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Abstract

Occluded person re-identification is a challenging task as hu-
man body parts could be occluded by some obstacles (e.g.
trees, cars, and pedestrians) in certain scenes. Some existing
pose-guided methods solve this problem by aligning body
parts according to graph matching, but these graph-based
methods are not intuitive and complicated. Therefore, we
propose a transformer-based Pose-guided Feature Disentan-
gling (PFD) method by utilizing pose information to clearly
disentangle semantic components (e.g. human body or joint
parts) and selectively match non-occluded parts correspond-
ingly. First, Vision Transformer (ViT) is used to extract the
patch features with its strong capability. Second, to prelimi-
narily disentangle the pose information from patch informa-
tion, the matching and distributing mechanism is leveraged
in Pose-guided Feature Aggregation (PFA) module. Third,
a set of learnable semantic views are introduced in trans-
former decoder to implicitly enhance the disentangled body
part features. However, those semantic views are not guar-
anteed to be related to the body without additional supervi-
sion. Therefore, Pose-View Matching (PVM) module is pro-
posed to explicitly match visible body parts and automati-
cally separate occlusion features. Fourth, to better preven-
t the interference of occlusions, we design a Pose-guided
Push Loss to emphasize the features of visible body parts.
Extensive experiments over five challenging datasets for t-
wo tasks (occluded and holistic Re-ID) demonstrate that our
proposed PFD is superior promising, which performs favor-
ably against state-of-the-art methods. Code is available at
https://github.com/WangTaoAs/PFD Net

1 Introduction
Person Re-Identification (Re-ID) aims to identify a specif-
ic person across multiple non-overlapping cameras (Zheng,
Yang, and Hauptmann 2016). It is an important subject in
the field of computer vision and has a wide range of applica-
tion backgrounds, such as video surveillance, activity anal-
ysis, security, and smart city. In recent years, holistic person
Re-ID achieves great progress, and various of methods (Sun
et al. 2018; Shi, Liu, and Liu 2020; Zhang, Zhang, and Liu
2021) have been proposed. However, in real scenes, such as

∗Corresponding author: hongliu@pku.edu.cn
Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Pose Estimation

Encoders

Encoders

Decoders

Decoders

Transformer

Transformer

Matching strategy

Pose Estimation Learnable semantic views 

Occlusions or noise

Similarity matching

split

split

Figure 1: Illustration of Pose-guided Feature Disentangling
(PFD) method in occluded person Re-ID. PFD represents an
occluded person image by using the transformer to implic-
itly disentangle disciminative features and explicitly using
pose information to guide the separation of the non-occluded
features and occluded features.

stations, airports, shopping malls, person can be easily oc-
cluded by some obstacles (e.g., trees, cars, pedestrians), it is
difficult to match people with incomplete and invisible body
parts. Therefore, the occluded person re-identification task
(Zhuo et al. 2018; Miao et al. 2019; Jia et al. 2021a) is of
important practical significance.

Compared with holistic person Re-ID, there are two ma-
jor challenges for occluded person Re-ID task: (1) Due to the
existence of occlusion, various noises have been introduced
that result in mismatching. (2) The occlusion may have fea-
tures similar to human body parts, leading to the failure of
feature learning. Some early methods (Miao et al. 2019) u-
tilize pose information to indicate non-occluded body parts
on the spatial feature map and directly divide global features
into partial features. These methods are intuitive but requires
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strict spatial feature alignment. Some recent pose-guided
methods (Gao et al. 2020; Wang et al. 2020) use graph-based
approaches to model topology information by learning node-
to-node or edge-to-edge correspondence to further mine the
visible parts. However, these methods still suffer the prob-
lem mentioned in the challenge (2). Therefore, in this pa-
per, to solve the above problems we explore the possibility
of combining additional pose clues with transformers with-
out spatial alignment. As the Figure 1 shows, we propose
PFD, a Pose-guided Feature Disentangling transformer Re-
ID network that utilizes pose information to clearly disen-
tangle semantic components (e.g. human body or joint part-
s), and force the similarities between the occluded features
and the non-occluded features to be as inconsistent as pos-
sible, which could strengthen the learning of discriminative
features while reducing background noise to solve the prob-
lem of challenge (1), and effectively alleviates the failure of
feature learning mentioned in challenge (2).

Specifically, the proposed PFD includes a visual context
transformer encoder, a pose estimator, a Pose-guided Fea-
ture Aggregation (PFA) module, a part view based trans-
former decoder, and a Pose-View Matching (PVM) module.
In the visual context transformer encoder, we adopt a trans-
former based image classification model (i.e., ViT (Dosovit-
skiy et al. 2020)) and the camera perspective information to
capture the robust global context information. PFA is devel-
oped to embed the pose information into the global context
features and part features. The features obtained from PFA
could preliminarily indicate visible body parts. In part view
based transformer decoder, a set of learnable semantic views
are introduced to implicitly enhance the disentangled body
part features. Each part view feature corresponds to the dis-
criminative part of the occlusion image. However, without
additional supervision, we can only learn features implicitly
and cannot constrain the learnable semantic views to cap-
ture accurate parts of the human body. Therefore, we pro-
pose a Pose-View Matching (PVM) module, which implicit-
ly learns discriminative features and explicitly matches vis-
ible body parts, thereby separating the human body features
from the occluded features and reducing the interference of
noise mentioned in challenge (1). In addition, to avoid the
failure of feature learning mentioned in challenge (2), we
design a Pose-guided Push Loss to reduce the similarity be-
tween human body features and occlusion features.

The main contributions of this paper can be summarized
as the following:

(1) We propose a novel pose-guided feature disentangling
transformer for occluded person Re-ID by using pose
information to clearly disentangle semantic components
(e.g. human body or joint parts) and selectively match
non-occluded parts correspondingly.

(2) We design a Pose-guided Push Loss to help focus on hu-
man body parts and alleviate the interference of occlu-
sion and noise, which avoids the failure of feature learn-
ing.

(3) To prove the effectiveness of our method, we perform
experiments on occluded, holistic Re-ID datasets. Ex-
tensive experimental results demonstrate the proposed

method performs favorably against state-of-the-art meth-
ods.

2 Related Work
2.1 Occluded Person Re-Identification
Occluded person Re-ID is more challenging compared with
holistic Re-ID due to body information incompleteness. Ex-
isting methods can be basically divided into three categories,
hand-craft splitting based methods, methods using addition-
al clues, and methods based on the transformer.

Methods based on hand-craft splitting handle the occlu-
sion problem by measuring the similarity relationship of the
aligned patches. Sun et al. (Sun et al. 2018) propose a net-
work named Part-based Convolution Baseline (PCB) which
uniformly partition the feature map and learn local features
directly. Sun et al. (Sun et al. 2019c) propose a region based
method VPM which perceives the visible region through
self-supervision. Jia et al. (Jia et al. 2021b) propose MoS
which formulates the occluded person Re-ID as a set match-
ing problem by using Jaccard similarity coefficient between
the corresponding partten set.

Some methods leverage external cues to locate the human
body part such as segmentation, pose estimation or body
parsing. Song et al.(Song et al. 2018) propose a mask-guided
contrastive attention model to learn features separately from
the body. Miao et al. (Miao et al. 2019) introduce Pose-
Guided Feature Alignment (PGFA) that utilizes pose infor-
mation to mine discriminative parts. Gao et al. (Gao et al.
2020) propose a Pose-guided Visible Part Matching (PVPM)
model to learn discriminative part features with pose-guided
attentions. Wang et al. (Wang et al. 2020) propose HOReID
that introduces the high-order relation and human-topology
information to learn robust features.

Recently, methods based on transformer are emerging,
and the transformer has two major capalities. First, trans-
former has been proven to have powerful feature extraction
capabilities. He et al. (He et al. 2021) investigate a pure
transformer framework named TransReID that combines the
camera perspective information and achieves good perfor-
mance on both person Re-ID and Vehicle Re-ID. Second,
transformer has the ability to learn the disentangled features.
Li et al. (Li et al. 2021) is the first one to propose Part Aware
Transformer (PAT) for occluded person Re-ID, which could
disentangle robust human part discovery.

Different from above methods, our method combines the
pose information and transformer architecture to clearly dis-
entangle more discriminative features and effectively allevi-
ate the failure of feature learning caused by the occlusion.

2.2 Visual Transformer
Transformer (Vaswani et al. 2017) has made great achieve-
ments in the field of natural language processing. Inspired
by the self-attention mechanism, many researchers apply
transformers in computer vision. For example, ViT (Doso-
vitskiy et al. 2020) processes images directly as sequences
and achieves state-of-the-art performance in image recog-
nition. DETR (Carion et al. 2020) performs cross-attention
between object query and feature map to transform detection
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Figure 2: The proposed PFD consists of four parts. The first part is Visual Context Encoder, which encodes the camera in-
formation into embeddings to capture global context information. The second part is Pose-guided Feature Aggregation (PFA)
that leverages the matching and distributing mechanism to preliminarily indicate visible body parts. The third part is Part View
based Decoder that disentangles the pose-guided feature into discriminative view set under the guidance of the Nv learnable
semantic views. The fourth part is Pose-View Matching module (PVM), which regards the obtained view set and pose-guided
feature set as a set matching problem. In addition, Pose-guided Push Loss is proposed to emphasize the features of visible body
parts. For more details, please refer to the proposed method.

problem into a one-to-one matching problem, which elimi-
nates the need for hand-crafted components in object detec-
tion.

3 Proposed Method
In this section, we introduce the proposed Pose-Guided Fea-
ture Disentangling (PFD) transformer in detail. An overview
of our method is shown in Figure 2.

3.1 Visual Context Transformer Encoder
We build our encoder based on transformer-based image
classification model (i.e.ViT(Dosovitskiy et al. 2020)). Giv-
en a person image x ∈ RH×W×C , whereH ,W ,C denote the
height, width, and channel dimension respectively. We first
split the x into N fixed-sized patches {xip|i = 1, 2, ..., N}
by using a sliding window. The step size can be denoted as
S, the size of each image patch as P , and the number of
patches N can be described as:

N = bH + S − P
S

c × bW + S − P
S

c, (1)

where b·c is the floor function. When S is equal to patch
size P , The divided patches are non-overlapping. When S
is smaller than P , the generated patches are overlapping,
which can alleviate the loss of the spatial neighborhood in-
formation of the image. The transformer encoder only re-
quires sequence as input, so a trainable linear projection
function f (·) is performed on flatten patches to map the
patches to D dimensions, and finally obtain the patch em-
beddings E ∈ RN×D, (i.e.,Ei = f(xi), i = 1, 2, ..., N ).
A learnable [class] token xclass is prepended to the patch
embeddings, and the output [class] token serves as encoder
global feature representation fgb. In order to retain the po-
sition information, we apply learnable positional encodings.
However, the features are very susceptible to the variation of
the camera, so we follow the method in (He et al. 2021) to
learn camera perspective information. Then the final input
sequence can be described as:

Einput = {xclass;Ei}+ PE + λcmCid, (2)

where PE is positional embeddings, Cid ∈ R(N+1)×D is
camera embeddings, and the Cid is same for the same im-
ages. λcm is a hyper-parameter to balance the weight of
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camera embeddings. Next, the input embeddings Einput

will be processed by m transformer layers. The final output
fen ∈ R(N+1)×D of encoder can be divided into two parts
(encoder global features and part features): fgb ∈ R1×D and
fpart ∈ RN×D. In order to learn more discriminative fea-
tures on human parts, the part features fpart are split into K
groups in order, and the size of each group is (N//K)×D.
Then, each group that concatenates the encoder global fea-
ture fgb ∈ R1×D will be fed into a shared transformer layer
to learn K group part local feature fgp = [f1gp, f

2
gp, ..., f

K
gp].

Encoder Supervision Loss. We adopt cross-entropy loss as
identity loss and triplet loss for encoder global features and
group features. The encoder loss function can be formulated
as:

Len = Lid(P(fgb)) +
1

K

K∑
i=1

Lid(P(f igp))

+ Ltri(fgb) +
1

K

K∑
i=1

Ltri(f
i
gp),

(3)

where P(·) denotes the probability prediction function.

3.2 Pose-guided Feature Aggregation
Occluded person images suffer from less body information,
and non-body part information can be ambiguous, which
causes performance degradation. Thus, we employ a human
pose estimator to extract keypoint information from images.

Pose Estimation. Given a person image x, the estimator
extract M landmarks from input image. Then the landmarks
are utilized to generate heatmaps H = [h1, h2, ..., hM ]. Each
heatmap is downsampled to the size of (H/4)×(W/4). The
maximum response point of each heatmap corresponds to a
joint point. We set a threshold γ to filter out high confidence
landmarks and low confidence landmarks. But unlike (Miao
et al. 2019), we do not set the heatmap whose landmark is
smaller than γ to 0. Instead, a label li ∈ {0, 1}, i = 1, ...,M
will be assigned for each heatmap. Formally, heatmap label
can be illustrated as:

li =

{
0 ci < γ

1 ci ≥ γ
(i = 1, ...,M), (4)

where ci denotes the confidence score of i-th landmark.
Pose-guided Feature Aggregation. In order to integrate

the the pose information, we set K = M , which is exact-
ly equal to the number of keypoints. Then, a fully connect-
ed layer is applied to heatmaps H to obtain the heatmaps
H

′
, whose dimension is same as the group part local fea-

ture fgp. Next, the heatmaps H
′

mutiply fgp element-wisely
and obtain the pose-guided feature P = [P1, P2, ..., PM ].
Although P has explicitly encoded the information of dif-
ferent parts of the human body, we hope to find the part of
the information from fgp that contributes the most to a cer-
tain body part. Thus, we develop a matching and distributing
mechanism, which regards the part local feature and pose-
guided feature as a set similarity measurement problem. Fi-
nally, we can obtain the pose-guided feature aggregation set
S = {Si|i = 1, 2, ...,M}. For each Pi, we can find the most

similar feature in fgp, and then two features are added to
form the Si. Formally,

k = argmax
j

(

〈
Pi, f

j
gp

〉
||Pi|| ||f jgp||

), (5)

Si = Pi + fkgp, (6)

where i = 1, 2, ...,K , 〈·, ·〉 denotes the inner product, fkgp
denotes the most similar one to Pi in fgp.

3.3 Part View Based Transformer Decoder
In this section, we define a set of learnable semantic part
views to learn the discriminative body parts. The learn-
able semantic part views can be denoted as Z = {Zi|i =
1, 2, ..., Nv}, and Z ∈ RNv×D will be added to each cross-
attention layer as queries. As shown in Figure 2, the keys and
values are from the combination of pose heatmap H and the
output of encoder fen. An average pooling layer is applied
to heatmap H and then multiply the fen, finally output the
fde ∈ R(N+1)×D. Formally, queries, keys and values can be
formulated as:

Qi = ZiWq,Kj = f jdeWk,Vj = f jdeWv, (7)

where i = 1, 2, ..., Nv, j = 1, 2, ..., D, linear projection-
s Wq ∈ RD×dk , Wk ∈ RD×dk , and Wv ∈ RD×dv

are applied to semantic part views and feature fde, respec-
tively. Next, we can obtain the Nv part views set v =
{vi|i = 1, 2, ..., Nv} by implementing the multi-head atten-
tion mechanism and two fully-connected layer, which is the
same as (Vaswani et al. 2017).

Pose-View Matching Module. In the cross-attention
mechanism, the Nv part semantic views can learn some dis-
criminative features. However, it is unknown which part or
what kind of the information has been learned. Therefore,
in order to obtain features related to the human skeleton, we
propose a pose-view matching module. Since each feature
of the pose-guided feature aggregation set S is related to a
certain keypoint information of the human body, we can find
the part view vi related to the certain keypoint of the human
body by calculating the similarity between the part view vi
and Si. The matched semantic part view vi and the pose-
guided feature aggregation feature Si are added to produce
the final view feature set Fv = {f iv|i = 1, 2, ..., Nv}. For-
mally,

k = argmax
j

(
〈vi, Sj〉
||vi|| ||Sj ||

), (8)

f iv = vi + Sk, (9)

since the confidence score of the landmarks can indicate
which part of feature contains human body information, the
heatmap label li can guide us to split the view feature set
Fv into two parts. Features with heatmap label li = 1 in
view set feature form a high-confidence keypoint view fea-
ture set Fh = {f ih|i = 1, 2, ..., L}, and the rest form the
low-confidence keypoint view feature set Fl = {f il |i =
1, 2, ..., Nv−L}, where L denotes the number of features in
Fv whose heatmap label is equal to 1.
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Decoder Supervision Loss. In order to focus on more
non-occluded body features, we propose a Pose-guided Push
Loss:

fph = AvgPooling(Fh), (10)

fpl = AvgPooling(Fl), (11)

Lp =
1

B

B∑
i

〈
f iph, f

i
pl

〉
||f iph|| ||f ipl||

, (12)

where B denotes the training batch size. The motivation
of this loss is obvious. Human body parts and non-human
body parts should not have strong similarities. If Fh and
Fl are similar, then Lp will be large and the learnable se-
matic part views will adjust themselves adaptively. In order
to guide the decoder view feature representation learning,
an average-pooling layer is applied to high-confidence key-
points view feature set Fh to obtain the pose-guided decoder
global feature fph, then identity loss and triplet loss are em-
ployed to guide pose-guided decoder global feature fph and
high-confidence feature fh learning as in Eq.13.

Lde = Lid(P(fph)) +
1

L

L∑
i=1

Lid(P(f ih))

+ Ltri(fph) +
1

L

L∑
i=1

Ltri(f
i
h).

(13)

3.4 Training and Inference
In the training stage, the pose estimation uses a pre-trained
model, and the rest of components (such as encoder, decoder
and so on) are trained together with the overall objective
loss, which is formulated as Eq.14.

L = λenLen + λdeLde + Lp, (14)

where λen and λde are the scale factor of encoder loss and
decoder loss respectively, and both are set to 0.5.

In the test stage, we concatenate the encoder global fea-
ture fgb, pose-guided decoder global feature fph, group local
part feature fgp and high-confidence keypoint view feature
Fh as representation F , ingnoring the low-confidence key-
point view feature Fl. However, high-confidence keypoint
view feature Fh has variable length, and the network is dif-
ficult to implement. Thus, we fix the length of it to Nv by
padding zeros.

F =
[
fgb, fph, f

1
gp, ..., f

K
gp, f

1
h , ..., f

L
h

]
. (15)

4 Experiments
4.1 Datasets and Evaluation Metrics
To illustrate the effectiveness of our method, We evaluate
our method on five Re-ID datasets for two tasks including
occluded person Re-ID and holistic person Re-ID.

Occluded-Duke (Miao et al. 2019) consists of 15,618
training images, 2,210 occluded query images and 17,661
gallery images. It is a subdataset of DukeMTMC-reID
(Zheng, Zheng, and Yang 2017), whichtians occluded im-
ages and remove some overlapping images.

Occluded-REID (Zhuo et al. 2018) is captured by the
mobile phone, which consist of 2,000 images of 200 occlud-
ed persons.Each identity has five full-body person images
and five occluded person images with different types of se-
vere occlusions.

Market-1501 (Zheng et al. 2015) contains 1,501 iden-
tities observed from 6 camera viewpoints, 12,936 training
images of 751 identities, 19,732 gallery images, and 2,228
queries.

DukeMTMC-reID (Zheng, Zheng, and Yang 2017) con-
tains 36,411 images of 1,404 identities captured from 8 cam-
era viewpoints. It contains 16,522 training images, 17,661
gallery images and 2,228 queries.

MSMT17 (Wei et al. 2018) contains 125,441 images of
4101 identities captured from 15 camera viewpoints. It con-
tains 32,621 training images. During inference, 82,161 im-
ages are randomly selected as gallery and other 11,659 im-
ages are considered as query.

Evaluation Metrics. We adopt Cumulative Matching
Characteristic (CMC) curves and Mean average precision
(mAP) to evaluate the quality of different Re-ID models.

4.2 Implementation Details
Both training and testing images are resized to 256 × 128.
The training images are augmented with random horizon-
tal flipping, padding, random cropping and random erasing
(Zhong et al. 2020). The initial weights of encoder are pre-
trained on ImageNet-21K and then finetuned on ImageNet-
1K. In this paper, the number of the split group K and the
number of the estimated human landmarks are both set to
17. The number of decoder layer is set to 2 on Occluded-
Duke and 6 on the other datasets. The hidden dimension D
is set to 768. The transformer decoder is same with (Vaswani
et al. 2017). The batch size is set to 64 with 4 images per ID.
The learing rate is initialized at 0.008 with cosine learning
rate decay. To detect landmarks from images, we adopt HR-
Net (Sun et al. 2019b) pre-trained on the COCO dataset. The
threshold γ is set to 0.2.

4.3 Comparison with the State-of-the-Art
We compare our method with the state-of-the-art method-
s on five benchmarks including occluded person ReID and
holistic person ReID.

Results on Occluded-Duke and Occluded-REID. Ta-
ble 1 shows the results on two occluded datasets. As
table shows, three kinds of methods are compared: (1)
hand-crafted splitting based methods including Part-Aligned
(Zhao et al. 2017) and PCB (Sun et al. 2018). (2) occluded
ReID methods including Part Bilinear (Suh et al. 2018), PD-
GAN (Ge et al. 2018), Ad-Occluded (Huang et al. 2018),
FPR (He et al. 2019), PGFA (Miao et al. 2019), PVPM
(Gao et al. 2020), GASM (He and Liu 2020), HOReID
(Wang et al. 2020), ISP (Zhu et al. 2020) and MoS (Jia
et al. 2021b). (3) Transformer based occluded ReID meth-
ods including PAT (Li et al. 2021) and TransReID (He et al.
2021). From the table, we can observe that our proposed
method PFD achieves 67.7%/79.8% Rank-1 accuracy and
60.1%/81.3% mAP on Occluded-Duke and Occluded-REID
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Methods Occluded-Duke Occluded-REID
Rank-1 mAP Rank-1 mAP

Part-Aligned (ICCV 17) 28.8 44.6 - -
PCB (ECCV 18) 42.6 33.7 41.3 38.9
Part Bilinear (ECCV 18) 36.9 - - -
FD-GAN (NIPS 18) 40.8 - - -
Ad-Occluded (CVPR 18) 44.5 32.2 - -
FPR (ICCV 19) - - 78.3 68.0
PGFA (ICCV 19) 51.4 37.3 - -
PVPM (CVPR 20) 47.0 37.7 66.8 59.5
GASM (ECCV 20) - - 74.5 65.6
ISP (ECCV 20) 62.8 52.3 - -
HOReID (CVPR 20) 55.1 43.8 80.3 70.2
MoS (AAAI 21) 61.0 49.2 - -
TransReID (ICCV 21) 64.2 55.7 - -
PAT (CVPR 21) 64.5 53.6 81.6 72.1
PFD (Ours) 67.7 60.1 79.8 81.3
TransReID∗ (ICCV 21) 66.4 59.2 - -
PFD∗ (Ours) 69.5 61.8 81.5 83.0

Table 1: Performance comparison with state-of-the-art
methods on Occluded-Duke, Occluded-REID. ”*” means
the encoder is with a small step sliding-window setting.

datasets, respectively, and outperforms all kinds of method-
s in Occluded-Duke. Futher PFD∗ achieves higher Rank-1
and mAP with a small step sliding-window setting. Com-
pared with PGFA, PVPM and HOReID, which are SOTA
methods with keypoints information, our method surpass-
es them by at least +12.6% Rank-1 accuracy and +16.3%
mAP on Occluded-Duke dataset. Compared to the compet-
ing transformer based methods PAT, our method surpasses
it by at least +3.2% Rank-1 accuracy and +6.5% mAP on
Occluded-Duke and +9.2% mAP on Occluded-REID.

The reasons for the superior performance of PFD can be
attributed to the following points. First, compared with C-
NN, the transformer has better feature representation abil-
ity and can pay better attention to discriminative features.
Second, the disentangled features obtained from our method
can indicate the body part information in cluttered scenes,
leading to clear semantic guidance when matching, which is
more effective than spatial alignment. Third, the proposed
pose-guided push loss efficiently weakens the interference
of occlusions and background clutters.

Results on Holistic ReID datasets. To verify the effec-
tiveness of our model on the holistic ReID task, we con-
duct experiments on three holistic ReID datasets includ-
ing Market-1501, DukeMTMC-reID and MSMT17. Table
2 shows the results on Market-1501 and DukeMTMC-reID
datasets. There are four types of methods in the comparison:
(1) part feature based methods including PCB (Sun et al.
2018), DSR (He et al. 2018), BOT (Luo et al. 2019b) and
VPM (Sun et al. 2019c). (2) global feature based methods
including MVPM (Sun et al. 2019a), SFT (Luo et al. 2019a),
CAMA (Yang et al. 2019), IANet (Hou et al. 2019) and Cir-
cle (Sun et al. 2020). (3) extra cue based methods including
SPReID (Kalayeh et al. 2018), P2Net (Guo et al. 2019), PG-
FA (Miao et al. 2019), AANet (Tay, Roy, and Yap 2019) and
HOReID (Wang et al. 2020). (4) transformer based method-

Methods Market-1501 DukeMTMC
Rank-1 mAP Rank-1 mAP

PCB (ECCV 18) 92.3 77.4 81.8 66.1
DSR (CVPR 18) 83.6 64.3 - -
BOT (CVPRW 19) 94.1 85.7 86.4 76.4
VPM (CVPR 19) 93.0 80.8 83.6 72.6
MVPM (ICCV 19) 91.4 80.5 83.4 70.0
SFT (ICCV 19) 93.4 82.7 86.9 73.2
CAMA (CVPR 19) 94.7 84.5 85.8 72.9
IANet (CVPR 19) 94.4 83.1 87.1 73.4
Circle (CVPR 20) 94.2 84.9 - -
SPReID (CVPR 18) 92.5 81.3 84.4 70.1
P2Net (ICCV 19) 95.2 85.6 86.5 73.1
PGFA (CVPR 19) 91.2 76.8 82.6 65.5
AANet (CVPR 19) 93.9 82.5 86.4 72.6
HOReID (CVPR 20) 94.2 84.9 86.9 75.6
TransReID (ICCV 21) 95.0 88.2 89.6 80.6
PAT (CVPR 21) 95.4 88.0 88.8 78.2
PFD (Ours) 95.5 89.6 90.6 82.2
TransReID∗ (ICCV 21) 95.2 88.9 90.7 82.0
PFD∗ (Ours) 95.5 89.7 91.2 83.2

Table 2: Performance comparison with state-of-the-art mod-
els on Market-1501 and DukeMTMC-reID datasets.

s including TransReID (He et al. 2021) and PAT (Li et al.
2021). From the table, we can observe that our proposed
method achieve competitive results. Specifically, our method
achieves SOTA performance (95.5%/90.6% Rank-1 accu-
racy and 89.5%/82.2% mAP, respectively) on Market-1501
and DukeMTMC-reID datasets. Compared with transformer
based method PAT, our method surpasses it by +1.6% mAP
on Market-1501 and +1.8%/+4% Rank-1 accruacy/mAP on
DukeMTMC. We also conduct experiments on the proposed
method on the MSMT17 dataset. Several methods are com-
pared, including MVPM (Sun et al. 2019a), SFT (Luo et al.
2019a), OSNet (Zhou et al. 2019), IANet (Hou et al. 2019),
DG-Net (Zheng et al. 2019), CBN (Zhuang et al. 2020),
Cirecle (Sun et al. 2020), RGA-SC (Zhang et al. 2020), and
SAN (Jin et al. 2020). From the table 3 we can see that pro-
posed PFD achieves competitive performance. Specifical-
ly, our method achieves 82.7% Rank-1 accuracy and 65.1%
mAP on MSMT17. It can be seen that although our method
is not designed for holistic reid tasks, it can still achieve
competitive results, which reflects the robustness of our pro-
posed method.

4.4 Ablation Study
In this part, we conduct ablation studies on Occluded-Duke
dataset to analyze the effectiveness of each component.

Effectiveness of proposed Modules. Table 4 shows the
experimental results. Index-1 denotes that the pure trans-
former encoder-decoder architecture. We can see that the
performance can reach 58.2% rank-1 accuracy and 48.3%
mAP, which even shows better performance than pose-
guided SOTA method HOReID. This is because the self-
attention mechanism can focus on more discriminative fea-
tures than CNN. From index-2, when pose-guided feature
aggregation is added, the performance is greatly improved
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Methods Rank-1 mAP
MVPM (ICCV 19) 71.3 46.3
SFT (ICCV 19) 73.6 47.6
OSNet (ICCV 19) 78.7 52.9
IANet (CVPR 19) 75.5 46.8
DG-Net (CVPR 19) 77.2 52.3
CBN (ECCV 20) 72.8 42.9
Circle (CVPR 20) 76.3 -
RGA-SC (CVPR 20) 80.3 57.5
SAN (AAAI 20) 79.2 55.7
PFD (Ours) 82.7 65.1
PFD∗ (Ours) 83.8 64.4

Table 3: Performance comparison with state-of-the-art mod-
els on MSMT17.

Index PFA PVM Lp R-1 R-5 R-10 mAP
1 58.2 74.5 80.1 48.3
2 X 63.7 77.8 82.3 56.2
3 X 62.4 76.7 81.0 54.6
4 X X 64.3 77.6 82.1 56.7
5 X X 67.0 80.0 84.4 59.5
6 X X X 67.7 80.1 85.0 60.1

Table 4: Ablation study over Occluded-Duke.

by +5.5% rank-1 accuracy and +7.9% mAP. This shows that
the introduction of pose information and correct aggregation
can bring good performance improvements. From index-3,
we can see that our proposed PVM is also effective. And by
comparing index-3 and index-5, we discover that combina-
tion of PFA and PVM can increase performance by +8.8%
rank-1 accuracy and +11.2% mAP, which indicates that pose
information and correct matching is very important. From
index-5 and index-6, we can see that our overall model can
achieve optimal performance, which shows the effectiveness
of the Pose-guided Push Loss.

Analysis of the number of Semantic views. The num-
ber of semantic viewsNv determines the granularity of view
features. As shown in Table 5, the performance of our pro-
posed PFD is robust to Nv . With Nv increases, the perfor-
mance keeps improving before Nv arrives 17, which is ex-
actly equal to the number of keypoints. So, we conclude that
17 semantic views may be able to capture the corresponding
17 key point features.

Analysis of the number of Transformer Layers. We
perform quantitative experiments to find the most suitable
number of decoder layer. As shown in Figure 3(a), when the
decoder is removed, the performance of the model is great-
ly reduced. It can be seen that only the features obtained by
the encoder are not robust enough, and the learnable seman-
tic view in the decoder can implicitly learn more important
features, which enhances the features from the encoder. we
observe that when the number of decoder layer is set to 2, the
best performance can be achieved. And with the increase of
the number of layers, there is almost no improvement in per-
formance. This is because the resolution of the images in the
data set is small, and the content is relatively simple.

The Impact of the Threshold γ. The threshold γ is de-

Nv R-1 R-5 R-10 mAP
1 65.5 79.1 84.0 57.1
5 66.7 79.9 83.7 58.4
10 66.9 79.5 83.9 58.9
15 67.4 80.0 84.0 59.1
17 67.7 80.1 85.0 60.1
20 66.9 79.4 84.3 59.0

Table 5: Parameter analysis for the number of semantic
views Nv .

57.3

67.5 67.7
66.8

67.3
66.9

67.5

51.2

59.9 60.1
59.5 60

59.6
58.9

51

54

57

60

63

55

57

59

61

63

65

67

69

0 1 2 3 4 5 6

m
A

P
 (

%
)

R
a

n
k

-1
 (

%
)

Number of decoder layer

Rank-1
mAP

(a)

65.5

67.3
67.7 67.4

66.9 67.2
66.3

64.9

56.8

58.8

60.1 59.9
59.3 59.5

58.6

57.4

54

56

58

60

62

64

66

55

57

59

61

63

65

67

69

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

m
A

P
 (

%
)

R
a

n
k

-1
 (

%
) 

Threshold 

Rank-1

mAP

(b)

Figure 3: Parameter analysis for the number of decoder (a)
and the threshold γ (b).

fined in Eq 4 to indicate the high confidence landmarks,
which could help PVM explicitly match visible body part-
s. We conduct ablation study on threshold γ by changing it
from 0 to 0.7. From the Figure 3(b), when γ is set to 0.2,
we can get the best performance. When the value of γ is
too small, PVM may consider all landmarks as human body
areas, thereby introducing noise. Conversely, when the γ is
too large, a certain body area information may be lost. It is
worth noting that when gamma is set to 0, a lot of noise is
introduced, but our method can still achieve 65.5% Rank-
1 accuracy, which is still SOTA performance on Occluded-
Duke. This shows that our method is robust to pose noise,
and further indicates why it could achieve good results on
the holistic datasets.

Methods R-1 R-5 R-10 mAP
HR-Net(CVPR 19) 67.7 80.1 85.0 60.1

AlphaPose(ICCV 17) 65.9 78.9 82.6 57.8
OpenPose(CVPR 17) 64.1 77.8 81.2 55.6

Table 6: Performance of PFD with different pose estimator.
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Figure 4: The impact of adding Gaussian noise to the esti-
mated heatmap.

The Impact of Pose Estimation. We adopt three different
pose estimation algorithms, HRNet (Sun et al. 2019b), Al-
phaPose (Fang et al. 2017), and OpenPose (Cao et al. 2017)
in PFD. From the Table 6, the results shows that the PFD still
could achieve state-of-the-art performance by using less re-
liable landmark estimators. Besides, we add Gaussian noise
N (µ, σ) to the estimated heatmap by changing σ from 0.1
to 20. From Fig 4, we find that the model is robust to pose
noise when σ is less than 10.

4.5 Visualization
We visualize decoder cross-attention for the different learn-
able semantic views and fuse them together to form attention
heatmap. As Figure 5 shows, the fused learnable semantic
views can almost accurately localize the unobstructed part
of the human body, which proves the effectiveness of our
proposed method.

Figure 5: Visualization of decoder attention heatmaps of
learned semantic views.

5 Conclusion
In this paper, we propose a transformer based Pose-guided
Feature Disentangling (PFD) method for the occluded Re-
ID task that utilizes pose information to clearly disentan-
gle semantic components. PFD contains a transformer based
encoder-decoder architecture, two matching modules (P-
FA and PVM), and a Pose-guided Push Loss. The ViT
based encoder extracts the patch features with its strong
capability. Then the PFA module preliminarily indicates
visible body parts by matching estimated pose heatmap-
s and patch features. In decoder, we define a set of learn-

able semantic views to learn the discriminative body part-
s, and then the PVM module is proposed to enhance the
encoder features by matching the most similar features be-
tween view set and pose guided feature aggregation set. Be-
sides, PVM could automatically separate the occlusion fea-
tures with the guidance of pose estimation. At last, a Pose-
guided Push Loss is proposed to better eliminate the inter-
ference of occlusion noises by pushing the distance between
visible parts and occluded parts in the embedding space.
Finally, we conduct experiments on five popular dataset-
s including Occluded-Duke, Occluded-REID, Market-1501,
DukeMTMC-reID and MSMT17, and the competitive re-
sults demonstrate the effectiveness of the proposed method.
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