k
using full labels. The results are shown in Table 6. From
this Table we can see that using a self-supervised pretrained
model for initialization, ViTp achieve 81.6 top-1 accuracy
using SAM optimizer, which is 1.8 percent point higher than
baseline. However, according to the analysis in (Newell and
Deng 2020), with large labelled training data like Imagenet-
1k dataset, the two stage training strategy will not contribute
much (below 0.5 percent point). By adding conv-stem, the
peak performance of ViTc can reach 81.9 which is higher
than two stage training, which reflects that previous ViTs
models are far from being well trained.

Scaled Dataset Training
We adopt the DINO pretrained ViT-Small model (Caron
et al. 2021) on ImageNet-1k to initialize the ViT-Small
model, and finetune on ImageNet-1k using portion of full
labels. We adopt the original patchify-stem and SAM opti-
mizer for this investigation. The results are shown in Table 7.
It can be seen that even using self-supervised pretrained
model for initialization, using only 10% of ImageNet-1k
data for training, it only achieves 67.8% accuracy, much
worse than the linear classification accuracy using full data
(77.0%) (Caron et al. 2021). With the data-size increasing,
the performance improves obviously, and we do not see
any saturation in the data-size side. This performance partly

model design Top1 acc

DeiT-Sc

LayerNorm removed in ffn crash
GELU→ReLU in ffn 80.3(1.6↓)

ReLU→GELU in conv-stem 81.7(0.2↓)
MLP→Conv1D+BN+GELU 81.7(0.2↓)

MLP→Conv1D+GELU 82.0(0.1↑)

VOLO-d1c

LayerNorm removed in ffn crash
GELU→ReLU in ffn 83.5(0.6↓)

ReLU→GELU in conv-stem 84.0(0.1↓)
MLP→Conv1D+BN+GELU 83.2(0.9↓)

MLP→Conv1D+GELU 84.0(0.1↓)

Table 5: The comparisons among different designs using
scaled ReLU/GELU.

model lr optimizer wm-ep Top1 acc

DeiT-Smallp
TST

1e-4 AdamW 5 81.2
5e-4 AdamW 5 81.3
1e-3 AdamW 5 80.1
1e-4 SAM 5 81.6
5e-4 SAM 5 81.1
1e-3 SAM 5 80.1

DeiT-Smallc
OST

1e-3 AdamW 5 81.9
1e-3 SAM 5 81.7

Table 6: The comparisons between two-stage training (TST,
self-supervised + supervised training) and only supervised
training (OST) on ImageNet-1k.

demonstrates that ViT is powerful in fitting data and current
ViT models trained on ImageNet-1k is not trained enough.

model lr optimizer datasize Top1 acc

DeiT-Smallp
TST

1e-4 SAM 10% 67.8
1e-4 SAM 20% 73.5
1e-4 SAM 30% 76.0
1e-4 SAM 40% 77.6
1e-4 SAM 50% 79.0
1e-4 SAM 60% 79.8
1e-4 SAM 70% 80.4
1e-4 SAM 80% 80.9
1e-4 SAM 90% 81.4
1e-4 SAM 100% 81.6

Table 7: The comparisons among different portion of
ImageNet-1k for two-stage training (TST, self-supervised +
supervised training) training.

Conclusion
In this paper, we investigate the training of ViTs in the con-
text of conv-stem. We theoretically and empirically verify
that the scaled ReLU in the conv-stem matters for robust
ViTs training. It can stabilize the training and improve the
token diversity for better feature learning. Extensive exper-
iments unveil the merits of conv-stem and demonstrate that
previous ViTs are not well trained even if they obtain better
results in many cases compared with CNNs.
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