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Abstract

Recently, numerous algorithms have been developed to tackle
the problem of light field super-resolution (LFSR), i.e., super-
resolving low-resolution light fields to gain high-resolution
views. Despite delivering encouraging results, these ap-
proaches are all convolution-based, and are naturally weak in
global relation modeling of sub-aperture images necessarily
to characterize the inherent structure of light fields. In this
paper, we put forth a novel formulation built upon Trans-
formers, by treating LFSR as a sequence-to-sequence recon-
struction task. In particular, our model regards sub-aperture
images of each vertical or horizontal angular view as a se-
quence, and establishes long-range geometric dependencies
within each sequence via a spatial-angular locally-enhanced
self-attention layer, which maintains the locality of each sub-
aperture image as well. Additionally, to better recover image
details, we propose a detail-preserving Transformer (termed
as DPT), by leveraging gradient maps of light field to guide
the sequence learning. DPT consists of two branches, with
each associated with a Transformer for learning from an orig-
inal or gradient image sequence. The two branches are finally
fused to obtain comprehensive feature representations for re-
construction. Evaluations are conducted on a number of light
field datasets, including real-world scenes and synthetic data.
The proposed method achieves superior performance com-
paring with other state-of-the-art schemes. Our code is pub-
licly available at: https://github.com/BITszwang/DPT.

Introduction
Light field (LF) imaging systems offer powerful capabilities
to capture the 3D information of a scene, and thus enable
a variety of applications going from photo-realistic image-
based rendering to vision applications such as depth sens-
ing, refocusing, or saliency detection. However, current light
field cameras naturally face a trade-off between the angular
and spatial resolution, that is, a camera capturing views with
a high angular sampling typically at the expense of a limited
spatial resolution, and vice versa. This limits the practical
applications of LF, and also motivates many efforts to study
super-resolution along the angular dimension (i.e., to syn-
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thesize new views) or the spatial dimension (i.e., to increase
the spatial resolution). Our work focuses on the latter one.

In comparison with the traditional 2D photograph that
only records the spatial intensity of light rays, a light field
additionally collects the radiance of light rays along with
different directions, offering a multi-view description of
the scene. A naive solution of light field super-resolution
(LFSR) is to super-resolve each view independently us-
ing single image super-resolution (SISR) techniques. How-
ever, despite the recent progress of SISR, the solution is
sub-optimal mainly because it neglects the intrinsic re-
lations (i.e., angular redundancy) of different light field
views, possibly resulting in angularly inconsistent recon-
structions. To address this, many studies exploit comple-
mentary information captured by different sub-aperture im-
ages for high-quality reconstruction. The seminal learning-
based method, i.e., (Yoon et al. 2015), directly stacks 4-
tuples of sub-aperture images together as an input of a SISR
model. Subsequent efforts develop more advanced tech-
niques, e.g., to explore the geometric property of a light field
in multiple network branches (Zhang, Lin, and Sheng 2019),
to align the features of the center view and its surrounding
views with deformable convolutions (Wang et al. 2021c), to
encourage interactions between spatial and angular features
for more informative feature extraction (Wang et al. 2020),
to combinatorially learn correlations between an arbitrary
pair of views for super-resolution (Jin et al. 2020), or to gain
an efficient low-rank light field representation for restora-
tion (Farrugia and Guillemot 2019).

Despite the encouraging results of these approaches, they
are all based on convolutional network architectures, thus
inherently lack strong capabilities to model global relations
among different views of light field images. In light of the
ill-posed nature of the super-resolution problem, we believe
that an ideal solution should take into account as much in-
formative knowledge in the LR input as possible.

Motivated by the above analysis, we propose, to the best
of our knowledge, the first Transformer-based model to ad-
dress LFSR from a holistic perspective. In stark contrast to
existing approaches, our model treats each light field as a
collection of sub-aperture image (SAI) sequences (captured
along horizontal or vertical directions), and exploits self-
attention to reveal the intrinsic geometric structure of each
sequence. Despite the advantages of Transformers in long-
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range sequence modeling, it is non-trivial to apply vanilla
Transformers (e.g., ViT (Dosovitskiy et al. 2020)) for super-
resolution tasks, mainly because 1) they represent each in-
put image with small-size (e.g., 16×16 or 32×32) patches
(i.e., tokens), which may damage fundamental structures
(e.g., edges, corners or lines) in images, and 2) the vanilla
fully connected self-attention design focus on establishing
long-range dependencies among tokens, however, ignoring
the locality in the spatial dimension. To address these prob-
lems, we introduce spatial-angular locally-enhanced self-
attention (SA-LSA), which strengths locality using convolu-
tions first, then promotes non-local spatial-angular depen-
dencies of each SAI sequence.

Based on SA-LSA, we design a novel Transformer-based
LFSR model, i.e., DPT, which simultaneously captures lo-
cal structures within each SAI and global structures of all
SAIs in the light field. Concretely, DPT consists of a con-
tent Transformer and a gradient Transformer to learn spatial-
angular dependencies within each light field and the corre-
sponding gradient images, respectively. It is also equipped
with a cross-attention fusion Transformer to aggregate fea-
ture representations of the two branches, from which a high-
resolution light field is reconstructed.

In a nutshell, our contributions are three-fold: 1) We refor-
mulate the problem of LFSR from a sequence-to-sequence
learning perspective, which is differentiated to prior works
in a sense that it fully explores non-local contextual in-
formation among all sub-aperture images, better character-
izing geometric structures of light fields; 2) We design a
spatial-angular locally-enhanced self-attention layer, which,
in comparison with its vanilla fully-connected counterparts,
offers our Transformer a strong ability to maintain crucial lo-
cal context within light fields; 3) We finally introduce DPT
as a novel Transformer-based architecture, which not only
mines non-local contexts from multiple views, but also pre-
serving image details for each single view. Our DPT demon-
strates the promising performance on multiple benchmarks,
while maintaining similar network parameters and compu-
tational cost as existing convolution-based networks.

Related Work
Light Field Super-Resolution. Early deep learning-based
methods usually respectively learn the spatial and angular
information with two independent subnetworks: one sub-
network captures the spatial information and another one
learns the angular information. For example, (Yoon et al.
2017) adopted the SRCNN (Dong et al. 2014) to separately
process each SAI for spatial super-resolution and interpo-
lated novel views for angular super-resolution with the an-
gular super-resolution network. (Yuan, Cao, and Su 2018)
utilized a single image super-resolution network to enlarge
the spatial resolution of each SAI, and applied the proposed
EPI enhancement network to restore the geometric consis-
tency of different SAIs. Recently, many researchers seek
to simultaneously capture the spatial and angular informa-
tion with a unified framework. (Wang et al. 2018) built a
horizontal and a vertical recurrent network to respectively
super-resolve 3D LF data. (Zhang, Lin, and Sheng 2019)
stacked the SAIs from different angular directions as inputs

and sent them to a multi-branch network to capture the spa-
tial and angular information. (Wang et al. 2021c) used the
deformable convolution (Dai et al. 2017) to align and aggre-
gate the center-view and surrounding-view features to con-
duct LFSR. (Wang et al. 2020) developed a spatial-angular
interaction network to learn the spatial-angular information
from the macro-pixel image constructed with different SAIs.
However, a major drawback of these approaches is that they
fail to consider the long-range dependency among multi-
ple SAIs in learning rich spatial-angular representations. To
address this issue, we propose a Transformer based LFSR
model, in which three proposed Transformers are leveraged
to establish the non-local relationship of different SAIs for
more effective representation learning.
Transformer for Image Super-Resolution. Attention-
based models have demonstrated great successes in diverse
vision tasks (Wang et al. 2022; Zhou et al. 2020; Mou et al.
2021; Zhou et al. 2022; Wang et al. 2021b,a; Zhou et al.
2021) due to their powerful representative abilities. Some
attention-based methods have been recently proposed to ad-
dress the super-resolution tasks. These works can be roughly
grouped into two categories: Transformer for single image
super-resolution and Transformer for multiple image super-
resolution. The former one mainly uses the Transformer
to mine the intra-frame long-range dependency for high
quality image reconstruction, i.e., IPT (Chen et al. 2021),
SwinIR (Liang et al. 2021), and ESRT (Lu et al. 2021).
The latter one adopts the Transformer to explore the inter-
frame context information for accurate image reconstruc-
tion. i.e.,TTSR (Yang et al. 2020) for reference-based im-
age super-resolution and VSR (Cao et al. 2021) for video
super-resolution. Motivated by these approaches, we devise
the first Transformer based architecture for LFSR.

Our Approach
Problem Formulation. We treat the task of LFSR as a high-
dimensional reconstruction problem, in which each LF is
represented as a 2D angular collection of sub-aperture im-
ages (SAIs). Formally, considering an input low-resolution
LF as LLR ∈ RU×V×H×W with angular resolution of U×V
and spatial resolution of H ×W , LFSR aims at reconstruct-
ing a super-resolved LF LHR ∈ RU×V×αH×αW with α the
upsampling factor. Following (Yeung et al. 2018; Zhang,
Lin, and Sheng 2019; Wang et al. 2020, 2021c), we con-
sider the case that SAIs distribute in a square array, i.e.,
U = V = A, whereA indicates the angular resolution along
the horizontal or vertical direction.
Network Overview. The overall architecture of DPT is
shown in Fig. 1. Given LLR as the network input, we com-
pute a gradient map for each 2D SAI, and organize them to-
gether as a gradient field GLR∈RA×A×H×W . LLR and GLR

are separately fed into two small CNNs for convolutional
feature extraction, following by two unimodal Transform-
ers (i.e., a content Transformer and a gradient Transformer)
to learn richer feature representations. To better learn rele-
vant visual patterns among different SAIs, we treat LLR (or
GLR) as a collection of A horizontal and A vertical angu-
lar sequences, and each sequence includes A consecutive
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Figure 1: Detailed architecture of DPT for light field image super-resolution. Given an input light field LLR and its gradient
field GLR, our DPT leverages two separate convolutional networks (i.e., ECont and EGrad) for low-level feature extraction. The
features are subsequently fed into a content Transformer T Cont and a gradient Transformer T Grad, respectively, to explore global
contextual information across multiple SAIs. Next, their outputs are aggregated via a cross-attention fusion Transformer T Fuse

to learn detail-preserved feature representations. Finally, the image reconstruction module DReco is utilized to generate the
super-resolve results.

SAIs collected along one direction. Our content (or gradi-
ent) Transformer processes these sequences in LLR (or GLR)
one by one to avoid expensive computations as well as re-
dundant interactions among irrelevant SAIs. Next, DPT ag-
gregates the output features of the two Transformers via a
cross-attention fusion Transformer, yielding a more compre-
hensive representation that is able to well preserve image
details, which in final leads to better reconstruction.

In the following, we first provide a detailed description
of DPT. Then, we elaborate on the proposed spatial-angular
locally-enhanced self-attention layer, which is an essential
component of our Transformer.

Detail-Preserving Transformer (DPT)
Convolutional Feature Extraction. Given the light field in-
put LLR as well as its gradient field GLR, two CNNs ECont

and EGrad are leveraged to separately extract

F Cont = ECont(LLR) ∈ RA×A×C×H×W ,

F Grad = EGrad(GLR) ∈ RA×A×C×H×W ,
(1)

per-SAI embeddings F Cont and F Grad at spatial resolution
H ×W and with embedding channel C.
Content and Gradient Transformer. The convolutional
feature embeddings (i.e., F Cont and F Grad) capture local con-
text within each SAI independently but lack global context
across different SAIs. We use Transformers (Dosovitskiy
et al. 2020) to enrich the embeddings with sequence-level
context. We start by learning unimodal contextualized rep-
resentations T Cont and T Grad using a content Transformer
T Cont and a gradient Transformer T Grad:

T Cont = T Cont(F Cont) ∈ RA×A×C×H×W ,

T Grad = T Grad(F Grad) ∈ RA×A×C×H×W .
(2)

Note that the two transformers share the same network struc-
ture. For simplicity, we only describe T Cont in the following.

The T Cont is comprised of K spatial-angular attention
blocks. Each block includes two consecutive SA-LSA layers
(detailed in the next section), which exploit global relations

within each horizontal or vertical sequence of the input LF
image, respectively.

In particular, in the k-th block, we treat its input as a
set of horizontal (or row-wise) sequences, i.e., R = {Ri ∈
RA×C×H×W }Ai=1, where Ri indicates a sequence of convo-
lutional features, corresponding to the i-th row in the input.
The first horizontal SA-LSA layer H1

k aims to explore the
dependencies within each sequence independently. Specifi-
cally, for each horizontal sequence Ri, we obtain a non-local
representation R̂i as follows:

R̂i = H1
k(Ri) ∈ RA×C×H×W . (3)

After processing all horizontal sequences in R, we obtain
a horizontal-enhanced content representation for the light
field:

RCont
k = [R̂1, R̂2, · · · , R̂A] ∈ RA×A×C×H×W , (4)

where ‘[ ]’ denotes the concatenation operation.
Next, the second vertical SA-LSA layerH2

k accepts RCont
k

as input, and explores the long-range relations of vertical (or
column-wise) sequences, i.e., C = {Ti ∈RA×C×H×W }Ai=1,
where Ti indicates sequences of convolutional features, cor-
responding to the i-th column in RCont

k . Similarly, the ver-
tical sequences in C are transformed via H2

k to produce a
vertical-enhanced content representation T Cont

k :

T Cont
k = [T̂1, T̂2, · · · , T̂A] ∈ RA×A×C×H×W , (5)

where T̂i = H2
k(Ti) is the non-local representation of

Ti. Our content Transformer uses K spatial-angular atten-
tion blocks to aggregate informative contextual knowledge
among SAIs, eventually yielding a more comprehensive
content representation T Cont

K .
Our gradient Transformer T Grad performs in a similar way

as the content Transformer. It accepts F Grad as its input, and
utilizes K spatial-angular attention blocks to deliver a gra-
dient representation T Grad

K .
Cross-Attention Fusion Transformer. While the content
and gradient Transformers process each modality separately,
we design a fusion Transformer to aggregate together their
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representations. To obtain more comprehensive unimodal
representations, we obtain the inputs of fusion Transformer
by combining all intermediate features in the content or gra-
dient Transformers:

HCont =[F Cont,T Cont
1 , · · ·,T Cont

K ] ∈ RA×A×(K+1)C×H×W ,

HGrad =[F Grad,T Grad
1 , · · ·,T Grad

K ] ∈ RA×A×(K+1)C×H×W ,
(6)

Different from T Cont and T Grad which capture non-local
dependencies of tokens within the same sequence, our fu-
sion Transformer aims to explore the relations between to-
kens of two sequences. In particular, for the i-th horizon-
tal (or vertical) sequences in HCont and HGrad, i.e., Ui ∈
RA×(K+1)C×H×W and Vi ∈ RA×(K+1)C×H×W , the T Fuse

achieves a detail-preserved representation Zi as:

Zi = T Fuse(Ui,Vi) ∈ RA×(K+1)C×H×W . (7)

The T Fuse performs cross-attention between its inputs,
with query generated from Ui, key and value from Vi,
to gather high-frequency information as a compensation
of the content representation. We concatenate the out-
puts {Zi}i together to obtain the fusion output Z ∈
RA×A×(K+1)C×H×W . Note that our fusion Transformer
only includes one spatial-angular attention block, and we see
minor performance improvement when adding additional
blocks.
SAI Reconstruction. Finally, we leverage a reconstruction
module DReco over Z to obtain a high-resolved LF LHR:

LHR = DReco(Z) ∈ RA×A×αH×αW . (8)

Here, DReco is separately applied to each SAI.
Remark. Our DPT employs Transformers to enrich convo-
lutional features F Cont and F Grad (Eq. 2) into richer repre-
sentations HCont and HGrad, respectively, which are further
aggregated together via a fusion Transformer. In this man-
ner, our network is able to collect informative non-local con-
texts within each SAI and across different SAIs, allowing for
higher-quality reconstruction.

In addition, our Transformers process each sequence (or
sequence fusion) independently rather than directly process
all sequences together. This enables our model to meet hard-
ware resource constraints, and more importantly, avoid re-
dundant interactions among irrelevant sub-aperture images.

In Transformer architectures (e.g., ViT (Dosovitskiy et al.
2020)), fully-connected self-attention is extensively em-
ployed to explore non-local interactions among input tokens.
However, the vanilla self-attention layer neglects local spa-
tial context within each input token, which is crucial for im-
age reconstruction. To remedy this limitation, we introduce a
spatial-angular locally-enhanced self-attention layer to of-
fer our Transformer a strong capability in modeling locality.

Spatial-Angular Locally-Enhanced Self-Attention
Inspired by VSR (Cao et al. 2021), our SA-LSA layer in-
cludes three sequential operations: spatial-angular convolu-
tional tokenization, spatial-angular self-attention, as well as
spatial-angular convolutional de-tokenization. Its structure
is illustrated in Fig. 2 (a).

(a)

(b)

F

fQ

fK

fV

U

U

U

Q

K

V

P fP F̂

Ui

Vi

fQ

fK

fV

U

U

U

Q

K

V

P fP Ûi

Figure 2: Illustration of (a) the proposed SA-LSA layer (for
content / gradient Transformer) as well as (b) cross-attention
SA-LSA layer (for fusion Transformer).⊗ and⊕ denote the
element-wise multiplication and summation operations, re-
spectively.

Spatial-Angular Convolutional Tokenization. ViT-like ar-
chitectures (Dosovitskiy et al. 2020) leverage a linear pro-
jection layer to achieve input tokens at a very early stage.
In contrast, our proposed convolutional tokenization mech-
anism obtains the tokens in the self-attention layer, yielding
a multi-stage hierarchy like CNNs. This allows our Trans-
former to capture local contexts from low-level features to
high-level semantic representations.

In particular, denote F ∈ RA×C×H×W as the spatial-
angular representation of an angular sequence, where A is
the length of the sequence,C denotes feature dimension, and
H×W is the spatial dimension. The convolutional tokeniza-
tion module generates query Q, key K and value V at each
self-attention layer as follows:

Q = U(fQ(F )), K = U(fK(F )), V = U(fV (F )). (9)

It produces the inputs of a self-attention layer via two steps.
First, the input F is fed into three independent convolutional
layers (i.e., fQ, fK and fV ). We implement each layer with
kernel size 1× 1.

Next, a function U is designed to obtain spatial-angular
tokens. In particular, it extracts a collection of overlapping
patches with size Hp ×Wp. Thus, we are able to obtain a
sequence X ∈ Rn×d of n tokens, and each token with a
feature dimension d = C ×Hp ×Wp.
Spatial-Angular Self-Attention. The fully-connected self-
attention layer is applied on X to explore the non-local
spatial-angular relations among the tokens as follows:

X ′=Attention(Q,K,V )=softmax(QK>)V , (10)

where Attention denotes a standard self-attention layer
as in (Vaswani et al. 2017; Dosovitskiy et al. 2020).
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Spatial-Angular Convolutional De-Tokenization. To en-
able the application of convolutional tokenization in each
self-attention layer, we further de-tokenize the attended fea-
ture sequence X ′ to fold the patches into a large feature map
F̂ with the same dimension as F :

F̂ = fP (P(X ′)) + F ∈ RA×C×H×W , (11)

where P denotes the de-tokenization operation, and fP is a
convolutional layer as Eq. 9. A residual layer is also used
to avoid the loss of important features. Here, F̂ well en-
codes the local (in the spatial dimension) and global (in both
spatial and angular dimensions) context of the input angular
sequence, which could be expected to help produce better
reconstruction results.

Note that in the fusion Transformer, we improve SA-LSA
into a cross-attention SA-LSA layer to support the compu-
tation of cross-attention between the two modalities. Fig. 2
shows the detailed structure.

Detailed Network Architecture
Convolutional Feature Extraction. The convolutional
modules ECont and EGrad (Eq. 2) share a similar network
structure. Following (Wang et al. 2021c), each of them con-
sists of two residual blocks and two residual atrous spatial
pyramid pooling blocks organized in an intertwine manner,
following by an angular alignment module without using de-
formable convolutions.
Transformer Networks. In the content and gradient Trans-
formers, we set the number of attention blocks K to 2 by
default. For T Fuse, Eq. 9 is slightly modified to enable the
exploration of cross-attention by generating query from the
content representation, while key and value from the gradi-
ent representation.
Reconstruction Module. The reconstruction module DReco

(Eq. 8) is implemented as a cascaded of five information
multi-distillation blocks, following with a upsampling layer,
which consists of a pixel shuffle operation combined with
two 1× 1 convolution layers, to generate the super-resolved
SAIs (Wang et al. 2021c).

Experiment
Datasets and Evaluation Metrics
We conduct extensive experiments on five popular LFSR
benchmarks, i.e., EPFL (Rerabek and Ebrahimi 2016),
HCInew (Honauer et al. 2016), HCIold (Wanner, Meister,
and Goldluecke 2013), INRIA (Le Pendu, Jiang, and Guille-
mot 2018), and STFgantry (Vaish and Adams 2008). All of
the light field images from the above benchmarks have a
9×9 angular resolution (i.e., U = V = A = 9). PSNR
and SSIM are chosen as the evaluation metrics. For a test-
ing dataset with T scenes, we first obtain the metric values
of U×V sub-aperture images, and average the summation
results of T×U×V to obtain the final metric score.

Implementation Details
Following (Wang et al. 2021c), we convert the light field
images from the RGB space to the YCbCr space. Our model
only super-resolves Y channel images, and uses the bicubic

interpolation to super-resolve Cb and Cr channels images,
respectively. The gradient maps are extracted from Y chan-
nel of each SAI along the spatial dimension with the func-
tion provided by (Ma et al. 2020). We perform ×2 and ×4
SR with 5 × 5 angular resolution on all benchmarks. In the
training stage, the 64 × 64 patches are cropped from each
sub-aperture image, and we apply the bicubic interpolation
to generate ×2 and ×4 patches. We use random horizontal
rotation, vertical rotation and 90◦ rotation to augment the
training data. Spatial and angular resolution are processed
simultaneously for preserving the LF structure. The `1 loss
is used to optimize our network. We use the Adam optimizer
to train our network, with a batch size of 8. The initial learn-
ing rate is set to 2 × 10−4 and it will be halved every 15
epochs. We train the network for 75 epochs in total. All ex-
periments are carried out on a single Tesla V100 GPU card.

Comparisons with State-of-the-Art
To evaluate the effectiveness of DPT, we compare
it with the several state-of-the-art LFSR methods
( i.e., LFBM5D (Alain and Smolic 2018), GB (Rossi
and Frossard 2018), resLF (Zhang, Lin, and Sheng 2019),
LFSSR (Yeung et al. 2018), LF-InterNet (Wang et al. 2020),
and LF-DFNet (Wang et al. 2021c)) and single image
super-resolution methods ( i.e., VDSR (Kim, Lee, and Lee
2016), EDSR (Lim et al. 2017), and RCAN (Zhang et al.
2018)) on five LFSR benchmarks. Following (Wang et al.
2021c), we treat Bicubic upsampling as the baseline.
Quantitative Results. Table 1 lists the quantitative com-
parisons. As seen, DPT achieves a promising performance
in comparison with other methods. Single image super-
resolution methods (i.e., VDSR (Kim, Lee, and Lee 2016),
EDSR (Lim et al. 2017) and RCAN (Zhang et al. 2018))
super-resolve each view separately. DPT outperforms all of
them, which can be attributed to its outstanding capabil-
ity to capture the complementary information of different
views. Furthermore, compared with other CNN-based meth-
ods, e.g., resLF (Zhang, Lin, and Sheng 2019), LFSSR (Ye-
ung et al. 2018), LF-InterNet (Wang et al. 2020), our DPT
outperforms all of them for ×4 SR. Specifically, compared
with the current leading approach LF-DFNet (Wang et al.
2021c), DPT obtains superior results on EPFL (Rerabek and
Ebrahimi 2016), HCIold (Wanner, Meister, and Goldluecke
2013) and INRIA (Le Pendu, Jiang, and Guillemot 2018)
for ×4 SR. The reason is that, LF-DFNet only models the
short-range dependencies between each side-view SAI and
the center-view SAI, while our DPT explores long-range re-
lations among all SAIs.
Qualitative Results. Fig. 3 depicts some representative vi-
sual results of different approaches for ×4 SR. As seen,
LF-InterNet (Wang et al. 2020) and LF-DFNet (Wang et al.
2021c) produce distorted results for the structures of the tele-
scope stand in the Bicycle scene and the flowerbed edge in
the Sculpture scene. In contrast, our DPT yields much better
results, with all above regions being well preserved.
Computational Analysis. Table 2 provides a detailed anal-
ysis of the LFSR models in terms of parameters, FLOPs,
and reconstruct accuracy on EPFL. Following (Wang et al.
2021c), we set the size of the input LF image as 5×5×32×
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Method Scale EPFL HCInew HCIold INRIA STFgantry
Bicubic ×2 29.50 / 0.9350 31.69 / 0.9335 37.46 / 0.9776 31.10 / 0.9563 30.82 / 0.9473
VDSR (Kim, Lee, and Lee 2016) ×2 32.50 / 0.9599 34.37 / 0.9563 40.61 / 0.9867 34.43 / 0.9742 35.54 / 0.9790
EDSR (Lim et al. 2017) ×2 33.09 / 0.9631 34.83 / 0.9594 41.01 / 0.9875 34.97 / 0.9765 36.29 / 0.9819
RCAN (Zhang et al. 2018) ×2 33.16 / 0.9635 34.98 / 0.9602 41.05 / 0.9875 35.01 / 0.9769 36.33 / 0.9825
LFBM5D (Alain and Smolic 2018) ×2 31.15 / 0.9545 33.72 / 0.9548 39.62 / 0.9854 32.85 / 0.9695 33.55 / 0.9718
GB (Rossi and Frossard 2018) ×2 31.22 / 0.9591 35.25 / 0.9692 40.21 / 0.9879 32.76 / 0.9724 35.44 / 0.9835
resLF (Zhang, Lin, and Sheng 2019) ×2 32.75 / 0.9672 36.07 / 0.9715 42.61 / 0.9922 34.57 / 0.9784 36.89 / 0.9873
LFSSR (Yeung et al. 2018) ×2 33.69 / 0.9748 36.86 / 0.9753 43.75 / 0.9939 35.27 / 0.9834 38.07 / 0.9902
LF-InterNet (Wang et al. 2020) ×2 34.14 / 0.9761 37.28 / 0.9769 44.45 / 0.9945 35.80 / 0.9846 38.72 / 0.9916
LF-DFnet (Wang et al. 2021c) ×2 34.44 / 0.9766 37.44 / 0.9786 44.23 / 0.9943 36.36 / 0.9841 39.61 / 0.9935
DPT (Ours) ×2 34.48 / 0.9759 37.35 / 0.9770 44.31 / 0.9943 36.40 / 0.9843 39.52 / 0.9928
Bicubic ×4 25.14 / 0.8311 27.61 / 0.8507 32.42 / 0.9335 26.82 / 0.8860 25.93 / 0.8431
VDSR (Kim, Lee, and Lee 2016) ×4 27.25 / 0.8782 29.31 / 0.8828 34.81 / 0.9518 29.19 / 0.9208 28.51 / 0.9012
EDSR (Lim et al. 2017) ×4 27.84 / 0.8858 29.60 / 0.8874 35.18 / 0.9538 29.66 / 0.9259 28.70 / 0.9075
RCAN (Zhang et al. 2018) ×4 27.88 / 0.8863 29.63 / 0.8880 35.20 / 0.9540 29.76 / 0.9273 28.90 / 0.9110
LFBM5D (Alain and Smolic 2018) ×4 26.61 / 0.8689 29.13 / 0.8823 34.23 / 0.9510 28.49 / 0.9137 28.30 / 0.9002
GB (Rossi and Frossard 2018) ×4 26.02 / 0.8628 28.92 / 0.8842 33.74 / 0.9497 27.73 / 0.9085 28.11 / 0.9014
resLF (Zhang, Lin, and Sheng 2019) ×4 27.46 / 0.8899 29.92 / 0.9011 36.12 / 0.9651 29.64 / 0.9339 28.99 / 0.9214
LFSSR (Yeung et al. 2018) ×4 28.27 / 0.9080 30.72 / 0.9124 36.70 / 0.9690 30.31 / 0.9446 30.15 / 0.9385
LF-InterNet (Wang et al. 2020) ×4 28.67 / 0.9143 30.98 / 0.9165 37.11 / 0.9715 30.64 / 0.9486 30.53 / 0.9426
LF-DFnet (Wang et al. 2021c) ×4 28.77 / 0.9165 31.23 / 0.9196 37.32 / 0.9718 30.83 / 0.9503 31.15 / 0.9494
DPT (Ours) ×4 28.93 / 0.9167 31.19 / 0.9186 37.39 / 0.9720 30.96 / 0.9502 31.14 / 0.9487

Table 1: Performance comparison of different methods for ×2 and ×4 SR. The best results are marked as bold.

Method Scale # Param (M) / FLOPs (G) PSNR / SSIM
resLF ×2 6.35 / 37.06 32.75 / 0.9672
LFSSR ×2 0.81 / 25.70 33.69 / 0.9748
LF-InterNet ×2 4.80 / 47.46 34.14 / 0.9761
LF-DFNet ×2 3.94 / 57.22 34.44 / 0.9766
DPT (Ours) ×2 3.73 / 57.44 34.48 / 0.9759
resLF ×4 6.79 / 39.70 27.46 / 0.8899
LFSSR ×4 1.61 / 128.44 28.27 / 0.9080
LF-InterNet ×4 5.23 / 50.10 28.67 / 0.9143
LF-DFNet ×4 3.99 / 57.31 28.77 / 0.9165
DPT (Ours) ×4 3.78 / 58.64 28.93 / 0.9167

Table 2: Detailed comparisons of LFSR methods in terms of
number of parameters, FLOPs, and reconstruction accuracy
on the EPFL dataset for ×2 and ×4 SR.

32 for the computation of the FLOPs. As can be seen, DPT
shows the best trade-off between reconstruction accuracy
and model efficiency. For×4 SR, DPT has fewer parameters
while better accuracy, in comparison with LF-DFNet (Wang
et al. 2021c). This result further confirms the effectiveness of
DPT, not only in better performance but also its efficiency.

Ablation Study
To gain more insights into our model, we conduct a set of
ablative experiments on the EPFL dataset for ×4 SR. The
results are reported in Table 3. We show in the 1st row the
performance of baseline model (i.e., LF-DFNet (Wang et al.
2021c)), and the 7th row the results of our full model.
Content Transformer. We first investigate the effect of the
content Transformer by constructing a network which is im-
plemented with the convolution feature extraction module
ECont, content Transformer T Cont and the image reconstruc-
tion module DReco. Its results are given in the 2nd row. We

can see that the content Transformer itself can lead to a sim-
ilar performance as the baseline model, however, our con-
tent Transformer has fewer parameters. This confirms that
global relations among different views brought by the con-
tent Transformer are beneficial to LFSR.
Gradient Transformer. Furthermore, we combine the gra-
dient Transformer into the content Transformer, with the re-
sults being shown in the 3rd row. As we can see, by introduc-
ing the gradient Transformer, the performance of the content
Transformer (the 2nd row) improves by 0.09dB in terms of
PSNR and 0.0011 improvement in terms of SSIM, respec-
tively. Moreover, the models with dual transformers (the 4th,
the 6th and the 7th rows) outperform the model with only
a content Transformer (the 2nd row), which further con-
firms the effectiveness of gradient Transformer. Finally, we
replace the content Transformer and gradient Transformer
of DPT with residual blocks while maintaining the network
parameters almost unchanged. Its results are given in the 5th
row. The dual branches in DPT are equivalent to two convo-
lutional neural networks for feature extraction. As reported
in Table 3, DPT has a 0.21 dB PSNR drop, demonstrating
the effectiveness of the proposed Transformers.
Impact of Fusion Mechanism. To explore the effect of
fusion mechanism for content and gradient feature ag-
gregation, we construct two model variants, which gener-
ates the detailed-preserved representation Zi in Eq. 7 by
the element-wise summation (the 3rd row) and the Trans-
former for a single view non-local dependencies exploration
(the 4th row), respectively. As can be observed, our cross-
attention fusion Transformer (the 7th row) brings a promis-
ing performance improvement over the results of 3rd row
and the 4th row in PSNR and SSIM, which is attributed to
its effectiveness for the complementary non-local informa-
tion exploration of the content and gradient features.
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PSNR/SSIM 27.48/0.8734 29.93/0.9353 29.94/0.9376 30.09/0.9368

PSNR/SSIM 25.34/0.8025 28.50/0.8941 28.62/0.8961 28.66/0.8953

Ground Truth Bicubic LF-InterNet LF-DFNet Proposed

Bicycle × 4

Sculpture × 4

Figure 3: Visual comparisons of Bicycle scene from HCInew and Sculpture scene from INRIA for ×4 SR. We see that our
approach achieves compelling reconstruction results, with the details well preserved.

# Content
Transformer

Gradient
Transformer

Fusion Mechanism # Param (M) PSNR / SSIMSum Transformer (image) Transformer (sequence)
1 3.99 28.77 / 0.9165
2 X 2.62 28.77 / 0.9142
3 X X X 3.72 28.86 / 0.9153
4 X X X 3.75 28.81 / 0.9149
5 X 3.83 28.72 / 0.9139
6 X X X 3.91 28.89 / 0.9157
7 X X X 3.78 28.93 / 0.9167

Table 3: Ablation study of DPT on the EPFL dataset for ×4 SR.

Efficacy of SA-LSA. We study the effect of the SA-LSA
layers by replacing them with the vanilla fully-connected
self-attention layers in DPT (the 6th row). As seen, the
model with SA-LSA layers (the 7th row) obtains a better
performance with fewer parameters, proving the effective-
ness of local spatial context for SAI reconstruction.
Number of Attention Blocks K. At last, we study the per-
formance of DPT with respect to the number of spatial-
angular attention blocks in the content Transformer (or the
graidient Transformer). Table 4 reports the comparison re-
sults. As seen, DPT achieves the best results at K=2. Thus,
we choose K = 2 as the default number of spatial-angular
attention blocks in DPT.

Conclusion
This work proposes a Detail Preserving Transformer (DPT),
as the first application of Transformer for LFSR. Instead
of leveraging a vanilla fully-connected self-attention layer,
we develop a spatial-angular locally-enhanced self-attention
layer (SA-LSA) to promote non-local spatial-angular de-

K 1 2 3 4
PSNR (dB) 28.69 28.93 28.78 28.74

# Param (M) 2.89 3.78 5.00 6.56

Table 4: Performance and model size comparisons with dif-
ferent numbers of spatial-angular attention block on the
EPFL dataset for ×4 SR.

pendencies of each sub-aperture image sequence. Based on
SA-LSA, we leverage a content Transformer and a gradi-
ent Transformer to learn spatial-angular content and gradient
representations, respectively. The comprehensive spatial-
angular representations are further processed by a cross-
attention fusion Transformer to aggregate the output of the
two Transformers, from which a high-resolution light field is
reconstructed. We compare the proposed network with other
state-of-the-art methods over five commonly-used bench-
marks, and the experimental results demonstrate that it
achieves favorable performance against other competitors.
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