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Abstract

CNN-LSTM based architectures have played an important
role in image captioning, but limited by the training effi-
ciency and expression ability, researchers began to explore
the CNN-Transformer based models and achieved great suc-
cess. Meanwhile, almost all recent works adopt Faster R-
CNN as the backbone encoder to extract region-level fea-
tures from given images. However, Faster R-CNN needs a
pre-training on an additional dataset, which divides the im-
age captioning task into two stages and limits its potential ap-
plications. In this paper, we build a pure Transformer-based
model, which integrates image captioning into one stage and
realizes end-to-end training. Firstly, we adopt SwinTrans-
former to replace Faster R-CNN as the backbone encoder to
extract grid-level features from given images; Then, referring
to Transformer, we build a refining encoder and a decoder.
The refining encoder refines the grid features by capturing
the intra-relationship between them, and the decoder decodes
the refined features into captions word by word. Furthermore,
in order to increase the interaction between multi-modal (vi-
sion and language) features to enhance the modeling capa-
bility, we calculate the mean pooling of grid features as the
global feature, then introduce it into refining encoder to re-
fine with grid features together, and add a pre-fusion process
of refined global feature and generated words in decoder. To
validate the effectiveness of our proposed model, we conduct
experiments on MSCOCO dataset. The experimental results
compared to existing published works demonstrate that our
model achieves new state-of-the-art performances of 138.2%
(single model) and 141.0% (ensemble of 4 models) CIDEr
scores on ‘Karpathy’ offline test split and 136.0% (c5) and
138.3% (c40) CIDEr scores on the official online test server.
Trained models and source code will be released.

Introduction
Image captioning aims to automatically describe the vi-
sual content of a given image with fluent and credible sen-
tences. It is a typical multi-modal learning task, which con-
nects Computer Vision (CV) and Natural Language Pro-
cessing (NLP). Inspired by the success of deep learning
methods in machine translation (Papineni et al. 2002; Cho
et al. 2014), almost all image captioning models adopt the
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encoder-decoder framework with the visual attention mech-
anism. The encoder encodes input images into fix-length
vector features, and the decoder decodes image features into
descriptions word by word (Vinyals et al. 2015; Xu et al.
2015; Anderson et al. 2018; Huang et al. 2019; Pan et al.
2020).

Initially, researchers adopted a pre-trained Convolutional
Neural Network (CNN) as an encoder to extract image grid-
level features and Recurrent Neural Network (RNN) as a de-
coder (Vinyals et al. 2015; Xu et al. 2015). (Anderson et al.
2018) first adopted Faster R-CNN to extract region-level fea-
tures. Due to its overwhelming advantage, most subsequent
works followed this pattern, and grid-level features extracted
by CNN were discarded. Nevertheless, there are still some
inherent defects in region-level features and encoder of ob-
ject detector: 1) region-level features may not cover the en-
tire image, which results in the lack of fine-grained informa-
tion (Luo et al. 2021); 2) extracting region features is high
time consuming, and the object detector needs an extra Vi-
sual Genome (Krishna et al. 2017) dataset for pre-training,
which makes it difficult to train image captioning model
end-to-end from image pixels to descriptions, and also limits
potential applications in the actual scene (Jiang et al. 2020).

Decoder of LSTM (Hochreiter and Schmidhuber 1997)
with soft attention (Xu et al. 2015) mechanism has re-
mained the common and dominant approach in the past few
years. However, the shortcomings of training efficiency and
expression ability of LSTM also limit the effect of rele-
vant models. Inspired by the success of Multi-head Self-
Attention (MSA) mechanism and Transformer architecture
in NLP tasks (Vaswani et al. 2017), many researchers began
to introduce MSA into decoder of LSTM (Huang et al. 2019;
Pan et al. 2020) or directly adopt Transformer architecture as
decoder (Cornia et al. 2020; Pan et al. 2020; Luo et al. 2021;
Ji et al. 2021) of image captioning models.

Especially, Transformer architecture gradually shows ex-
traordinary potential in CV tasks (Dosovitskiy et al. 2021;
Liu et al. 2021) and multi-modal tasks (Lu et al. 2019; Zhu
and Yang 2020; Radford et al. 2021), which provides a new
choice for encoding images into vector features. Different
from Faster R-CNN, features extracted by a visual trans-
former are grid-level features, which have a higher comput-
ing efficiency and allows expediently exploring more effec-
tive and complex designs for image captioning.
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Considering the disadvantage of pre-trained CNN and ob-
ject detector in encoder and limitations of LSTM in decoder,
we build a pure Transformer-based image captioning model
(PureT) to integrate this task into one stage without pre-
training process of object detection to achieve end-to-end
training. In Encoder, we adopt Swin-Transformer (Liu et al.
2021) to extract grid features from given images as the initial
vector features and compute the average pooling of gird fea-
tures as the initial image global feature. Then, we construct a
refining encoder similar to (Huang et al. 2019; Cornia et al.
2020; Ji et al. 2021) by Shifted Window MSA (SW-MSA)
from Swin-Transformer to refine image initial grid features
and global feature. The refining encoder has a similar ar-
chitecture with Transformer Encoder in machine translation
(Vaswani et al. 2017) which can be regarded as an extension
of Encoder of SwinTransformer for image captioning model.
In Decoder, we directly adopt Transformer Decoder in ma-
chine translation (Vaswani et al. 2017) to generate captions.
Furthermore, we pre-fuse the word embedding vector with
the image global feature from Encoder before the MSA of
word embedding vector to increase the interaction of inter-
model (image-to-words) features.

We validate our model on MSCOCO (Lin et al. 2014) of-
fline “Karpathy” (Karpathy and Fei-Fei 2017) test split and
official online test server. The results demonstrate that our
PureT achieves new state-of-the-art performance on both
single model and ensemble of 4 models configurations: on
offline “Karpathy” test split, a single model and an ensem-
ble of 4 models achieve 138.2% and 140.8% CIDEr scores
respectively; on official online test server, an ensemble of 4
models achieves 135.3% (c5) and 138.0% (c40) CIDEr.

Our main contributions are summarized as follows:
• We construct a pure Transformer-based (PureT) model

for image captioning, which integrates this task into one
stage again without the pre-training process of object de-
tector and provide a new simple and solid baseline of im-
age captioning.

• We add a pre-fusion process between the generated word
embeddings and image global feature, which aims to
increase the interaction of inter-modal features and en-
hance the reasoning ability from image to captions.

• We conduct extensive experiments on the MSCOCO
dataset, which demonstrate the effectiveness of our pro-
posed model, and achieve a new state-of-the-art perfor-
mance on both ‘Karpathy’ offline test split and official
online test server.

Related Work
Existing works of image captioning can be divided into
CNN-LSTM based models (Vinyals et al. 2015; Xu et al.
2015; Anderson et al. 2018; Wang, Chen, and Hu 2019;
Huang et al. 2019) and CNN-Transformer based models
(Herdade et al. 2019; Li et al. 2019; Pan et al. 2020; Cornia
et al. 2020; Ji et al. 2021; Luo et al. 2021). Both adopted pre-
trained CNN or Faster R-CNN as the encoder to encode im-
age into grid or region-level features, where the former mod-
els adopted Long Short-Term Memory Network (LSTM)
(Hochreiter and Schmidhuber 1997) as the decoder and the

latter models adopted Transformer (Vaswani et al. 2017) as
the decoder to generate description word by word.

Earlier works used pre-trained CNN, e.g., VGG-16 (Si-
monyan and Zisserman 2015) and ResNet-101 (He et al.
2016), as the encoder to encode image into grid-level fea-
tures with fixed-length, and then LSTM with attention mech-
anism was applied among them to generate captions (Xu
et al. 2015; Rennie et al. 2017). (Anderson et al. 2018) first
introduced Faster R-CNN (Ren et al. 2017) into image cap-
tioning to extract the region-level features more in line with
the human visual habits, which has become a typical pattern
to extract image features in subsequent works.

Above all models adopted LSTM as the decoder, which
have shortcomings in training efficiency and expression abil-
ity. Recently, researchers began to explore the application
of transformer in image captioning. (Herdade et al. 2019)
proposed the Object Relation Transformer to introduce the
region spatial information. (Pan et al. 2020) proposed the
X-Linear attention block to capture the 2nd order interac-
tions between the single- or multi-modal, and integrated it
into the Transformer encoder and decoder. (Cornia et al.
2020) designed a mesh-like connectivity in decoder to ex-
ploit both low-level and high-level features from the en-
coder. (Luo et al. 2021) proposed a Dual-Level Collaborative
Transformer (DLCT) to process both grid- and region-level
features for realizing the complementary advantages.

Despite the outstanding performance of region-level fea-
tures extracted by Faster R-CNN, the lack of fine-grained
information of region-level and the time cost of Faster R-
CNN pre-training are unavoidable problems. Furthermore,
extracting region-level features is time-consuming, so most
models directly trained and evaluated on cached features in-
stead of image, which makes it difficult to train image cap-
tioning model end-to-end from image to descriptions.

Model
The overall architecture of our PureT model is shown in
Figure 1. We adopt the widely used encoder-decoder frame-
work, in which the encoder consists of a backbone of Swin-
Transformer and stacks of N refining encoder blocks and
the decoder consists of stacks of N decoder blocks. The en-
coder is in charge of extracting grid features from the input
image and refining them by capturing the intra-relationship
between them. The decoder uses the refined image grid fea-
tures to generate the captions word by word by capturing the
inter-relationship between word and image grid features.

Attention Mechanism
The attention mechanism can be abstractly summarized as
follows:

Attention(q, k, v) = fsim(q, k)v (1)

where fsim(·) is a function used to compute the similarity
scores between some queries (q) and keys (k). The output
of attention mechanism is the weighted sum on values (v)
based on similarity scores.

In our model, Multi-head Self Attention (MSA) (Vaswani
et al. 2017) and its variants Window MSA / Shifted Window
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Figure 1: Overview of our proposed PureT model. We first extract image grid features VG using SwinTransformer. vg is calcu-
lated as the average pooling of VG. Then VG and vg are refined into V NG and vNg through the Refining Encoder composed of N
blocks stacks and are fed into the Decoder to generate description word by word.

(a) regular window partitioning scheme (b) shifted window partitioning scheme

Figure 2: Illustration of regular window partitioning scheme
and shifted window partitioning scheme adopted in refining
encoder. The size of input feature map isH×W = 12×12.

MSA (W-MSA / SW-MSA) modules proposed by Swin-
Transformer (Liu et al. 2021) are used, where MSA is
adopted in the decoder to model the intra-relationship of
word sequence and the inter-relationship between word and
grid features, and W-MSA / SW-MSA are adopted in the en-
coder to model intra-relationship of image grid features. The
above three attention modules use Softmax(·) as the simi-
larity scoring function, which can be formulated as follows:

Attention(q, k, v) = Softmax

(
qkT

√
dk

)
v (2)

where dk is the dimension of k.
MSA(Q,K, V ) = Concat(head1, . . . , headh)

headi = Attention(Qi,Ki, V i), i = 1, 2, . . . , h
(3)

where h is the number of heads. Qi,Ki and V i are the i-th
slice of Q,K and V respectively, which can be formulated
as follows:

F = Concat(F1, . . . ,Fi, . . . ,Fh) (4)

where F ∈ RLF×DF and Fi ∈ RLF×
DF
h (F refers to

Q,K and V ), LF and DF are the length and dimension.
In the i-th head of MSA, each token of the query Qi cal-

culates its similarity with all tokens of the key Ki, and per-
forms the weighted sum on all tokens of the value V i to
obtain the corresponding output. Therefore, MSA can be re-
garded as a global attention mechanism.

W-MSA and SW-MSA Aiming at the quadratic complex-
ity caused by the global computation of MSA, SwinTrans-
former proposed W-MSA and SW-MSA to compute self-
attention within local windows (Liu et al. 2021). In this pa-
per, both W-MSA and SW-MSA are used in the encoder, in
which inputs of Q,K and V are all from image grid fea-
tures, therefore they have the same length L = H ×W and
dimension D.

Compared with MSA, W-MSA and SW-MSA first parti-
tion the inputs ofQ,K and V into several windows, and then
apply MSA separately in each window. Figure 2 illustrate
the regular window partitioning scheme and shifted window
partitioning scheme of W-MSA and SW-MSA respectively.
Adding SW-MSA after W-MSA aims to solve the lack of
connections across windows of W-MSA module to further
improve the modeling ability. W-MSA and SW-MSA can be
formulated as follows:

(S)W-MSA(Q,K, V ) = Merge(window1, . . . , windoww)

windowi = MSA(QiW ,K
i
W , V

i
W ), i = 1, 2, . . . , w (5)

where w is the number of windows and Merge(·) is the
reverse operation of regular/shifted window partitioning
scheme. QiW ,K

i
W and V iW are the i-th window of Q,K and

V respectively, which can be formulated as follows:

F = Merge
(
F1
W , . . . ,F

i
W , . . . ,F

w
W

)
(6)

where F ∈ RL×D and Fi
W ∈ RL

w×D (F refers to Q,K
and V ).
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Encoder
Different from most existing models, we first employ Swin-
Transformer (Liu et al. 2021) instead of pre-trained CNN
or Faster R-CNN as the backbone encoder to extract a set
of grid features VG = {v1, v2, . . . , vm} from given input
images as the initial visual features, where vi ∈ RD, D is
the embedding dimension of each grid feature, and m is the
number of grid features (m= 12× 12 in this paper).

After grid features VG are extracted, we refer to the stan-
dard transformer encoder (Vaswani et al. 2017) to construct
a refining encoder to enhance the grid features by capturing
the intra-relationship between them. Furthermore, inspired
by (Ji et al. 2021), we calculate the mean pooling of grid
features vg = 1

m

∑m
i=1 vi as the initial global feature and

introduce it into W-MSA and SW-MSA. Specifically, when
applying MSA in each window, the global feature is added
into the keys k and values v as an extra token. Meanwhile,
we also refine the global feature by using it as an extra query
q token and applying MSA on all grid features.

As shown in Figure 1, the refining encoder is composed
of N blocks stacked in sequence (N = 3 in this paper), and
each block consists of a W-MSA or SW-MSA module with
feedforward layer, in which W-MSA and SW-MSA are used
alternately. The l-th block can be formulated as follows:

V̂ lG = LayerNorm
(
V l−1
G + (S)W-MSA

(
W l
QV

l−1
G ,

W l
K

[
V l−1
G ; vl−1

g

]
s
,W l

V

[
V l−1
G ; vl−1

g

]
s

))
(7)

v̂lg = LayerNorm(vl−1
g + MSA

(
W l
Qv

l−1
g ,

W l
K [V l−1

G ; vl−1
g ]s,W

l
V [V l−1

G ; vl−1
g ]s

))
(8)

V lG = LayerNorm
(
V̂ lG + FeedForward(V̂ lG)

)
(9)

vlg = LayerNorm
(
v̂lg + FeedForward(v̂lg)

)
(10)

where V l−1
G and vl−1

g denote the output grid features and
global feature of block l − 1 respectively, and which are
used as the input of block l, in which V 0

G = VG and
v0
g = vg , W l

Q, Q
l
K ,W

l
V ∈ RD×D are learnt parameter ma-

trices; [V l−1
G ; vl−1

g ]s ∈ R(k+1)×D denotes the stack opera-
tion of grid features and global feature and FeedForward(·)
consists of two linear layer with ReLU activation function
in between, as formulated below:

FeedForward (x) = W2 ReLU (W1x) (11)

where W1 ∈ R(4D)×D and W2 ∈ RD×(4D) are the learnt
parameter matrices of two linear layers respectively. Note
that the parameter of refining process for grid features and
global feature are reused. The output refined grid features
V NG and refined global feature vNg of block N are fed into
the decoder as the input of visual content.

Decoder
The decoder aims to generate the output caption word by
word conditioned on the refined global and grid features
from the encoder. The interaction between multi-modal oc-
curs in this part. As shown in Figure 1, the decoder is com-
posed of N blocks stacked in sequence (N = 3 in this pa-
per), where each block can be divided into three modules:

1) Pre-Fusion Module, which contains the pre-fusion pro-
cess between previously generated words and refined global
feature, which can be regarded as the first inter-modal inter-
action between natural language and visual content; 2) Lan-
guage Masked MSA Module, which can be regarded as the
intra-modal interaction within the generated words; 3) Cross
MSA Module, which contains a MSA module with a Feed-
Forward layer, which can be regarded as the second inter-
modal interaction between visual content and natural lan-
guage; 4) Word Generation Module, which contains a linear
layer with softmax function.

Pre-Fusion Module Most recent Transformer-based mod-
els only use image region or grid features without global
feature, where the interaction between multi-modal features
only occurs in cross attention between generated word and
visual features before generating the next word. The lack of
interaction of global contextual information limits reasoning
capability to a certain extent. Therefore, we construct a pre-
fusion module to fuse the refined global feature vNg into the
input of each block of decoder, which can be regarded as the
first time multi-modal interaction to capture global visual
context information and can be formulated as follows:

Xp,l
1:t−1 = Layer Norm

(
X l−1

1:t−1+

ReLU
(
Wf

[
X l−1

1:t−1; vNg
]))

(12)

where X l−1
1:t−1 ∈ R(t−1)×D denotes the output of block

l − 1 and is used as the input of block l at t-th timestep
,
[
X l−1

1:t−1; vg
]
∈ R(t−1)×2D indicates concatenation and

Wf ∈ RD×2D is learnt parameters of a linear layer; the out-
put Xp,l

1:t−1 ∈ R(t−1)×D is fed into the Language Masked
MSA Module. Note that the initial input at the first block
comes from the previously generated words:

X0
1:t−1 = Wex1:t−1 (13)

where x1:t−1 are one-hot encodings of the generated words
before t-th timestep, and We ∈ RD×|Σ| is the word embed-
ding matrix of the vocablulary Σ.

Language Masked MSA Module The module aims to
model the intra-modal relationship (words-to-words) within
Xp,l

1:t−1, which can be formulated as follows:

X̃ l
t−1 = LayerNorm

(
Xp,l
t−1 + MSA

(
Wm,l
Q Xp,l

t−1,

Wm,l
K Xp,l

1:t−1,W
m,l
V Xp,l

1:t−1

))
(14)

where Wm,l
Q ,Wm,l

K ,Wm,l
V ∈ RD×D are learnt parameters,

and Xp,l
t−1 indicates the corresponding embedding vector of

the generated word at (t− 1)-th timestep, which means that
each word is only allowed to calculate attention map at its
earlier generated words.

Cross MSA Module The module aims to model the inter-
modal relationship (words-to-vision) between X̃ l

1:t−1 and
V NG , which can be regarded as the second time multi-modal
interaction to capture local visual context information and
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Models Single Model Ensemble Model

B-1 B-4 M R C S B-1 B-4 M R C S
CNN-LSTM based models

SCST - 34.2 26.7 55.7 114.0 - - 35.4 27.1 56.6 117.5 -
RFNet 79.1 36.5 27.7 57.3 121.9 21.2 80.4 37.9 28.3 58.3 125.7 21.7
Up-Down 79.8 36.3 27.7 56.9 120.1 21.4 - - - - - -
GCN-LSTM 80.5 38.2 28.5 58.3 127.6 22.0 80.9 38.3 28.6 58.5 128.7 22.1
AoANet 80.2 38.9 29.2 58.8 129.8 22.4 81.6 40.2 29.3 59.4 132.0 22.8
X-LAN 80.8 39.5 29.5 59.2 132.0 23.4 81.6 40.3 29.8 59.6 133.7 23.6

CNN-Transformer based models
ORT 80.5 38.6 28.7 58.4 128.3 22.6 - - - - - -
X-Transformer 80.9 39.7 29.5 59.1 132.8 23.4 81.7 40.7 29.9 59.7 135.3 23.8
M2 Transformer 80.8 39.1 29.2 58.6 131.2 22.6 82.0 40.5 29.7 59.5 134.5 23.5
RSTNet 81.8 40.1 29.8 59.5 135.6 23.3 - - - - - -
GET 81.5 39.5 29.3 58.9 131.6 22.8 82.1 40.6 29.8 59.6 135.1 23.8
DLCT 81.4 39.8 29.5 59.1 133.8 23.0 82.2 40.8 29.9 59.8 137.5 23.3
PureT 82.1 40.9 30.2 60.1 138.2 24.2 83.4 42.1 30.4 60.8 141.0 24.3

Table 1: Offline evaluation results of our proposed model and other existing state-of-the-art models on MSCOCO “Karpathy”
test split, where B-N , M, R, C and S denote BLEU-N , METEOR, ROUGE-L, CIDEr and SPICE respectively.

can be formulated as follows:

X̂ l
t−1 = LayerNorm

(
X̃ l
t−1 + MSA

(
W c,l
Q X̃ l

t−1,

W c,l
K V NG ,W c,l

V V NG

))
(15)

X l
t−1 = LayerNorm(X̂ l

t−1 + FeedForward(X̂ l
t−1)) (16)

where W c,l
Q ,W c,l

K ,W c,l
V ∈ RD×D are learnt parameters,

X̃ l
t−1 from the Language Masked MSA Module is fed into

MSA as query, and refined grid features V NG from the last
block of encoder are fed into MSA as keys and values.

Word Generation Module Given the outputXN
1:t−1 of the

last decoder block, the conditional distribution over the vo-
cablary Σ is given by:

p(xt|x1:t−1) = Softmax(WxX
N
t−1) (17)

where Wx ∈ R|Σ|×D is learnt parameters.

Objective Functions
We first optimize our model by applying cross entropy (XE)
loss as the objective function:

LXE(θ) = −
T∑
t=1

log(pθ(y
∗
t |y∗1:t−1)) (18)

where y∗1:T is the target ground truth sequence, and θ denotes
the parameters of our model. Then, we adopt self-critical se-
quence training (SCST) strategy (Rennie et al. 2017) to opti-
mize CIDEr (Vedantam, Zitnick, and Parikh 2015) metrics:

LR(θ) = −Ey1:T∼pθ [r(y1:T )] (19)

where r(·) is the score of CIDEr. The gradient of LR can be
approximated as follows:

∇θLR(θ) ≈ − (r(ys1:T )− r(ŷ1:T ))∇θ log pθ(y
s
1:T ) (20)

where ys1:T is a sampled caption and r(ŷs1:T ) defines the
greedily decoded score obtained from the current model.

Experiments
Dataset and Evaluation Metrics
We conduct experiments on the MSCOCO 2014 dataset (Lin
et al. 2014), which contains 123287 images (82783 for train-
ing and 40504 for validation), and each is annotated with 5
reference captions. In this paper, we follow the “Karpathy”
split (Karpathy and Fei-Fei 2017) to redivide the MSCOCO,
where 113287 images for training, 5000 images for val-
idation and 5000 images for offline evaluation. Besides,
MSCOCO also provides 40775 images for online testing.
For the training process, we convert all training captions to
lower case and drop the words occur less than 6 times, col-
lect the rest 9487 words as our vocabulary Σ.

For fair evaluation, we adopt five widely used metrics
to evaluate the quality of generated captions, including
BLEU (Papineni et al. 2002), METEOR (Lavie and Agar-
wal 2007), ROUGE-L (Lin 2004), CIDEr (Vedantam, Zit-
nick, and Parikh 2015), and SPICE (Anderson et al. 2016).

Experimental Settings
We set the model embedding size D to 512, the number of
transformer heads to 8, the number of blocks N for both
refining encoder and decoder to 3. For the training process,
we first train our model under XE loss LXE for 20 epochs,
and set the batch size to 10 and warmup steps to 10,000; then
we train our model under LR for another 30 epochs with
fixed learning rate of 5 × 10−6. We adopt Adam (Kingma
and Ba 2015) optimizer in both above stages and the beam
size is set to 5 in validation and evaluation process.

Comparisons with State-of-The-Art Models
Offline Evaluation Table 1 reports the performances of
some existing state-of-the-art models and our proposed
model on MSCOCO offline test split. The compared mod-
els include: SCST (Rennie et al. 2017), RFNet (Jiang et al.
2018), Up-Down (Anderson et al. 2018), GCN-LSTM (Yao
et al. 2018), AoANet (Huang et al. 2019) and X-LAN (Pan
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Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40
SCST 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7
GCN-LSTM 80.8 95.2 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5
Up-Down 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
SGAE 81.0 95.3 65.6 89.5 50.7 80.4 38.5 69.7 28.2 37.2 58.6 73.6 123.8 126.5
AoANet 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6
X-Transformer 81.9 95.7 66.9 90.5 52.4 82.5 40.3 72.4 29.6 39.2 59.5 75.0 131.1 133.5
M2 Transformer 81.6 96.0 66.4 90.8 51.8 82.7 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1
RSTNet 82.1 96.4 67.0 91.3 52.2 83.0 40.0 73.1 29.6 39.1 59.5 74.6 131.9 134.0
GET 81.6 96.1 66.5 90.9 51.9 82.8 39.7 72.9 29.4 38.8 59.1 74.4 130.3 132.5
DLCT 82.4 96.6 67.4 91.7 52.8 83.8 40.6 74.0 29.8 39.6 59.8 75.3 133.3 135.4
PureT 82.8 96.5 68.1 91.8 53.6 83.9 41.4 74.1 30.1 39.9 60.4 75.9 136.0 138.3

Table 2: Online evaluation results of our proposed model and other existing state-of-the-art models on MSCOCO.

et al. 2020); ORT (Herdade et al. 2019), X-Transformer (Pan
et al. 2020), M2 Transformer (Cornia et al. 2020), RST-
Net(Zhang et al. 2021), GET (Ji et al. 2021) and DLCT (Luo
et al. 2021). We divide these models into CNN-LSTM based
models and CNN-Transformer based models according to
the difference mothods adopted in decoder.

For fair comparisons, we report the results of a single
model and ensemble of 4 models after SCST training. As
shown in Table 1, both our single model and ensemble of
4 models achieve best performances in all metrics. In the
case of single model, the CIDEr score of our model reaches
138.2%, which achieves advancements of 2.6% and 4.4% to
the strong competitors RSTNet and DLCT. Meanwhile, our
model achieves improvements of over 0.6% to RSTNet, and
improvements of over 1.0% to DLCT in terms of metrics
BLEU-4, ROUGE-L and SPICE. In the case of ensemble
model, our model also achieves the best performance, and
advances all other models by more than 1.0% over all met-
rics except METEOR. In particular, the CIDEr score of our
ensemble model reaches 141.0%, which achieves advance-
ments of 3.5% and 5.9% to DLCT and GET.

In general, the significant improvements of all metrics (es-
pecially CIDEr) demonstrate the advantage of our proposed
model. In addition, compared to models that use region-level
features or both region and grid-level features, our model
has a relatively more balanced computational cost due to it
avoids the prediction of object regions coordinates. And our
model can be trained end-to-end, which allows us to explore
it in more actual scenes.

Online Evaluation As shown in Table 2, we also report
the performance with 5 reference captions (c5) and 40 refer-
ence captions (c40) of our model on the MSCOCO official
online test server. Compared to the other state-of-the-arts,
our model achieves the best scores in all metrics except a
slightly lower 0.1% in BLEU-1 (c40) than DLCT. Notably,
the scores of CIDEr (c5) and CIDEr (c40) of our model
reach 136.0% and 138.3%, which achieve advancements of
2.7% and 2.9% with respect to the best performer DLCT.

Ablation Study
We conduct several ablation studies to quantify the influ-
ences of different modules in our model.

GT1: a giraffe stands with several birds resting on it's neck
GT2: a giraffe that has some birds perched on it
GT3: this is a close up picture of a giraffe that is standing.
        : a close up of a giraffe with a bird
Transformer: a giraffe standing with a group of birds on it
PureT: a close up of a giraffe with birds on its neck

GT1: a man talking on a cell phone on a boat with a city in 
          the background
GT2: a man is on a boat using his cell phone
GT3: a man is standing by the water and talking on the phone
        : a man talking on a cell phone next to the water
Transformer: a man talking on a cell phone on a boat
PureT: a man talking on a cell phone on a boat in the water

GT1: a gray day at a park with a stone bench
GT2: a sidewalk sitting near a green next to a body of water
GT3: a tree that is sitting in the grass
        : a bench on the side of a dirt road
Transformer: a park bench sitting next to a body of water
PureT: a stone bench sitting next to a tree in a park

GT1: a person sits on top of a motorcycle with a stuffed toy
GT2: a person riding a motorcycle with a stuffed animal on 
          the back
GT3: a person on a motorcycle with a stuffed animal on back
        : a man riding a motorcycle on a street
Transformer: a man sitting on a motorcycle with a teddy bear
PureT: a man riding a motorcycle with a stuffed animal on it

2

2

2

2

Figure 3: Examples of captions generated by standard Trans-
former,M2 Transformer and our PureT with ground-truths.

Influence of W-MSA and SW-MSA For quantifying the
influence of W-MSA and SW-MSA in our Refining Encoder,
we ablate our model with different configurations of window
size ws and shift size ss as shown in Table 3. The number
of refining encoder and decoder blocks is set to 3. Note that
the input VG ∈ Rm×D of Refining Encoder has a size of
m= 12× 12 in this paper. The W-MSA and SW-MSA de-
generate into MSA when ws= 12 and SW-MSA into W-
MSA when ss= 0. It can be seen that the model with only
MSA (ws= 12, ss= 0) performs better than the model with
only W-MSA (ws= 6, ss= 0) because W-MSA lacks con-
nections across windows. However, the model combining
W-MSA and SW-MSA (ws= 6, ss= 3) can improve the
performance of both models above in all metrics.

Influence of Pre-Fusion module To demonstrate the ef-
fectiveness of the Pre-Fusion module in our Decoder, we
remove the Pre-Fusion module from our PureT model and
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groupa of zebras grazing in a

field with a rainbow in the sky <eos>

Figure 4: Visualization of attention heatmap on image along caption generation process. For each generated word, we show the
image with different brigtness to represent the difference of attention weights.

ws ss B-1 B-4 M R C S
12 0 82.0 40.3 29.9 59.9 137.5 23.8

6 0 81.8 40.1 29.9 59.7 136.8 23.8
6 3 82.1 40.9 30.2 60.1 138.2 24.2

Table 3: Performance comparison of different configuration
of window size ws and shift size ss.

Models B-1 B-4 M R C S
Transformer 81.6 39.8 29.9 59.6 136.4 23.8
Transformer

+ p-f. 82.0 40.3 29.9 59.9 137.5 23.8

PureT (w/o p-f.) 81.8 40.3 30.0 59.9 137.9 24.0
PureT 82.1 40.9 30.2 60.1 138.2 24.2

Table 4: Performance comparison with / without Pre-Fusion
for standard Transformer and our proposed PureT.

compare it with the full model as shown in rows 4 and 5 of
Table 4. It can be seen that the Pre-Fusion module improves
the performance in all metrics. Furthermore, we construct
the standard Transformer (3 blocks of encoder/decoder) as
the baseline model, which reaches an excellent performance
as shown in row 1 in Table 4. Then we extend the baseline
model by adding the Pre-Fusion module (equivalent to the
model in row 1 of Table 3), which also has a better perfor-
mance in all metrics.

Influence of the number of stacked blocks We also con-
duct several experiments to evaluate the influence of the
number of the Refining Encoder and Decoder blocks. As
shown in Table 5, models with more than 2 blocks have a
significant improvement (more than 2.0%) in CIDEr score
compare to the model with 1 block. Note that the model
with 4 blocks has a significant advantage in BLEU scores
to other models, but considering the increase of model pa-
rameters and the sufficiently excellent performance of the
model with 3 blocks, we set the number of blocks N to 3
as the final configuration. Remarkably, the model with only
1 block also has a better performance in comparison to ear-
lier state-of-the-art works (e.g. RSTNet, GET and DLCT)
in Table 1, which further indicates the effectiveness of our
model.

Layer B-1 B-4 M R C S
1 81.8 40.2 29.7 59.5 135.8 23.5
2 81.8 40.5 30.0 59.9 138.2 23.9
3 82.1 40.9 30.2 60.1 138.2 24.2
4 82.7 41.1 30.0 60.1 138.2 24.0

Table 5: Performance comparison of different number of Re-
fining Encoder and Decoder blocks.

Influence of different backbone To quantify the influ-
ence of different features extracted by different backbone
models, we adopt different image captioning models, as
baseline models and ablate them with different configura-
tions of backbone models as shown in Table 6. The base-
line models include:M2 Transformer (Cornia et al. 2020),
X-Transformer (Pan et al. 2020) and standard Transformer
(Vaswani et al. 2017). The backbone models include: Faster
R-CNN (Ren et al. 2017) in conjunction with ResNet-101,
which is adopted in (Anderson et al. 2018); Faster R-CNN in
conjunction with ResNeXt-101, which is adopted in (Jiang
et al. 2020); ViT (Dosovitskiy et al. 2021) and SwinTrans-
former (Liu et al. 2021).

As we can see, grid features extracted by SwinTrans-
former can achieve significant performance improvement
compared with region features extracted by ResNet-101 and
grid features extracted by ResNeXt-101 and ViT.

In terms of M2 Transformer and X-Transformer, the
backbone models of ResNet-101 and ResNeXt-101 have
similar performance. The backbone model of SwinTrans-
former comprehensively improves scores of all metrics,
which boosts the CIDEr score more than 3.7% inM2 Trans-
former especially. Note that the backbone model with N =
3 has a better performance than N = 6 in X-Transformer,
which indicates the superiority of SwinTransformer in im-
age captioning and allows us to explore more tiny and ef-
ficient models and apply it in more actual scenes. In terms
of standard Transformer, the backbone model of SwinTrans-
former reaches an excellent performance and is even better
thanM2 Transformer and X-Transformer in scores of ME-
TEOR, CIDEr and SPICE. In terms of our PureT, the back-
bone of SwinTransformer also achieves a better performance
than ResNeXt-101.

In general, in our extensive experiments, we find that the
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Baseline Models Backbone Feat. Type Feat. Size N B-1 B-2 B-3 B-4 M R C S

M2 Transformer
ResNet-101 Region (10−100) 3† 80.8 - - 39.1 29.2 58.6 131.2 22.6
ResNeXt-101 Grid 7× 7 3‡ 80.8 - - 38.9 29.1 58.5 131.7 22.6
SwinTransformer Grid 12× 12 3 81.8 66.8 52.6 40.5 29.6 59.9 135.4 23.3

X-Transformer

ResNet-101 Region (10−100) 6† 80.9 65.8 51.5 39.7 29.5 59.1 132.8 23.4
ResNeXt-101 Grid 7× 7 6‡ 81.0 - - 39.7 29.4 58.9 132.5 23.1
SwinTransformer Grid 12× 12 6 81.4 66.3 52.0 39.9 29.5 59.5 133.7 23.4
SwinTransformer Grid 12× 12 3 81.9 66.7 52.3 40.1 29.6 59.6 134.8 23.4

standard
Transformer

ResNet-101 Region (10−100) 3 80.0 64.9 50.5 38.7 29.0 58.6 130.1 22.9
ResNeXt-101 Grid 7× 7 3‡ 81.2 - - 39.0 29.2 58.9 131.7 22.6
ResNeXt-101 Grid 12× 12 3 80.8 65.8 51.4 39.4 29.4 59.2 132.8 23.2
SwinTransformer Grid 12× 12 3 81.6 66.5 52.0 39.8 29.9 59.6 136.4 23.8

PureT ResNeXt-101 Grid 12× 12 3 80.7 65.9 51.7 39.9 29.2 59.1 131.8 23.0
ViT Grid 12× 12 3 81.6 66.6 52.3 40.3 29.7 59.5 135.2 23.6
SwinTransformer Grid 12× 12 3 82.1 67.3 52.0 40.9 30.2 60.1 138.2 24.2

Table 6: Performance comparison of different configuration of backbone models. ResNet-101 and ResNeXt-101 indicate Faster
R-CNN in conjunction with them respectively. Region features extracted by ResNet-101 have adaptive size of 10 to 100. Grid
features extracted by ResNeXt-101 can be extracted in the size of 12 × 12 or 7 × 7 by average pooling as need. Grid features
(SwinTransformer) are extracted in the size of 12 × 12. N denotes the number of encoder and decoder blocks, superscript †
indicates that the results are from the respectively official paper and ‡ indicates that the results are from (Luo et al. 2021), and
other results come from our experiments.

Ref. Enc. B-1 B-4 M R C S
w/o 81.5 39.5 29.3 59.2 134.3 23.0
M2 81.9 40.2 29.6 59.7 135.9 23.7
X 81.7 40.0 29.7 59.5 135.5 23.5

PureT 82.1 40.9 30.2 60.1 138.2 24.2

Table 7: Performance comparison of different Refining En-
coder. w/o indicates deleting Refining Encoder,M2 and X
indicate replacing Refining Encoder with encoders of M2

Transformer and X-Transformer respectively.

backbone models of CNN (e.g. Faster RCNN in conjunction
with ResNet-101 or ResNeXt-101) are more suitable for us-
ing LSTM or Transformer with non-standard MSA (e.g. X-
Transformer) as decoder, and the backbone of SwinTrans-
former is more suitable for using Transformer with standard
MSA (e.g.M2 Transformer, standard Transformer and our
PureT) as decoder. Therefore, we intend to explore a lighter
and simpler Transformer-based model in our future work.

Influence of different Refining Encoder To further quan-
tify the influence of Refining Encoder, we ablate the Refin-
ing Encoder by different configurations as shown in Table 7.
We delete the Refining Encoder to confirm whether the Re-
fining Encoder is a necessary module, and replace our pro-
posed Refining Encoder with encoders ofM2 Transformer
and X-Transformer to verify the advantages of our Refin-
ing Encoder. As we can see, deleting Refining Encoder can
also achieve good performance, which is better than most
existing SOTAs in Table 1. But our proposed Refining En-
coder or other encoders bring significant performance gain
than deleting Refining Encoder, which denotes the impor-
tance of Refining Encoder. Our proposed Refining Encoder
brings the maximum gain and achieves the best performance
than other, which denotes that the effectiveness and advan-

tages of our proposed Refining Encoder.

Visualization Analysis
Figure 3 proposes some example image captions generated
byM2 Transformer (official model), standard Transformer
and our PureT. Note thatM2 Transformer adopts Faster R-
CNN, standard Transformer and PureT adopt SwinTrans-
former as the encoder. Generally, our PureT is able to catch
additional fine-grained information and generate more accu-
rate and descriptive captions.

To qualitatively evaluate the effect of our PureT, we give
the visualization of attention heatmap on the image along
caption generation process in Figure 4. It can be observed
that our model can attend to correct areas when generating
words. When generating nominal words, such as “zebras”,
“rainbow”, “field” and “sky”, the attention heatmap is cor-
rectly transformed into the body area of the corresponding
objects. In addition, our model focuses on the nearby areas
of zebra heads when generating “grazing”, which correctly
captures the semantic information and confirms the advan-
tages of our model.

Conclusion
In this paper, we propose a pure Transformer-based model,
which adopts SwinTransformer as the backbone encoder and
can be trained end-to-end from image to descriptions eas-
ily. Furthermore, we construct a refining encoder to refine
both image grid features and global feature with the mutual
guidance between them, which realizes the complementary
advantages between local and global attention. We also fuse
the refined global feature with previously generated words in
the decoder to enhance the multi-modal interaction, which
further improves the modeling capability. Experimental re-
sults on MSCOCO dataset demonstrate that our proposed
model achieves a new state-of-the-art performance.
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