
Category-Specific Nuance Exploration Network for Fine-Grained Object Retrieval

Shijie Wang1, Zhihui Wang1,2, Haojie Li 1,2∗, Wanli Ouyang3

1 International School of Information Science and Engineering, Dalian University of Technology, China
2Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, China

3Sense Time Computer Vision Research Group, The University of Sydney, Australia
wangsj@mail.dlut.edu.cn, {zhwang, hjli}@dlut.edu.cn, wanli.ouyang@sydney.edu.au

Abstract

Employing additional prior knowledge to model local fea-
tures as a final fine-grained object representation has become
a trend for fine-grained object retrieval (FGOR). A potential
limitation of these methods is that they only focus on com-
mon parts across the dataset (e.g., head, body, or even leg) by
introducing additional prior knowledge, but the retrieval of
a fine-grained object may rely on category-specific nuances
that contribute to category prediction. To handle this limi-
tation, we propose an end-to-end Category-specific Nuance
Exploration Network (CNENet) that elaborately discovers
category-specific nuances that contribute to category predic-
tion, and semantically aligns these nuances grouped by sub-
category without any additional prior knowledge, to directly
emphasize the discrepancy among subcategories. Specifi-
cally, we design a Nuance Modelling Module that adaptively
predicts a group of category-specific response (CARE) maps
via implicitly digging into category-specific nuances, speci-
fying the locations and scales for category-specific nuances.
Upon this, two nuance regularizations are proposed: 1) se-
mantic discrete loss that forces each CARE map to attend
to different spatial regions to capture diverse nuances; 2) se-
mantic alignment loss that constructs a consistent semantic
correspondence for each CARE map of the same order with
the same subcategory via guaranteeing each instance and its
transformed counterpart to be spatially aligned. Moreover, we
propose a Nuance Expansion Module, which exploits context
appearance information of discovered nuances and refines the
prediction of current nuance by its similar neighbors, leading
to further improvement on nuance consistency and complete-
ness. Extensive experiments validate that our CNENet con-
sistently yields the best performance under the same settings
against most competitive approaches on CUB Birds, Stanford
Cars, and FGVC Aircraft datasets.

Introduction
Fine-grained object retrieval (FGOR) aims at retrieving im-
ages belonging to various subcategories of a certain meta-
category and returning images with the same subcategory as
the query image. It is a more challenging problem than gen-
eral image retrieval due to the inherently subtle inter-class
object variances among subcategories. As a result, the key
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Figure 1: Motivation of CNENet. (a) are visually similar im-
ages (S, SN ) from different subcategories as inputs. The yel-
low and blue circles in (b)(d)(e)(g) denote the selected nu-
ances, and the values in (c)(f) represent the cosine similarity
(Cos) between (S, SN ). We can see that although part-based
works discover common parts of head and tail across subcat-
egories by introducing additional prior knowledge (i.e., key
points, etc.), the similarity (c) between the extracted features
from selected parts with different subcategories is large. Our
CNENet discards additional prior knowledge and designs
the nuance regularizations to discover category-specific nu-
ances which do not have to be common parts, thus empha-
sizing the discrepancy among subcategories.

to FGOR lies in picking out nuances buried in the local re-
gions to address the aforementioned challenge of FGOR.

Recently, quite a few approaches (Zheng et al. 2018; Shen
et al. 2017; Moskvyak et al. 2021) have been proposed for
exploring nuances, which primarily brings together repre-
sentation learning, and fine-grained object auxiliary infor-
mation into a framework to consider the nuances of a fine-
grained object. However, these works require extra prior
knowledge (i.e., object location, key points, or object pars-
ing information) for discovering and aligning common parts
across all subcategories, while neglecting the fact that these
common parts are not always discriminative, and accord-
ingly degrades the retrieval performance. For example, vi-
sually similar birds can be retrieved using their category-
specific nuances that contribute to category prediction in
Fig. 1, but previous part-based works select the common
parts (e.g., head and tail) across all subcategories by the
guidance of additional prior knowledge, making the selected
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parts not always inclusive of category-specific nuances.
Therefore, we argue that additional prior knowledge can
only provide the location of common parts across the dataset
but cannot explicitly point out the category-specific nuances
among subcategories. When additional prior knowledge is
useless, how to effectively extract category-specific nuances
and how to semantically align these nuances grouped by cat-
egory are worthy of investigation for FGOR.

To this end, we propose an end-to-end Category-specific
Nuance Exploration Network (CNENet) to elaborately dis-
cover category-specific nuances and semantically align these
nuances of the same subcategory in order by introducing ad-
ditional nuance regularizations, which directly emphasizes
the discrepancy among subcategories. The CNENet con-
sists of Nuance Modelling Module (NMM) and Nuance Ex-
pansion Module (NEM). NMM predicts a set of category-
specific response (CARE) maps by implicitly digging into
nuances relevant to categories under two nuance regulariza-
tions, which specifies the location and scale for category-
specific nuances. Concretely, the nuance regularizations are:
1) semantic discrete loss that forces each CARE map to
attend to different spatial regions to discover diverse nu-
ances; 2) semantic alignment loss that constructs a con-
sistent semantic correspondence for each CARE map of
the same order with the same subcategory via guarantee-
ing each instance and its transformed counterpart to be spa-
tially aligned. The multiple nuances generated by NMM
are expected to be spatially discrete as much as possible
to achieve semantic diversity of category-specific nuances.
However, some vital nuances may cover the entire object
or overlap with the others, resulting in some nuances be-
ing shrunk. Therefore, NEM exploits context appearance
information of discovered nuances and refines the predic-
tion of current nuance by its similar neighbors, leading to
further improvement on nuance consistency and complete-
ness. Finally, these two modules without any pairwise met-
ric losses are cascaded and jointly optimized, to learn the
category-specific nuances, which have the property of bene-
fiting FGOR performance.

Main contributions of this paper can be summarized:

• To the best of our knowledge, we are the first to dig into
and align category-specific nuances grouped by category
rather than focus on common parts across the dataset in
FGOR.
• We design two nuance regularizations: semantic discrete

loss to explore diverse category-specific nuances and se-
mantic alignment loss to semantically align nuances of
the same subcategory, thus achieving category-specific
nuance exploration in a self-supervised manner.
• We evaluate the proposed method on three datasets (CUB

Birds, Stanford Cars, and FGVC Aircraft), and the results
demonstrate that our CNENet achieves the state-of-the-
art.

Related Work
Fine-grained Object Retrieval: Existing FGOR methods
can be roughly divided into three groups. The first group,
metric-based schemes, is learning an embedding space

where similar examples are attracted, and dissimilar ex-
amples are repelled (Teh et al. 2020; Wang et al. 2019a;
Boudiaf et al. 2020). PNCA++ (Teh et al. 2020) proposes
a proxy-based deep metric learning (DML) solution to em-
bed image-level features and thus represent class distribu-
tion. The shortcoming of metric-based schemes is that they
focus on the optimization of image-level features which con-
tain many noisy and non-discriminative information. There-
fore, the second group, object-based schemes, focuses on
localizing the objects from images via exploring the activa-
tion of features (Wei et al. 2017; Zheng et al. 2018). SCDA
(Wei et al. 2017) only localizes the objects while discards
the noisy background for extracting informative descriptors
for FGOR. CRL (Zheng et al. 2018) designs an attractive
object feature extraction strategy to facilitate the retrieval
task. Instead of localizing object-level features, the third
group, part-based schemes tends to dig into common parts
across the dataset via the guidance of additional prior knowl-
edge (Zheng et al. 2018; Shen et al. 2017; Moskvyak et al.
2021). LFE (Shen et al. 2017) selects the specific filters to
localize the semantically coherent parts, which achieves the
goal of encoding common regions. KAE-Net (Moskvyak
et al. 2021) learns features corresponding to each keypoint
position to construct a representation. However, these ap-
proaches are difficult to guarantee the learnt features are
discriminative enough. Different from these works, we pro-
pose CNENet to dig into category-specific nuances that con-
tribute to category prediction, and thus explicitly emphasize
discrepancies among subcategories.
Nuance exploration: Recently, nuance exploration is
mainly applied to fine-grained image recognition, and has
made great progress (Ding et al. 2019; Yang et al. 2018;
Zhang et al. 2016; Zheng et al. 2019a; Wang et al. 2020c;
Zhou et al. 2020; Wang et al. 2021, 2020a, 2019b). S3Ns
(Ding et al. 2019) produces sparse attention to localize ob-
ject and discriminative nuances by collecting local maxi-
mums of class response maps. ACNet (Ji et al. 2020) in-
troduces the attention transformer to facilitate coarse-to-fine
hierarchical feature learning to grab discriminative nuances.
CGP (Wang et al. 2020b) establishes correlation between re-
gions by graph propagation to discover the more discrimina-
tive nuance groups. The recognition task maps the learned
nuances to the category space while not considering other
samples, and thus is not sensitive to the order of the learned
nuances. In contrast, the category-specific nuances in re-
trieval require matching with nuances from other samples
in the dataset and thus are sequentially sensitive. Upon this,
we design two nuance regularizations to adaptively discover
and semantically align category-specific nuances guided by
category to address the problem of sequence sensitivity. To
our best knowledge, this is the first work to explore category-
specific nuances in a self-supervised manner for FGOR.

Proposed Method
We aim to explore the nuances that contribute to category
prediction for emphasizing discrepancies among subcate-
gories in FGOR. To this end, we propose the Category-
specific Nuance Exploration Network (CNENet). It intro-
duces two new components: the nuance modeling module
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Figure 2: Framework of CNENet. The Nuance Modelling Module receives feature maps from the backbone network to discover
and align category-specific response (CARE) maps with two nuance regularizations, which are the Semantic Discrete Loss LSD
to force CARE maps to capture diverse nuances and Semantic Alignment Loss LSA to semantically align CARE maps guided
by category. Subsequently, the Nuance Expansion Module exploits context appearance information of discovered nuances and
refines the prediction of current nuance by its similar neighbors, which can restores those missing details due to the constraint of
the semantic discrete loss. Finally, we extract the aligned category-specific nuances and concatenate them as retrieval features.

(NMM) to discover the category-specific nuances and align
them guided by category, and the nuance expansion mod-
ule (NEM) to refine the prediction of current nuance by its
similar neighbors. Our framework is illustrated in Fig. 2.

Nuance Modelling Module
Understanding discriminative semantics among subcate-
gories is a prerequisite for retrieving visually similar im-
ages. A typical approach is to introduce the additional prior
knowledge, i.e., bounding boxes or key points, to capture
common parts across the dataset. However, these common
parts cannot explicitly point out discrepancies among sub-
categories, and thus are useless. To handle this issue, we
propose a Nuance Modelling Module (NMM) to help the
network simultaneously discover the category-specific nu-
ances and align them guided by category in a self-supervised
manner.

For an input image X , we denote its feature maps F ∈
Rc×h×w extracted by the convolutional blocks as the input
of NMM, where c, h, w are the dimension, height, and width
of the feature maps. To obtain category-specific nuances,
NMM aims to discover and align the nuances of fine-grained
objects with the same subcategory. Specifically, NMM con-
sists of three sub-modules: category-specific response gen-
eration, semantic discrete loss, and semantic alignment loss.
They are explained in detail as below.

Category-specific response generation. NMM first splits
the feature mapsF into l category-specific response (CARE)
maps M = [M1,M2, ...,Ml] ∈ Rh×w×l. Concretely, these
maps are generated by a light-weight generator G(·) fol-
lowed by a normalization operation as follows:

M̂ = ReLU(G(F )), (1)
where ReLU(·) denotes the rectified linear unit (ReLU) ac-
tivation function, and G(·) is a convolutional operation with
kernel size C × 1× 1× l. Then M̂ is passed through a min-
max layer to normalize the nuanced response coefficients
M , which forces M into [0, 1]:

M =
M̂ −min(M̂)

max(M̂)−min(M̂) + ε
, (2)

where ε is a protection item to avoid dividing-by-zero, and
is set to 10−5 in our experiments.

Note that by the operation of lightweight generation, the
only goal of learning CARE maps is to capture and repre-
sent the scales and locations of category-specific nuances
between input images and corresponding class information.
Since the class information can implicitly determine the rel-
evant and irrelevant features in F , optimal features would
capture the relevant features while compressing F by sup-
pressing the irrelevant visual patterns which do not con-
tribute to the prediction of categories. Considering the cor-
responding relationship between compressed F and CARE
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maps M , F produces category-specific M , which thus indi-
cates the spatial locations of category-specific nuances.
Semantic discrete loss. The category-specific response gen-
eration tends to activate category-specific nuances by utiliz-
ing the correlation between features and category informa-
tion, but does not consider the fact that CARE maps should
cover diverse nuances of a fine-grained object. To ensure the
CARE maps can capture diverse nuances, we thus design
the semantic discrete loss LSD as a nuance regularization to
force each CARE map to attend to a different spatial region.

Specifically, we introduce LSD to make the l CARE maps
inM as discrepant with each other much as possible. There-
fore, this is equivalent to minimize the similarity among
CARE maps, as

argmin LSD =
2

l(l − 1)

∑
16k<k′6l

S(Mk,Mk′ ), (3)

where Mk,Mk′ denote the k-th and k
′
-th CARE maps re-

spectively. S(Mk,Mk′ ) =
Mk·Mk

′

||Mk||·||Mk
′ || is the cosine simi-

larity between Mk and Mk′ .
Once Eq. 3 is optimized, the CARE maps are obviously

discrepant with each other. By this means that if a CARE
map discovers one nuanced region, the other maps will be
forced to activate other spatially exclusive nuances.
Semantic alignment loss. The semantic discrete loss only
aims to force learned CARE maps to be discrepant in space,
capturing diverse nuances for fine-grained objects. Nonethe-
less, it can not guarantee that the activated CARE maps
with the same subcategory are semantically corresponding
in order, which leads to the problem of feature incoherency
for images with the same subcategory and decreases the re-
trieval performance accordingly.

Inspired by the data augmentation stage of fully super-
vised object detection or semantic segmentation (Wu et al.
2020; Li et al. 2020), the spatial annotations should be ap-
plied with the same affine transformation as input images. It
introduces an implicit equivariant regularization for the net-
work to enforce spatial alignment between transformed im-
ages and corresponding annotations. Therefore, we design a
semantic alignment loss as an implicit equivariant regular-
ization to imitate the contribution of full supervision, mak-
ing selected nuances semantically correspond to the ones
from other samples in the same subcategory. Concretely, we
expand the network into a shared-weight siamese structure
to integrate the semantic alignment loss LSA into the origi-
nal network, thus being able to semantically align category-
specific nuances guided by category:

LSA = ||T (G(B(I)))−G(B(T (I)))||, (4)

where G(B(·)) represents the backbone network B(·) fol-
lowed by category-specific response generation operation
G(·), T (·) is any spatial affine transformation, e.g. rescaling,
rotation, flip, and so on. One branch T (G(B(I))) applies
the transformation on the CARE map to output T (MO

k ),
the other branch G(B(T (I))) warps the input samples by
the same affine transformation before the feed-forward of
the network to output transformed CARE maps MT

k . There-
fore, according to Eq. 4, regularizing the CARE maps from

two branches to guarantee the spatially corresponding can
be rewritten as:

LSA =
1

l

l∑
i=1

||T (MO
k )−MT

k ||. (5)

Moreover, to further improve the ability of network for se-
mantically aligning nuances selected from images with the
same subcategory, we change the data distribution of the in-
put images by utilizing content augmentation manners (e.g.,
Gaussian blur, saturation adjustment) in addition to the spa-
tial affine transformations. By this means that it can enlarge
the distance between original samples and transformed sam-
ples, which further narrows the supervision gap between
fully and weakly supervised signals. By encouraging spa-
tial correspondence between CARE maps of the same in-
stance but with different affine transformations, the effec-
tive category-specific nuance generator is learned to match
the discrete but semantically consistent nuances of the same
subcategory in order.

Nuance Expansion Module
The nuances generated by NMM are spatially discrete as
much as possible to ensure semantic diversity of discover-
ing nuances. However, some vital nuances could cover the
entire objects or overlap with other nuances, thus resulting
in some nuances being shrunk due to the constraint of se-
mantic discrete loss. To handle this limitation, we propose
a Nuance Expansion Module (NEM) to exploit context ap-
pearance information of discovering nuances and refine the
prediction of current nuance by its similar neighbors.

NEM works as a reinforcement operation by capturing
context feature dependency to revise category-specific nu-
ances. Therefore, we refer to the core part of the self-
attention mechanism (Wang et al. 2018) with some modifi-
cations to achieve the key structure of NEM. NEM consists
of two steps: 1) pixel correlation prediction and 2) nuance
reassembly. Before taking a look at two steps, let’s review
the self-attention mechanism.
Revisiting self-attention. Self-attention mechanism (Wang
et al. 2018) meets the ideas of most methods using the sim-
ilarity of pixels to refine the original activation regions. Fol-
lowing the denotation (Wang et al. 2018), the general self-
attention mechanism can be integrated into NEM to refine
CARE maps M :

Ei =
1

N (Mi)

∑
∀j

f(Mi,Mj)η(Mj) +Mi, (6)

where
f(Mi,Mj) = eϑ(Mi)

T δ(Mj), (7)
and three embedding functions ϑ, δ, η can be implemented
by individual 1 × 1 convolution operations. Here Mi and
Ej respectively denote the original and refined CARE maps
with the spatial position index i and j, and function η(Mj)
provides a feature vector of inputMj at each position and all
of them are integrated into position i based on the correlation
coefficient given by f(Mi,Mj), which calculates the dot-
product feature affinity in an embedding space. The output
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value E is normalized byN (Mi) =
∑
∀j f(Mi,Mj). How-

ever, since CARE maps M are constrained by the semantic
discrete loss and are thereby orthogonal to each other, the
f(Mi,Mj) equals to 0, further failing to refine M .
Pixel correlation prediction. To handle this problem, we
select the feature vectors in high-level features F rather
than orthogonal CARE maps M to learn the pixel correla-
tion. More importantly, since features contain more visual
clues compared to CARE maps, we can obtain more accu-
rate correlation coefficients. Specifically, the feature projec-
tion layer can be implemented by an individual convolution
operation as follows:

F̂ = ϑ(Wθ · F + b) (8)

where Wθ ∈ RC×1×1×C1 and b are the learned weight pa-
rameters and bias vector of a convolution layer ϑ, respec-
tively. 1 × 1 is the size of convolution kernel. F̂ denote the
new feature maps. Unlike classical self-attention in object
detection (Wang et al. 2018), since our network only pro-
vides image-level supervision and two nuance regulariza-
tions, which is not as accurate as full supervision, we re-
duce parameters by removing two embedding functions δ, η
to avoid overfitting on inaccurate supervision.

Let’s take only a single correlation of two positions as an
example. The correlation of two positions at p1 and p2 in F̂
is then defined as

f(F̂p1 , F̂p2) = ReLU(
F̂Tp1 · F̂p2

||F̂p1 || · ||F̂p2 ||
). (9)

Here we take the inner-product · in normalized feature
space to calculate the reassembly correlation coefficient
f(F̂p1 , F̂p2) between current pixel F̂p1 and others. Com-
pared to Eq. 7, we use ReLU activation function with L1
normalization to mask out irrelevant pixels and generate an
correlation map which is smoother in relevant regions.
Nuance reassembly. With the reassembly correlation coef-
ficients f(F̂p1 , F̂p2), Eq. 6 can be rewritten as:

EP1 =
1∑

∀p2 f(F̂p1 , F̂p2)

∑
∀p2

f(F̂p1 , F̂p2)M
P1 , (10)

where refined CARE maps E ∈ Rl×H×W are the weighted
sum of the original CARE maps M with the normalized
f(F̂p1 , F̂p2). Moreover, we remove the residual connection
to keep the same activation intensity of the original CARE
maps.

With these refined CARE maps, we can split the feature
maps F into l nuances as follows:

Uk = Ek � F, k = 1, 2, ..., l (11)

where � denotes element-wise multiplication.
Once the feature maps are split into l nuances according to

refined CARE maps, the features of the k-th nuances uk =
g(Uk) ∈ RC are extracted by global average pooling g(·).
Finally, the output features f ∈ R(l+1)×C for retrieval can
be represented by:

fc = [uT1 , u
T
2 , ..., u

T
l , g(F )

T ]T . (12)

Method Recall@1
BL (He et al. 2016) 66.3%

BL + NMM (w/o LSD&LSA) 67.8%(1.5% ↑)
BL + NMM (w/o LSD) 69.2%(2.9% ↑)
BL + NMM (w/o LSA) 66.9%(0.6% ↑)

BL + NMM 71.2%(4.9% ↑)
BL + NMM + Self-attention 70.3%(0.9% ↓)

BL + NMM + NEM 74.5%(3.3% ↑)
BL + NMM + NEM + Triplet loss 73.4%(1.1% ↓)

Table 1: The ablative retrieval results of different variants of
our method. We test the models on CUB-200-2011.

Loss function
The full multi-task loss L can be denoted as below:

L = LCE + LSD + LSA, (13)

where LCE represents the classification cross-entropy loss.

Experiments
Experimental Setting
Datasets. CUB-200-2011 (Branson et al. 2014) contains 200
bird subcategories with 11,788 images. We utilize the first
100 classes (5,864 images) in training and the rest (5,924
images) in testing. The spilt in Stanford Cars (Krause et al.
2013) is also similar to CUB, which contains 196 classes
with 16,185 images, i.e. with the first 98 classes (8,045 im-
ages) for training and the remaining class (8,131 images) for
testing. FGVC Aircraft (Maji et al. 2013) is divided into first
50 classes (5,000 images) for training and the rest 50 classes
(5,000 images) for testing.
Evaluation protocols. We evaluate the retrieval perfor-
mance by Recall@K with cosine distance, which is average
recall scores over all query images in the test set and strictly
follows the setting in (Song et al. 2016). Specifically, for
each query, our model returns the top K similar images. In
the topK returning images, the score will be 1 if there exists
at least one positive image, and 0 otherwise.
Implementation details. We apply the widely-used Resnet
(He et al. 2016) in our experiments with the pre-trained pa-
rameters. The input raw images are resized to 256×256 and
cropped into 224× 224. We train our models through using
Stochastic Gradient Descent (SGD) optimizer with weight
decay of 0.0001, momentum of 0.9, epochs of 90, and batch
size of 32 on one GTX 2080ti GPU. The initial learning rate
is set to 10−5, with the exponential decay of 0.9 after every
5 epochs.

Ablation Experiments
We conduct some ablation experiments to illustrate the
effectiveness of proposed modules, including the Nuance
Modelling Module (NMM) and the Nuance Expansion Mod-
ule (NEM). The baseline method uses ResNet-50 as the
backbone network, followed by an FC layer as the classifier
and trained with LCE in the same setting.

As shown in Tab. 1, the contribution of each component is
revealed. Compared with baseline, the NMM improves the
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Method Arch CUB-200-2011 Stanford Cars 196 FGVC Aircraft
Recall@k= 1 2 4 8 1 2 4 8 1 2 4 8

EPSHN (Xuan et al.) R50 64.9 75.3 83.5 - 82.7 89.3 93.0 - - - - -
NSM (Zhai and Wu) R50 65.3 76.7 85.4 91.8 89.3 94.1 96.4 98.0 - - - -

MS (Wang et al.) In3 65.7 77.0 86.3 91.2 84.1 90.4 94.0 96.1 - - - -
HORDE (Jacob et al.) In3 66.8 77.4 85.1 91.0 86.2 91.9 95.1 97.2 - - - -
DGCRL (Zheng et al.) R50 67.9 79.1 86.2 91.8 75.9 83.9 89.7 94.0 70.1 79.6 88.0 93.0
DCML (Zheng et al.) R50 68.4 77.9 86.1 91.7 85.2 91.8 96.0 98.0 - - - -
CEP (Boudiaf et al.) R50 69.2 79.2 86.9 91.6 89.3 93.9 96.6 98.1 81.3 84.3 90.1 92.3
ETLR (Kim et al.) R50 72.1 81.3 87.6 - 89.6 94.0 96.5 - - - - -

PNCA++ (Teh et al.) R50 72.2 82.0 89.2 93.5 90.1 94.5 97.0 98.4 - - - -
DAM (Xu et al.) In3 72.3 81.2 87.8 92.7 88.9 93.4 96.0 97.7 - - - -

SCDA (Wei et al.) R50 57.3 70.2 81.0 88.4 48.3 60.2 71.8 81.8 56.5 67.7 77.6 85.7
PDDM (Bell and Bala) R50 58.3 69.2 79.0 88.4 57.4 68.6 80.1 89.4 - - - -

CRL (Zheng et al.) R50 62.5 74.2 82.9 89.7 57.8 69.1 78.6 86.6 61.1 71.6 80.9 88.2
HDCL (Zeng et al.) R50 69.5 79.6 86.8 92.4 84.4 90.1 94.1 96.5 71.1 81.0 88.3 93.3

Our CNENet R50 74.5 83.1 89.2 93.8 94.2 96.9 98.2 98.8 85.6 91.5 94.8 96.8

Table 2: Comparison of different methods on CUB-200-2011, Stanford Cars 196 and FGVC Aircraft datasets. ”Arch” denotes
the architecture of using backbone network. ”R50” and ”In3” represent Resnet50 (He et al. 2016) and Inception V3 (Szegedy
et al. 2016), respectively.

Recall@1 accuracy by 4.9% due to discovering category-
specific nuances and semantically aligning them guided by
category. Moreover, we also verify the effectiveness of the
semantic discrete loss LSD and semantic alignment loss
LSA, and find that LSA plays a more vital role in FGOR.
Based on the above results, we apply the original CARE
maps generated by NMM to refine the selected nuances
(Self-attention), while the performance drops by 0.9%. The
result verifies that directly using self-attention can not re-
fine CARE maps while introducing more learnable param-
eters, further making the network overfit on them. There-
fore, NEM learns the correlation based on the features for
refining the CARE maps, and outperforms BL + NMM by
3.3%. For existing metric-based methods, they use or design
the pair-wise loss (i.e., Triplet loss) to perform the retrieval
task. Therefore, we add Triplet loss to further constrain the
learned features more compactly, but the accuracy drops
by 1.1%. By this means that the pair-wise constraint limits
the discriminative ability of feature representation, and our
model can directly emphasize category-specific discrepancy
to minimize the intra-class variances and maximize the inter-
class differences. These results demonstrate that each mod-
ule plays a role in effectively discovering category-specific
nuances and semantically aligning them guided by the cate-
gory information.

Comparison with the State-of-the-Art Methods
We compare our CNENet with state-of-the-art (SOTA) fine-
grained object retrieval approaches. In Tab. 2, the perfor-
mance of different methods on CUB-200-2011, Stanford
Cars-196, and FGVC Aircraft datasets is reported, respec-
tively. In the table from top to bottom, the methods are
separated into three groups, which are (1) metric-based
frameworks, (2) localization-based networks, and (3) our
CNENet.

The success behind these models based on deep metric
learning can be largely attributed to being able to precisely
identify the negative/positive pairs via enlarging/shrinking
their distances, which indirectly explores the discriminative
ability of features. Despite the encouraging achievement,
the existing works still have limited ability in learning dis-
criminative features across different subcategories due to
only paying more attention to the optimization of global
features while overlooking nuances buried in the local re-
gions. Existing works tend to localize regions to directly
improve the discriminative ability of feature representation.
Although the localization-based networks work well on var-
ious datasets, they are difficult to guarantee that the learned
features are discriminative enough. Unlike these works, we
propose CNENet to dig into category-specific nuances that
contribute to category prediction, and thus explicitly em-
phasize discrepancies among subcategories. Therefore, our
CNENet approach achieves new SOTA without any extra
annotations and enjoys consistent improvement on various
datasets.

As shown in Tab. 3, our approach outperforms these deep
metric learning-based methods in the first group, which indi-
cates that the proposed method can better minimize the intra-
class variances and maximize the inter-class distances by
directly exploring the category-specific nuances. Compared
with recent localization-based works, they demonstrate the
importance of localizing objects/parts. We run CNENet to
directly learn category-specific nuances from images for em-
phasizing discrepancies among subcategories and achieve
the new state-of-the-art.

Discussions
Response to Nuances. One of the keys to fine-grained
images is to pick out discriminative nuances for improv-
ing the discriminability of features. To further illustrate the
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Figure 3: Visualization results of category-specific nuances
on CUB-200-2011. In the first column, we show an input im-
age with the red and yellow boxes respectively projected by
NMM and NEM. The second and forth columns are CARE
maps generated by NMM. The third and fifth columns are
the refined category-specific response maps. The first and
second rows have the same subcategory, and the third row
has a different subcategory.

Number l Performance (Recall@k)
1 2 4 8

2 74.2% 82.5% 88.8% 93.1%
4 74.5% 83.1% 89.2% 93.8%
5 72.2% 81.8% 88.3% 92.6%

Table 3: The retrieval accuracy on CUB-200-2011 of model
trained with different number l of nuances in CNENet.

effectiveness of our proposed CNENet, which can attend
category-specific nuances for discovering category-specific
nuances and semantically align these nuances guided by
category, we visualize the category-specific response maps
(CARE) learned by NMM and NEM, respectively. Fig. 3 il-
lustrates individual response nuances for three bird images
of two subcategories. We can observe that each CARE map
M1,M2 generated by NMM focuses on a certain nuance dif-
ferent from the others without the effect of pose or view-
point. Moreover, CARE maps of the same order emphasize
the same semantic information in images of the same subcat-
egory, whereas this relationship does not exist for ones with
different subcategories. To verify the effectiveness of NEM,
we also visualize the refined CARE maps E to expand the
shrank nuances by utilizing the correlation between feature
vectors. Compared with the original maps Mi, the corre-
sponding Ei can pay attention to the entire nuances rather
than shrank ones caused by the constraint of semantic dis-
crete loss, which resumes some discriminative nuances and
further improves the discriminative ability of feature rep-
resentation. To more intuitively display the contribution of
NMM, we roughly project the localization of nuances gen-
erated by NMM and NEM into the yellow and red bounding
boxes in the images.
Visualized Distributions. To illustrate the impact of

Figure 4: Visualization of learned features, where each color
represents an subcategory in the testing set. The triangles
indicate the features extracted from input samples. (a) is
features extracted by baseline; and (b) denotes features ex-
tracted by our CNENet.

CNENet on exploring subcategory discrepancy, we carefully
select 10 subcategories with small discrepancy from the test-
ing set to visualize the distributions of learned features in
Fig. 4, where each distinct color denotes a fine-grained sub-
category. As shown in Fig. 4(a), the features extracted by
baseline network have difficulty in alleviating the large intra-
class variances, and using these features thus degrades the
retrieval performance. In Fig. 4(b), the learnt features with
CNENet are well clustered by subcategory. Besides, the dis-
tance between the features of different subcategories is far-
ther, and the features of the same subcategory are more com-
pact. Furthermore, improving the discriminative ability of
features by discovering and aligning category-specific nu-
ances achieves a vital improvement.
The more, the better? We show the retrieval performance
with the different number of category-specific nuances, as
shown in Tab. 3. The performance of CNENet drops when
the number of nuances increases to 4. The result means that
an excessive number of category-specific nuances can in-
troduce more useless features, while fewer details can miss
informative features. It should be clarified that the number
of nuances is explicitly divided into l groups from the spa-
cial perspective for emphasizing the discrepancies among
subcategories. Nevertheless, since each category-specific re-
sponse map may contain different semantic nuances, the
number of nuances could be different from a semantic per-
spective.

Conclusion
In this paper, we propose a novel method called category-
specific nuance exploration network (CNENet) for FGOR,
which solves the problem of how to effectively extract
category-specific nuances and how to semantically align
these nuances grouped by category. The exploration strategy
can be considered as a self-supervised scheme that enables
the network to adaptively dig into category-specific nuances
by category. Extensive experiments show that the retrieval
performance can be improved significantly by discovering
the nuances. The last but the most important, our algorithm
is end-to-end trainable, and achieves state-the-of-the-art in
CUB-200-2011, Stanford Cars and FGVC Aircraft datasets.
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