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Abstract

Some applications require performing face recognition (FR)
on third-party servers, which could be accessed by attackers
with malicious intents to compromise the privacy of users’
face information. This paper advocates a practical privacy-
preserving frequency-domain FR scheme without key man-
agement. The new scheme first collects the components with
the same frequency from different blocks of a face image
to form component channels. Only part of the channels are
retained and fed into the analysis network that performs an
interpretable privacy-accuracy trade-off analysis to identify
channels important for face image visualization but not cru-
cial for maintaining high FR accuracy. For this purpose, the
loss function of the analysis network consists of the empiri-
cal FR error loss and a face visualization penalty term, and
the network is trained in an end-to-end manner. We find
that with the developed analysis network, more than 94%
of the image energy can be dropped while the face recog-
nition accuracy stays almost undegraded. In order to further
protect the remaining frequency components, we propose a
fast masking method. Effectiveness of the new scheme in re-
moving the visual information of face images while maintain-
ing their distinguishability is validated over several large face
datasets. Results show that the proposed scheme achieves a
recognition performance and inference time comparable to
ArcFace operating on original face images directly.

Introduction
The capability of accurately recognizing faces as passwords
while preserving the privacy of users’ face information is
essential for the success of applications based on the client-
server model. This paper presents a practical face image
recognition scheme without key management. It can remove
a significant part of the visual information in original images
for privacy protection and increase the difficulty of face re-
covery, while retaining their distinguishability.

Fig. 1(a) illustrates image perception in the frequency do-
main. Human perception of images mainly depends on the
semantic information of images (i.e., visualization or low-
frequency components), while existing deep neural network
(DNN) based face recognition (FR) systems rely on both
low- and high-frequency components. In (Wang et al. 2020),
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Figure 1: (a) Image perception in the frequency domain; (b)
Framework of privacy-preserving FR.

a heuristic analysis of the impact of high-frequency infor-
mation on image classification is conducted. But it does not
identify which frequency components are crucial for im-
age classification. In this paper, we shall propose a trade-off
analysis network that can score the importance of each fre-
quency component in images. This lays down the foundation
for designing image processing techniques for new accurate
FR systems that can explore processed face images with lit-
tle visual information. Fig. 1(b) shows the framework of the
privacy-preserving FR that we adopt. During model training,
data owners perform some preprocessings, such as face de-
tection, alignment and anti-spoofing, and then mask the face
images. These masked images are utilized to training the FR
model. During inference, the built-in camera at the client
side captures the image of the user’s face and then sends it
after masking to the cloud server for face recognition. After
FR is done, the encrypted identification result will be trans-
ferred to the client side.

The model used for FR is one trained using the masked
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Method ACC Time cost
ArcFace (Deng et al. 2019) 99.82 2.86ms

FR-FD 99.82 2.82ms
FR-FD-noDC 99.69 2.01ms
PPFR-FD-DC 99.82 2.92ms

PPFR-FD 99.68 2.23ms
DP (Chamikara et al. 2020) 95.33 2.88ms

InstaHide (Huang et al. 2020) 98.76 2.99ms
CPGAN (Tseng and Wu 2020) 98.91 21.37ms

Table 1: Comparison of accuracy (ACC) and computational
efficiency among methods with and without privacy protec-
tion in the face recognition process for the LFW dataset.

data instead of the original face images. This makes the pro-
posed system satisfy the regulatory requirements that orig-
inal face images cannot be directly utilized in both train-
ing and inference, or recovered easily from masked data. On
the basis of deep convolutional neural networks (DCNNs),
multiple FR methods have become available, including the
softmax loss-based algorithms (Cao et al. 2018), triplet-
loss-based algorithms (Schroff, Kalenichenko, and Philbin
2015), Sphereface (Liu et al. 2017), CosFace (Wang et al.
2018) and ArcFace (Deng et al. 2019). In this paper, we
adopt ArcFace to illustrate the use and performance of our
privacy-preserving scheme (see Table 1 for part of the ex-
periment results over the LFW dataset).

Our contributions are as follows:

• We propose a network that performs an interpretable
privacy-accuracy trade-off analysis to identify channels
important for face image visualization/perception but not
crucial for attaining a high FR accuracy.
• A new loss function is devised for the analysis network,

which consists of the empirical FR error loss and a face
visualization quality penalty term. The network is trained
in an end-to-end manner.
• We propose a practical privacy-preserving FR scheme,

which achieves satisfactory trade-off between privacy
and accuracy, has a fast inference time, and can be incor-
porated into existing face recognition algorithms without
significant network structure modifications.

Related Work
Learning in the Frequency Domain
Representing images in the frequency domain provides
rich patterns for various tasks. In (Xu, Zhang, and Ren
2018; Wu et al. 2018), autoencoder-based networks are
trained to jointly perform image compression and infer-
ence. In (Ehrlich and Davis 2019), a model conversion al-
gorithm is developed to convert the spatial-domain CNNs
into frequency-domain CNNs. In (Gueguen et al. 2018),
image classification is carried out using frequency-domain
features. A learning-based method is established in (Xu
et al. 2020) to identify trivial frequency components that can
be discarded without degrading classification performance.

This observation is utilized in the development of our face
masking method.

Privacy-Preserving CNNs

Currently available privacy-preserving CNNs (PP-CNNs)
can be roughly categorized into CNNs with cryptogra-
phy theories and the ones without using cryptography. PP-
CNNs with cryptography theories are built using privacy-
preserving deeping learning techniques that incorporate
knowledge of cryptography. The secure multiparty compu-
tation (SMC) (Mohassel and Zhang 2017; Makri et al. 2019;
Ma et al. 2019; Wagh et al. 2021; Wagh, Gupta, and Chan-
dran 2019; Mohassel and Rindal 2018) and homomorphic
encryption (HE) (Acar et al. 2018; Naresh Boddeti 2018) are
typical examples. But this kind of methods generally have
high computation cost. PP-CNNs without using cryptogra-
phy operates on images whose pixels and color channels
have been ’randomly’ perturbated (Tanaka 2018; Sirichote-
dumrong, Kinoshita, and Kiya 2019; Madono et al. 2020).
One disadvantage of these networks is that their recogni-
tion accuracy is evidently lower that their counterparts us-
ing original images. Morphed learning (Mole) developed in
(Shen et al. 2019) is another PP-CNN method without using
cryptography. This approach is similar to transfer learning
(Yosinski et al. 2014). But MoLe exposes the augmented
convolutional layer to the developer who can deduce the
morphing matrix by designing images of specific structures.
With the morphing matrix, the original images can be re-
stored. The algorithms in (Xiang et al. 2019; Zhang et al.
2020) belong to the privacy protection mode of encryption
and decryption, but key management is not an easy task.
(Mireshghallah et al. 2019) and (Tseng and Wu 2020; Liu
et al. 2019) protect the privacy of the inference process by
learning noise distribution with generative adversarial net-
works (GAN). The privatizers are composed of multiple
CNNs, which leads to huge increase in computation. In-
staHide (Huang et al. 2020) encrypts each training image
with the key obtained through mixing a number of randomly
chosen images and applying a random pixel-wise mask, but
it may still be hacked (Carlini et al. 2020).

Privacy-Preserving Face Recognition

This subsection reviews some privacy-preserving techniques
for FR. (Chamikara et al. 2020) presents the privacy us-
ing EigEnface Perturbation (PEEP) method. It perturbates
eigenfaces using differential privacy (Gong et al. 2020) and
only stores perturbed data at the third-party servers that run
the eigenface algorithm. But the FR accuracy of PEEP is
much worse than that using original face images. In (Guo,
Xiang, and Li 2019), a scheme employing encryption and
decryption operations similar to those in (Xiang et al. 2019;
Zhang et al. 2020) to achieve privacy-preserving FR in
the cloud is proposed. (Ma et al. 2019) improves exist-
ing additive secret sharing-based functions and establishes a
lightweight privacy-preserving ensemble classification algo-
rithm for FR. This method has a relatively high complexity
and long execution time.
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Methodology
This section describes the proposed frequency-domain
privacy-preserving FR scheme, referred to as PPFR-FD.

Block Discrete Cosine Transform (BDCT)
As the very first step of the proposed method, BDCT is car-
ried out on the face image obtained after converting it from
a color image to a gray one. Specifically, in a way similar
to the convolution operation in CNN, BDCT is performed
on image blocks with a size of a× b pixels according to the
stride s. For each image block, an a × b BDCT coefficient
matrix is generated, in which every element represents a par-
ticular frequency component. We collect, from all the image
blocks, the frequency components that have the same posi-
tion in the BDCT coefficient matrix to form one frequency
component channel. The leftmost part of Figs. 2(a) and (b)
gives an illustration of the above process. As an example,
suppose the size of an original face image is 112× 112 pix-
els. We set the block size to be 8× 8 pixels and stride to be
s = 8 pixels. In total, we can obtain 64 frequency compo-
nent channels, each of which has a dimensionality of 14×14.

Privacy-Accuracy Trade-off Analysis
We propose an analysis network, as shown in Fig. 2(a) for
analyzing the trade-off between privacy and FR accuracy. It
can be seen that it takes the BDCT frequency component
channels extracted from the original face image as input and
first passes them through a channel selection module. The
purpose of this module is to remove frequency component
channels with amplitudes close to zero, which contribute
little to the distinguishability and visualization of face im-
ages. The observation that discarding small-amplitude fre-
quency components would not greatly degrade the classifi-
cation accuracy was obtained when examining non-face im-
age datasets such as ImageNet (Xu et al. 2020). The chan-
nels selected for different images for removal could be dif-
ferent if e.g., a trained SENet (Hu et al. 2020) is used. In this
work, for simplicity, we choose to remove a pre-fixed subset
of frequency component channels that span low to relatively
high frequencies. Specifically, with the size of BDCT image
blocks being 8 × 8 pixels, only 36 out of 64 channels are
kept. The basis for selecting the number of channels will be
discussed in the section of Security Evaluation.

Training the FR model can be guided by a loss function
such as Arcface, but it is not easy to quantify face images’
privacy protection level. To bypass this difficulty, we ap-
proximate the degree of privacy protection from the per-
spective of image visualization. If it is difficult to restore
the visualization information from a processed image, it is
thus considered that the degree of privacy protection is high.
It is generally believed that the frequency components with
high energy have large contribution to image visualization.
Based on this observation, we calculate the absolute value of
the elements in each frequency channel, perform averaging
over each channel, and take the results as the channel ener-
gies. These values will be weighted by learnable parameters.
Here, we use the absolute values of the frequency compo-
nents, instead of the square of them, in order to avoid the

penalty term being dominated by frequency channels with
large energy levels. The loss function of privacy protection
is thus given by

Losspri =
M∑
i=0

ReLu (ai − γ) .pi (1)

where ai is the trainable weight coefficient for the ith chan-
nel, pi is the energy of channel i, γ denotes a threshold, and
M is the number of considered frequency channels. Clearly,
if ai is less than γ, the corresponding channel is considered
unimportant in terms of its contribution to the loss function
Losspri. This is realized by the use of ReLu(y) function,
which becomes zero when y is negative.

To constrain the value of ai to the range between 0 and
1, we apply the transformation ai = 1/ (1 + exp (−xi)),
where xi is the parameter to be learned in the training pro-
cess. The composite loss function is

Lossanalysis−network = LossFR + λ · Losspri (2)

where LossFR is the loss function of FR and λ is a hyper
parameter. By minimizing the loss function, the frequency
channels with higher energy tend to be suppressed while at-
tempting to maintaining a good FR accuracy using the re-
maining channels only (i.e., reducing LossFR at the same
time). This is desired, because we aim to remove frequency
channels that contribute significantly to image visualization,
which are mostly channels with large energy.

Note that this training process does not have dedicated
protection for the image privacy. Here, we suggest two ap-
proaches to address this issue. The first method uses pub-
licly available face data sets with distribution similar to that
of data owners’ images as training data for the analysis net-
work. We can then carry out FR classifier training after re-
moving the designated channels of data owners’ images. The
other method is to simply neglect the lowest-score channel
directly. Through experiments, it is found that the lowest-
score channel is the lowest frequency channel or the direct
current (DC) component, which contributes greatly to image
visualization, and accounts for more than 90% of the energy
of images, but not much to the recognition task (see also
Fig. 3 and Fig. 5(b) for an illustration). In order to obtain
the best trade-off between privacy and accuracy, the follow-
ing steps are based on the second method. To further protect
the remaining frequency components, we propose a fast and
effective masking method.

Fast Face Image Masking
The whole diagram of the face image masking method is
shown in Fig. 2(b). It performs the BDCT and selects chan-
nels according the analysis network (note again that only
the DC component is discarded for a high FR accuracy).
Next, the remaining channels are shuffled two times with a
channel mixing in between. After each shuffling operation,
channel self-normalization is performed. The result of the
second channel self-normalization is the masked face image
that will be transmitted to third-party servers for face recog-
nition. The proposed face masking method aims at further
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Figure 2: Schematic diagrams of (a) the proposed analysis network and (b) the proposed fast face image masking method.

(a) (b) (c) (d)

Figure 3: Two pictures (a)-(b) we randomly selected to ex-
tract the DC components (c)-(d).

increasing the difficulty in recovering the original face im-
age from its masked version. We shall detail the operation
of each module below. We denote the ith retained frequency
component channel from image k in a dataset as Fk

i , where
i = 0, 1, ..., 34 (recall that the DC component has been dis-
carded), k = 1, 2, ..., N and N is the total number of face
images in the dataset.

The remained 35 channels are shuffled in order to in-
crease the difficulties in deducing their associated frequen-
cies. Mathematically, after the first channel shuffling opera-
tion Shuffle1(·), the retained channels are

Ek
j = Shuffle1

(
Fk
i

)
(3)

where j = 0, 1, . . . , 34 and Ek
j is the jth channel of face

image k after channel shuffling.
Next, we perform self-normalization on Ek

j via

Ēk
j = (Ek

j − µk
1)./σk

1 . (4)

Note that the above operation is element-wise in the sense
that each element in Ek

j is self-normalized individually. In
particular, ./ denotes element-wise division. µk

1 and σk
1 de-

note two matrices whose elements are the sample mean
and sample standard deviation of all the entries in Ek

j . In
other words, each face image would have its own self-
normalization parameters µk

1 and σk
1 . This is fundamen-

tally different from the normalization process in e.g., (Xu
et al. 2020), where the normalization parameters are cal-
culated using all the images in the dataset (i.e., all im-
ages share the same normalization parameters). Clearly,

the self-normalization procedure adopted in our face mask-
ing method is more secure, as the disclosure of the self-
normalization parameters for some images will not affect the
privacy of the remaining ones.

We then mix Ēk
j through linearly combining them using

Mk
j = (Ēk

j + Ēk
j+1)/2 (5)

where j = 0, 1, . . . , 33. With the channel mixing operation,
the number of frequency component channels is reduced by
one. This further enlarges the difficulties in reconstructing
the frequency-domain information of the original face image
from the mixing output Mk

j .
Mk

j will go through another channel shuffling Shuffle2 (·)
to obtain

Sk
l = Shuffle2

(
Mk

j

)
(6)

where l = 0, 1, . . . , 33. Finally, Sk
l is self-normalized as

S̄k
l = (Sk

l − µk
2)./σk

2 . (7)

Here, as in (4), µk
2 and σk

2 are two matrices whose elements
are the sample mean and sample standard deviation of all the
entries in Sk

l . S̄k
l are the masked version of face image k and

they will be transmitted to third-party servers for training
and inference.

Note that Shuffle1 is pseudo-random in order to ensure
that each channel is processed in a fixed order. However,
Shuffl2 is completely random to enhance privacy protection,
and it is random for all images in the dataset.

Privacy-Preserving Face Recognition
This subsection summarizes the proposed frequency-domain
privacy-preserving face recognition (PPFR-FD) scheme that
is based on the face masking method. As shown in Fig. 4(a),
PPFR-FD adopts the existed FR model, such as ArcFace,
as the face classifier. To protect the privacy of users’ face
data, both the training and recognition stages of PPFR-FD
are carried out using the masked face images only.

In the training stage, all the original face images in the
training dataset are converted to their masked version us-
ing the fast face masking method. Note that the order of the
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(b)

Figure 4: (a) Training process of the proposed PPFR-FD
scheme. (b) Inference of the deployed PPFR-FD scheme.

combined frequency channels in each masked data is differ-
ent. Before the masked data is input into the network, the
channels are sorted according to a certain rule, such as the
energy of channels. On the other hand, the masked face im-
ages have more than three frequency component channels
(see (7)). Moreover, the dimensionality of each channel is
smaller than the size of input image of ArcFace (e.g., 14×14
vs. 112×112). To address these aspects, we modify ArcFace
by increasing the number of its input channels and upsam-
ple each frequency component channel of masked images to
the size of 112 × 112 pixels. In this way, except for the in-
put layer, the remaining part of ArcFace is kept intact, which
avoids extra workload due to significantly changing the Ar-
cFace network architecture. Another advantage is that the
proposed PPFR-FD scheme can provide an inference time
close to that of ArcFace operating on original face images.

The face recognition process of the trained PPFR-FD is
shown in Fig. 4(b). A user’s face image is first masked and
transmitted to ArcFace to perform template matching-based
recognition. A successful match will be declared if the dis-
tance between the features extracted from the masked data
and pre-stored template is less than a threshold.

Security Goal and Evaluation
The goal of PPFR-FD is to provide a light-weight masking
method to make it difficult for attackers to recover the train-
ing and inference face images in the FR system (Fig. 1 (b)).
Similar to comparison algorithms in Tabs. 1 and 2, it is not
designed to provide the level of security strength as encryp-
tion methods such as RSA (Rivest, Shamir, and Adleman
1978). It is also an initial step towards exploring better pri-
vacy preservation while maintaining data utility. Here, we
shall establish the security of the PPFR-FD scheme under
the condition that the flow of the face masking process is
known but detailed knowledge on channel shuffling, mix-
ing and self-normalization parameters is unavailable. Re-
sults obtained under different attacking experiments on the
face masking algorithm are given in Section ’Experiments’.

The first challenge for an attacker to recover the original
face image is that we discard more than 90% of the energy
of images, which makes it difficult to reconstruct the orig-
inal image in the attack mode like GAN. The second chal-
lenge is that the number of frequency component channels
in the face masking algorithm output is smaller than that of
the retained BDCT channels. This is owing to the use of
channel mixing between the two shuffling operations (see

(5)). Reconstructing data from its lower-dimensional ver-
sion is difficult without knowledge on e.g., the data struc-
ture. Moreover, face image recovery requires reversing the
two channel shuffling operations. Consider the typical setup
with a BDCT block size of 8× 8 pixels and 35 retained fre-
quency component channels. There would be a total number
of 35! × 34! possible shuffling operations. In fact, since the
randomized channels are sorted according to the channel en-
ergy in Shuffle2, the space for brute force search caused by
two shuffles would be reduced, but it is still much larger than
35!. That is, the size of the search space is much greater than
that of the 128-bit AES encryption algorithm. This greatly
increases the difficulty of deducing the shuffling operations
via the method of brute force search. The shuffle operation
is only a part of the masking algorithm, and the security of
the masking algorithm is constructed by multiple steps.

Here, we explain why the number of channels selected is
36. In terms of accuracy, too many frequency channels will
not significantly improve the accuracy. In terms of data size,
too many frequency channels will increase the size of desen-
sitized data. In terms of security, 36 channels are selected so
that the brute force cracking space from two shuffles is much
greater than 2128; from the perspective of cryptography, the
size of the brute force space is safe enough under the ex-
isting computing power. So this number is a tradeoff choice
based on some aspects, and not the only choice.

Note that the mask method proposed is a part of the
FR process as in Fig.1(b). Inputs must undergo some pre-
processing operations (face anti-spoofing, face detection) to
reach the masking stage. So it’s hard to probe masking steps
by using specially designed or chosen images. Even if all
steps of masking are provided to the attacker (i.e., in a white-
box attack), it is still difficult to recover original images,
which is justified in details in the following section and Part
1 of the appendix. Meanwhile, the sorting operation can be
used as a part of the white box attack to recover the raw im-
age from the masked data. See Section ’White-box Attack-
ing Experiments’ and the appendix for specific operations.

Experiments
In this section, we first evaluate the proposed analysis net-
work for trade-off analysis between privacy and accuracy.
Performance comparisons of different algorithms over stan-
dard face datasets are carried out, following by attacking ex-
periments and discussions for PPFR-FD.

Experiments on Analysis Network
In order to simplify the process and gain insights, we train
the baseline model on MobileNetV2 (Sandler et al. 2019)
backbone using the ArcFace loss. The head of the base-
line model is: BackBone-Flatten-FC-BN with embedding
dimensions of 512 and dropout probability of 0.4 to output
the embedding feature. All models are trained for 50 epochs
using the SGD optimizer with the momentum of 0.9, weight
decay of 0.0001. For the threshold γ in (1), we set it to 0.3.
λ in (2) is set to 1. We use CASIA (Yi et al. 2014) and LFW
(Zhang and Deng 2016) as the training and test datasets.

Fig 5. (a) shows the evolution of channel weighting coeffi-
cients ai with training epochs. For clarity, we only show the
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(a) (b)

Figure 5: Schematic diagrams of the evolution of (a) channel
coefficients, (b) accuracy of face recognition and energy loss
with training epochs.

weights of the first 16 channels. The considered 16 chan-
nels are indexed in a descending order according to their
energies. It can be seen from the figure that the channel co-
efficient is set to 1 at the beginning of the training. After
50 epochs, there are 6 channels whose coefficient values are
less than 0.3. The indexes of these 6 channels are 0, 1, 2,
8, 9 and 15. Note that although the DC component is given
the lowest score, not all channels with large energies have
scores lower than the threshold. Fig 5. (b) compares recogni-
tion accuracy and energy loss with training epochs. AccAN ,
AccRGB and AccnoDC represent accuracy of the analysis
network without constraining the number of discarded chan-
nels, for RGB images without removing any channels and
for frequency domain learning with DC component removed
only. ELAN and ELnoDC represent the energy loss of the
analysis network and using frequency domain learning with-
out DC. It can be seen that by abandoning 6 channels, the en-
ergy loss of the image has exceeded 97%, but the accuracy
drops about 3%. With only the DC component discarded,
the energy loss of the image is over 94%, but the FR ac-
curacy is marginally affected. This reflects the effectiveness
of the analysis network in identifying channels not crucial
for face classification. More importantly, it reveals that the
best trade-off between accuracy and privacy is to discard the
lowest-score channel, i.e., the DC channel.

Experiments of PPFR-FD and Others
We use the MS-Celeb-1M dataset with 3,648,176 images
from 79,891 subjects as the training set. 7 benchmarks in-
cluding LFW (Zhang and Deng 2016), CFP-FP (Sengupta
et al. 2016), AgeDB (Moschoglou et al. 2017), CALFW
(Zhang and Deng 2016), CPLFW (Zhang and Deng 2016)
and Vggface2 (Cao et al. 2018)are used to evaluate the per-
formance of PPFR-FD following the standard evaluation
protocols. We train the baseline model on ResNet50 (He
et al. 2016) backbone with SE-blocks (Hu et al. 2020) and
batch size of 512. Other settings are the same as that in Sec-
tion ’Experiments on Analysis Network’.

Results are reported in Table 2. ArcFace and FR-FD de-
note the face recognition algorithms for RGB images and
in the frequency domain without privacy protection, respec-
tively. In FR-FD and FR-FD-noDC, the network inputs are
data generated by the operation Choose Channels before

”Discard DC” and ”Channel Shuffle 1” in Fig. 2(b). PPFR-
FD-DC denotes PPFR-FD without discarding DC. For fair
comparison, the classification algorithms in the three con-
sidered methods are replaced by the FR algorithm in this
section. In DP, ε is set to 5. For InstaHide, we set k to 3, that
is, only one public image used for encryption. For the con-
venience, we use a fixed public image for image synthesis.
The accuracy obtained by using the same public image for
encryption in training and testing is better than that in the
large-scale dataset mentioned in InstaHide. In Table 1, we
also calculate the total running time of each algorithm, in-
cluding masking and inference time, on the LFW dataset. In
Table 2, although PPFR-FD reduces more than 94% energy
of images and is masked, its performance is comparable to
that of the baseline model and is better than that of other
similar algorithms. The performance of DP is the worst. Al-
though CPGAN also has better performance, it takes longer
time to execute and can only protect privacy in inference.

Attacking Experiments for PPFR-FD
In this section, the privacy protection reliability of PPFR-FD
is analyzed based on white-box and black-box attack experi-
ments. Black-box means that the attacker does not know the
structure and parameters of the model, but can access the re-
sults of the model. White-box means that the attacker can
not only access the results of the model, but also know the
structure of the model.The purpose of attack experiments is
to reconstruct the original image.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6: White-box attack experiments for PPFR-FD-DC
(the 1st row), PPFR-FD (the 2nd row), PPFR-FD utilizing
the DC component of Fig. 3(a) (the 3rd row). (a)(e): Raw
images; settings of (b)-(d) and (f)-(h) are listed in Table 3.

White-box Attacking Experiments We first do white-
box attack experiments for PPFR-FD with DC, i.e., PPFR-
FD-DC. Some results are showed in the 1st row of Fig. 6.
The detailed method and some tricks used by white-box re-
construction in Fig. 6 is shown in the appendix. Table 3 gives
the experiment settings for recovering face images. Figures
6(a)(e) shows the original gray face images of two different
persons. The images in the 2nd row of Fig. 6 show white-
box attack experiments for PPFR-FD. Due to the lack of the
DC component, the reconstructed images are rather fuzzy. In
Fig. 6 (the 3rd row), we also consider replacing the missing
DC with the DC components from other pictures. We add the
DC components of Fig. 3(a) to the reconstructed frequency
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Method Energy loss Mask LFW CFP-FP AgeDB CALFW CPLFW Vggface2
ArcFace (Deng et al. 2019) 0 No 99.82 97.78 97.85 96.02 92.77 95.12

FR-FD 0 No 99.82 96.59 97.83 95.93 91.35 94.62
FR-FD-noDC 94.28 No 99.69 95.97 97.82 95.73 91.02 94.36
PPFR-FD-DC >0 Yes 99.82 96.76 97.88 96.02 91.58 94.70

PPFR-FD >94.28 Yes 99.68 95.04 97.37 95.72 90.78 94.08
DP (Chamikara et al. 2020) − Yes 95.33 92.28 93.61 90.01 85.44 89.13

InstaHide (Huang et al. 2020) − Yes 98.76 94.15 95.76 93.49 88.90 93.17
CPGAN (Tseng and Wu 2020) − Yes 98.91 94.56 97.07 94.82 90.47 93.29

Table 2: Comparison of the face recognition accuracy among methods with and without privacy protection in the face recog-
nition process for different datasets. The 2nd row shows results of methods without privacy protection, the 3rd-5th rows are
results of the ablation experiments for PPFR-FD, and the 6th-9th rows show results of methods with privacy protection.

Known operations All operations in Fig. 2(b)
Fig. 6(b)(f): 1,2,3,4,5 1 or 4: Channel Shuffle 1, 2
Fig. 6(c)(g): 2,3,4,5 2 or 5: Self-normalization 1, 2
Fig. 6(d)(h): 2,3,5 3: Channel Mix

Table 3: Ablation experiment settings for recovering images.

channels. From Fig. 6 (the 3rd row), we can see that the re-
constructed image contour is close to that of the face image
that provides the DC component. This illustrates that the al-
gorithm sacrifices a little degradation in the face recognition
accuracy, but it has high security.

The reason of poor reconstruction performance is that the
distinguishability of face images exists in higher frequency,
these frequency values are small, and small errors in them
will lead to great impact on the visualization. The above
image attack/reconstruction experiments are also some se-
curity analysis experiments with some prior information of
face images and the face image processing algorithm. From
another point of view, the PPRF-FD method can protect the
privacy of face images to a certain extent, which can make
Client/ Server applications more secure.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7: Face images recovered by GAN. (a)(e): Origi-
nal images; (b)(f) are recovered images from masked data
generated by PPFR-FD with ’Shuffle2’ using a pseudo-
random sequence; (c)(g) are ones generated by PPFR-FD
with ’Shuffle2’ using fully-random sequences; (d)(h) are re-
covered images from sorted-channel masked data generated
by PPFR-FD with ’Shuffle2’ using fully-random sequences.

Black-box Attacking Experiments Here, we use GAN,
which has a strong fitting ability, to carry out black-box at-
tack. In Fig. 7, we adopt the combined model of Pix2Pix
(Isola et al. 2017) and StyleGAN2 (Karras et al. 2020) as
the black-box attack GAN model to reconstruct original im-
ages from the masked images. The generetor in Pix2Pix is
replaced by the one from StyleGAN2 (Karras et al. 2020)
which is pretrained with the Flickr-Faces-HQ dataset (Kar-
ras, Laine, and Aila 2019), and the discriminator is the 6-
layer PatchCNN (Isola et al. 2017). In the training phase, we
use Adam optimizer with a learning rate begins at 0.0002.
We carry out the GAN attack experiment on PPFR-FD. The
results show that it is difficult to reconstruct face images
even using GAN. More results are shown in the appendix.

Limitations
This paper is similar to the work in literatures (Tseng and
Wu 2020; Huang et al. 2020) that solves the problem of face
privacy protection in the process of training and/or infer-
ence. From the perspective of biological template protection
(Nandakumar and Jain 2015), it also needs to address the
revocability and unlinkability of biological template, which
is beyond the scope of this work. In addition, the design of
a special network for frequency-domain data is also worthy
of investigations. This paper does not consider the privacy
protection for the preprocessing steps, which also needs fur-
ther research. However, we can alleviate this problem with
the hardware-level protection, such as TEE (Mo et al. 2020),
which can build a secure computing environment.

Conclusion
In this paper, we proposed an analysis network that per-
forms an interpretable privacy-accuracy trade-off analysis to
identify channels important for face image visualization but
not crucial for maintaining a high FR accuracy. Based on
trade-off analysis bewteen privacy and accuracy, a PPFR-FD
scheme was developed and its security was established an-
alytically. The proposed scheme has the advantage of being
able to achieve the best trade-off between privacy and ac-
curacy, have a fast inference time, and be incorporated into
existing face recognition algorithms without significant net-
work structure modifications.
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