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Abstract
3D facial landmark detection is extensively used in many re-
search fields such as face registration, facial shape analysis,
and face recognition. Most existing methods involve tradi-
tional features and 3D face models for the detection of land-
marks, and their performances are limited by the hand-crafted
intermediate process. In this paper, we propose a novel 3D
facial landmark detection method, which directly locates the
coordinates of landmarks from 3D point cloud with a well-
customized graph convolutional network. The graph convolu-
tional network learns geometric features adaptively for 3D fa-
cial landmark detection with the assistance of constructed 3D
heatmaps, which are Gaussian functions of distances to each
landmark on a 3D face. On this basis, we further develop a
local surface unfolding and registration module to predict 3D
landmarks from the heatmaps. The proposed method forms
the first baseline of deep point cloud learning method for 3D
facial landmark detection. We demonstrate experimentally
that the proposed method exceeds the existing approaches by
a clear margin on BU-3DFE and FRGC datasets for landmark
localization accuracy and stability, and also achieves high-
precision results on a recent large-scale dataset.

Introduction
Facial landmark detection aims to localize feature points on
2D images or videos with anatomical significance, such as
the nose tip, the eye corner, and the pupils. It is also referred
as 2D face alignment, which is fundamental to various face-
related applications such as face recognition (Taigman et al.
2014), expression analysis (Yang, Ciftci, and Yin 2018),
face animation (Cao et al. 2013), and 3D face reconstruc-
tion (Blanz and Vetter 1999; Liu et al. 2018a). 2D face align-
ment has experienced rapid development over the past few
decades, which can be traced back to the traditional hand-
crafted feature (Baker and Matthews 2004; Zhu and Ra-
manan 2012; Cao et al. 2014) and active-shape-based regres-
sion methods (Cootes, Edwards, and Taylor 2001; Xiong and
De la Torre 2013; Zhu et al. 2015). The recent progress in
convolutional neural networks (CNNs) has pushed the pre-
cision of 2D face alignment to a new milestone.

The CNNs-based studies can be mainly divided into
coordinate-based methods (Miao et al. 2018; Liu et al.
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2018b; Deng et al. 2020) and heatmap-based methods (Bu-
lat and Tzimiropoulos 2017; Wang, Bo, and Fuxin 2019;
Wang et al. 2020). The coordinate-based methods regress
the coordinates of landmarks directly with CNNs. However,
regressing coordinates directly from 2D images is a highly
nonlinear process due to the discrete locations of landmarks,
which reduces the generalization ability of the methods. The
heatmap-based methods predict the probability instead of
the location of each landmark on the image plane, and allow
the network to be fully convolutional. Since the heatmap-
based methods make full use of the continuity of heatmaps
and capture the correlation between landmarks effectively,
they achieve better robustness and performance over the
coordinate-based methods in practice.

2D face alignment has achieved significant progress in
the literature but still encounters some bottlenecks for com-
plex scenarios such as extreme illumination and head pose.
Meanwhile, 3D face alignment (Fan et al. 2016; Zhang et al.
2020) that locates the feature points on 3D images recently
raises increasing attention by computer vision communities
due to its robustness to illumination and pose variations. The
current development of commercial 3D sensors and data ac-
quisition technologies seeks for urgent real-life applications.
Like the 2D case, 3D face alignment is also fundamental
to many downstream 3D face applications, such as 3D face
recognition (Soltanpour, Boufama, and Wu 2017), 3D face
animation (Zollhöfer et al. 2018), and statistical 3D face
modeling (Galteri et al. 2019). 3D facial data include ad-
ditional geometry information compared with 2D images,
which is more tolerant of makeup, expression, and age. In
this paper, we denote 3D face alignment as landmark detec-
tion on 3D facial data, which differs from the current litera-
ture using a 3D face model to align 2D face (Gou et al. 2016;
Feng et al. 2018a; Guo et al. 2020).

3D face alignment is a challenging task for two main
reasons. Firstly, there is no feasible and effective network
for the learning of 3D landmarks. The well-known CNNs
are intrinsically designed on regular grid data such as the
2D image. However, 3D facial data such as point clouds
are composed of unordered vertices, which hinders the di-
rect application of the state-of-the-art CNN backbone on 3D
face alignment. Secondly, there is a lack of effective post-
processing strategies to convert deep features to 3D land-
mark coordinates. Regressing coordinates directly from 3D
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point cloud is even more difficult than the 2D case, since it
contradicts with the translation-invariant property of convo-
lutional networks (Liu et al. 2018c).

In this work, for the first obstacle, we employ Graph
Convolution Networks (GCNs) as backbones to process
the 3D facial point cloud under the natural advantages of
GCNs (Kipf and Welling 2017) on modeling irregular for-
mat of data. We can learn the geometric features adaptively
from the 3D points in this way. Correspondingly, we incor-
porate 3D heatmaps for ease of training GCN for 3D face
alignment. Given the second difficulty, we develop a post-
processing method based on local surface unfolding and reg-
istration to output 3D coordinates of landmarks. The main
contributions of our work are summarized as follows:

• We construct a novel framework to learn the landmark
coordinates from 3D point clouds by means of 3D
heatmaps. To the best of our knowledge, it is the first
deep point cloud learning framework for 3D face align-
ment.

• We propose a novel 3D heatmap post-processing method
for 3D face alignment with local surface unfolding and
registration, which effectively generalizes 2D heatmap
post-processing methods for 2D face alignment.

• Our proposed method achieves the state-of-the-art per-
formance on public and representative 3D face datasets,
and suppresses the existing methods by a clear margin.

Related Work
Our proposed 3D face alignment method is closely related
to deep point cloud learning, heatmap in 2D face alignment,
and 3D face alignment.

Deep Point Cloud Learning
Due to the irregular structure of point cloud data, the existing
deep point cloud learning works design various schemes to
imitate the convolution and pooling operations in 2D CNNs.
PointNet (Qi et al. 2017a) as a pioneer of deep point cloud
learning, and its effective variant (Qi et al. 2017b) use multi-
layer perception (MLP) and global aggregation to replace
2D convolution and pooling. In a departure from PointNet,
PointConv (Wu, Qi, and Fuxin 2019) considers the convolu-
tion kernels as nonlinear functions of 3D local coordinates
composed of weight and inverse density coefficients. KP-
Conv (Thomas et al. 2019) generates convolution kernels
by combining some pre-defined kernels with specific rules.
However, these methods commonly have high complexity
(memory and computation burden) for learning.

The recent state-of-the-art works commonly use GCN for
point cloud learning because of its advantage in modeling
the neighboring information for irregular data. For exam-
ple, ECC (Simonovsky and Komodakis 2017) proposes a dy-
namic graph edge convolution method for point cloud learn-
ing. DGCNN (Wang et al. 2019b) employs an EdgeConv
module for local feature extraction on a dynamic graph for
point cloud through renewing the neighboring relationship
at each feature layer. Liu et al. (Liu et al. 2019) propose
a dynamic aggregation module (DPAM) to simplify point
agglomeration (sampling, grouping, and pooling). Recently,

Xu et al. (Xu et al. 2021) propose a position adaptive graph
convolution module (PAConv), which constructs the convo-
lution kernels dynamically from position information.

The current GCNs work well for several tasks, such as
3D shape analysis, and object detection. However, applying
GCN to 3D face alignment has not been studied thoroughly
yet. In this work, we generalize the GCN backbone to the
3D face alignment task with constructed 3D heatmaps.

Heatmap in 2D Face Alignment
The current state-of-the-art deep-learning-based meth-
ods (Tang et al. 2019; Huang et al. 2020) commonly em-
ploy heatmap regression strategies for 2D face alignment.
The heatmap is constructed with a Gaussian function with
a small variance (commonly 2-3 pixels) of the distance to
each landmark. Some early methods (Newell, Yang, and
Deng 2016; Bulat and Tzimiropoulos 2017) employ the L1,
L2, or smooth L1 loss function for training. More recently,
Wang et al. (Wang, Bo, and Fuxin 2019) propose an adaptive
Wing (AWing) loss, which is suitable for heatmap regression
by adaptively adjusting the importance of foreground and
background pixels in training. For heatmap post-processing
methods, the coordinates of landmarks are estimated by ei-
ther the argmax method (Wu et al. 2018) or the soft-argmax
method (Honari et al. 2018).

In our proposed 3D face alignment framework, we mi-
grate the Gaussian heatmap and Awing loss function from
2D to 3D. We also propose an effective post-processing
method with local surface unfolding and registration to ac-
curately estimate the coordinates of the 3D landmarks.

3D Face Alignment
Most works on 3D face alignment belong to traditional
methods, which involve geometric features or 3D face mod-
els for landmark detection. For example, Segundo et al. (Se-
gundo et al. 2010) combine surface curvatures and depth
relief curves for landmark detection. Perakis et al. (Per-
akis et al. 2012) propose a facial analytical model to ex-
tract candidate landmarks with shape index and spin image,
which improves robustness for faces with large expression
and pose. Gilani et al. (Gilani, Shafait, and Mian 2015) pro-
pose a shape-based algorithm for dense facial landmark de-
tection, which evolves level set curves with adaptive geo-
metric functions to extract seed points for dense correspon-
dence. Fan et al. (Fan et al. 2016) propose a novel method
by mapping a 3D face model and corresponding texture to
a 2D image plane. Križaj et al. (Križaj et al. 2018) propose
a landmark detection algorithm by combining SIFT feature
and grid function. These traditional methods are commonly
effective for detecting landmarks with distinctive features
under frontal views. However, their accuracy is commonly
limited by hand-crafted features or tailored 3D face models.

Some recent works (Paulsen et al. 2018; Zhang et al.
2020) project 3D shape to 2D plane under multiple direc-
tions and employ 2D CNN to regress the landmarks. The
accuracy of these methods commonly outperform the tra-
ditional ones. However, the projection between 2D and 3D
points and the ensemble of 2D landmarks in multiple direc-
tions may introduce intrinsic numeric errors. Therefore, we
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Figure 1: (a) The overall framework of our model; (b) The PAConv module; (c) Landmark prediction module.

consider them as indirect 2D deep learning methods, and
their performance is still limited.

Different from the current works for 3D face alignment,
we propose a novel framework to learn geometric features
directly with GCN. Our method takes 3D heatmaps as inter-
mediate representations and boosts the accuracy notably.

Method
In this section, we first review the general pipelines for deep
point cloud learning, including the convolution-aggregation
operation and the resampling of point cloud. Then, we de-
scribe the 3D heatmap construction, architecture of GCN,
and training loss function tailored for 3D face alignment.
Finally, we illustrate a post-processing algorithm to obtain
landmark coordinate from the 3D heatmaps.

Point Cloud Deep Learning with GCN
Given a point cloud P = {pi | i = 1, ..., n} ∈ Rn×3,
we denote F = {fi | i = 1, ..., n} ∈ Rn×Cin and G =
{gi | i = 1, ..., n} ∈ Rn×Cout as the input and output
features of a graph convolution layer, respectively. The
convolution-aggregation on a graph can be formulated as

gi = π ({K (pi, pj) · fj | j ∈ Ni}) , (1)

where π(.) is the aggregation function and K(.) outputs
the convolutional weights according to the neighboring re-
lationship between the central node pi and its neighboring
nodes pj(j ∈ Ni). The weights for a GCN are calculated
dynamically according to the relative position between the
central node and its k neighboring nodes in some state-of-
the-art networks (Simonovsky and Komodakis 2017; Wang

et al. 2019b). A cascade of several (commonly 3 to 5)
convolution-aggression layers, which are not as deeper than
the CNNs because of over-smoothing (Alon and Yahav
2020), formulates the trunk of the whole GCN.

The GCN commonly involves resampled point cloud as
the input. In this work, we use the farthest point sampling
(FPS) method (Eldar et al. 1997) to resample the point cloud
to a fixed number of n points. FPS guarantees uniform spac-
ing of each point as a standard method for processing the
input of GCN. The output for GCN is usually a probabil-
ity vector for different classes in the classification task and
a tensor with 3D binary features for the segmentation task.
In a departure from that, the output of our GCN model for
3D face alignment is a tensor composed of multiple 3D
heatmaps for landmarks.

3D Heatmap Construction
The construction of a 3D heatmap, which is a generaliza-
tion of the 2D heatmap in the recent state-of-the-art 2D face
alignment works (Feng et al. 2018b; Wang, Bo, and Fuxin
2019; Kumar et al. 2020), is described as follows.

Let n be the number of points in each resampled point
cloud, and let l be the number of landmarks for 3D face
alignment. On each resampled facial point cloud, we cal-
culate the Euclidean distance between each point and each
specific landmark to obtain a distance matrix D ∈ Rn×l.
Similar to the heatmap construction pipeline in the recent
works for 2D face alignment, we use the Gaussian function
to encode the distance matrix to obtain a normalized distance
matrix as the 3D heatmap

H = exp

(
−D2

2σ2

)
, (2)
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where σ is a hyper-parameter for the width of the heatmap.
The 3D heatmap reaches the climax at each landmark loca-
tion and decreases with the distance to each landmark. In
fact, the 3D heatmap represents the probability of each land-
mark in each location. It can also be considered as a “soft
segmentation label”, which differs from the binary segmen-
tation label in the general segmentation task (Qi et al. 2017a;
Wang et al. 2019a,b). The soft segmentation enables the net-
work to learn the local geometric features on a face from the
neighboring points around each landmark robustly.

Network Architecture
We employ the PAConv (Xu et al. 2021) as one of the ba-
sic building blocks for feature extraction of landmarks. PA-
Conv (Fig. 1(b)) is plug-and-play and position-correlated
adaptive convolution module. The key element of PAConv,
as an improvement of DGCNN (Wang et al. 2019b) and
ScoreNet (Xu et al. 2021), is a weight bank module com-
posed of some weighting matrices, which enables the net-
work to learn a coefficient vector from point positions for
self-attention adaptively. In this way, the PAConv can learn
the local structure information hidden in the positions of
neighboring points, which is directly associated with our
task for 3D face alignment. In addition, We include a spa-
tial transformer net (Qi et al. 2017a) in our model to adap-
tively learn an affine transformation applied to the input
point clouds for better generalization. Figure 1(a) shows the
overall network architecture.

Loss Function
We take the adaptive wing loss (AWing) (Wang, Bo, and
Fuxin 2019) as the loss function in the training stage, which
is an effective variant of Wing loss (Feng et al. 2018b) and
is particularly suitable for heatmap regression for face align-
ment. It alleviates the small gradient problem with a piece-
wise analytical function and adjusts the importance of fore-
ground and background pixels in the training process. The
AWing loss is formulated as

LAWing(h, ĥ) =

 ω ln

(
1 +

∣∣∣h−ĥ
ε

∣∣∣α−h
)
, |h− ĥ| < θ

A|y − ĥ| − Ω, |h− ĥ| ≥ θ

,

(3)
where h and ĥ are the ground truth heatmap and the pre-
dicted heatmap, respectively. α, ϵ, θ, ω, A, and Ω are some
hyper-parameters that control the shape of the loss function
and satisfy

A = ω(α− h)

(
θ

ε

)α−h−1

/

((
1 +

θ

ε

)α−h
)
/ε (4)

and
Ω = θA− ωl ln

(
1 + (θ/ε)α−h

)
. (5)

In this work, we use the default setting of these parameters
as in the work (Wang, Bo, and Fuxin 2019).

Coordinate Prediction from 3D Heatmaps
In the current heatmap-based 2D face alignment method,
a common way to obtain the landmark position from 2D

heatmap is soft-argmax method, which is an effective vari-
ant of argmax method. The soft-argmax method reduces the
sensitivity to noisy predictions of heatmaps by an ensemble
of multiple locations, which differs from the argmax method
by a single location of maximum heatmap value. In the 2D
case, the soft-argmax operation is formulated as:

Smax(H) =
∑
x,y

softmax (βHx,y) · (x, y)

=
∑
x,y

eβHx,y∑
x,y e

βHx,y
· (x, y),

(6)

where Hx,y is the predicted heatmap (probability) at loca-
tion (x, y), and β is an annealing parameter. In discrete case
for 3D heatmap, the soft-argmax operation can be formu-
lated as:

Smax(H) =
∑
i∈Q

softmax (αHi) · pi

=
∑
i∈Q

eβHi∑
i∈Q eβHi

· pi,
(7)

where i (i = 1, 2, ..., r) are indices for the discrete point
subset Q ⊂ P with maximum heatmap values.

Unfortunately, the soft-argmax in Eq.7 is not suitable for
3D landmark prediction directly. The reason is two-fold: 1)
Contrary to the 2D image grid, point indices do not corre-
sponded to the locations of 3D point cloud; 2) The resulting
3D location as an ensemble of some 3D coordinates does not
necessarily lie on the facial surface, especially in areas with
large curvatures. To deal with these problems, we propose
an effective landmark prediction method from 3D heatmaps
based on local surface unfolding and registration.

Algorithm 1: Landmark Prediction from 3D Heatmaps

Input: 3D facial point cloud P ∈ Rn×3; 3D heatmap H ∈
Rn×l; the number of neighbors r for local unfolding.

Output: 3D landmark coordinates Z ∈ Rl×3.
1: for i = 1 : l do
2: Select a local patch Qi of r points with maximum

values on each 3D heatmap;
3: Compute the distance matrix E ∈ Rr×r for Qi;
4: Compute the weighted distance matrix Ew ∈ Rr×r

with the corresponding heatmap value by Eq. 8;
5: Apply MDS to Ew to acquire Q̃i as a dimension-

degraded version of Qi;
6: Compute the centroid u of Q̃i by Eq. 7;
7: Select a few nearest points (U ) around u in Q̃i, add

zeros to the third dimension, and register them to the
corresponding points in Qi by Eq. 9;

8: Set Zi = u after registration.
9: return Z

Local surface unfolding. We employ the multi-
dimensional scaling (MDS) method (Cox and Cox 2008) for
the local surface unfolding. MDS is a classical dimension
reduction method and minimizes the pairwise distances
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Figure 2: Some qualitative results by our method on (a) the BU-3DFE and FRGCv2 datasets, and (b) the FaceScape dataset.
The red and green dots represent the ground truth landmarks and the detected landmarks by our method, respectively. The
anatomical meanings of some landmarks for the BU-3DFE and FRGCv2 datasets are shown in the first column.

of all sampling data in a least-square sense. It involves
pairwise distance matrix construction, double centering, and
eigenvalue decomposition to obtain a dimension-degraded
version of the original data finally. We denote the distance
matrix as Er×r by selecting r points (which constitute a
local patch Q ⊂ P ) with maximum heatmap values, where
each element is the pairwise distance of two points in Q.
In this work, we make some modifications on Er×r on
the classical MDS method by multiplying a weight for
heatmaps, as

(Ew)r×r = Hr×r ⊙ Er×r. (8)
The purpose of weighting is to aggravate the locations with
large heatmaps (probabilities).

Local surface registration. After the unfolding of a local
patch is completed, we apply soft-argmax in Eq. 7 to obtain
the centroid u. Then, we select a few nearest neighboring
points around u, which constitute a set U , and register them
to the corresponding 3D points in Q by a scaled rigid trans-
form as
{s,R,T} = argmin

s∈R,R∈SO(3),T∈R3

∑
j∈U

∥sRUj + T −Qj∥22,

(9)
where s, R, and T denote the scaling factor, the rotation ma-
trix, and the translation, respectively. Eq. 9 can be solved by
singular value decomposition efficiently.

The detailed process is summarized in Algorithm 1 refer-
ring to Fig. 1(c). In this way, we can predict the landmarks
from 3D heatmaps on facial surfaces.

Experiments
In this part, we carry out the experiments on several pub-
licly available datasets, including BU-3DFE (Yin et al.
2006), FRGCv2 (Phillips et al. 2005), and FaceScape (Yang
et al. 2020) to demonstrate the effectiveness of the proposed
method.

Datasets and Implementation Details
BU-3DFE includes 2, 500 3D facial samples from 100 sub-
jects. Each subject is composed of 6 different expressions in

4 growing levels in addition to a neutral face. This dataset is
constructed by depth scans from 2 different directions. The
resolution is around 10,000 vertices per face. There are 83
annotated landmarks for each face, and we select 8 of them
for comparison with the existing works. FRGCv2 dataset in-
cludes 4, 007 3D facial samples from 466 subjects with nat-
ural expressions. Similar to BU-3DFE, we select 8 provided
landmarks by the work (Creusot, Pears, and Austin 2013)
compared to the existing literatures. FaceScape dataset is
a recently published large-scale 3D dataset and consists of
18, 760 3D faces from 938 subjects with 20 different ex-
pressions. The landmark locations are hidden in the topo-
logical uniform models provided by this dataset. We keep
all 68 landmarks for evaluation in the experiment.

Evaluation Criteria
We use the following evaluation metrics for 3D face align-
ment referring to some previous works (Fan et al. 2016;
Zhang et al. 2020).

Mean error (ME) evaluates the average Euclidean dis-
tance between the predicted and ground truth landmarks.

Success rate (SR) represents the proportion of success-
fully detected landmarks for which the ME is within a fixed
threshold. We set the threshold to 10mm following some
prior works for a fair comparison.

Standard deviation (Std) of the ME across all testing sam-
ples qualifies the robustness of a method.

Evaluation on BU-3DFE and FRGC Dataset
We compare our method with several representative prior
works for 3D facial landmark detection. Most of these works
belong to the traditional methods. As an exception, Zhang et.
al (Zhang et al. 2020) use 2D CNN to learn depth features
on projection planes along multiple directions.

First, we summarize the quantitative results in terms of
ME, SR, and Std for the BU-3DFE and FRGC dataset in Ta-
ble 1 and Table 2, respectively. The results also include the
performance in terms of ME and Std for each specific land-
mark, the anatomical meaning of which is marked in the
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(Segundo
et al. 2010)

(Gilani, Shafait,
and Mian 2015)

(Grewe and
Zachow 2016)

(Fan et al.
2016)

(Paulsen
et al. 2018)

(Zhang et al.
2020)

Ours

REIC 6.33± 5.04 3.29± 2.67 3.23± 1.86 − 1.80± 0.89 1.75± 1.49 1.58± 1.33
REOC − 4.35± 2.70 3.22± 2.18 − 2.85± 1.50 2.58± 1.72 2.06± 1.54
LEIC 6.33± 4.82 4.75± 2.64 3.04± 1.75 − 1.89± 0.98 1.82± 1.46 1.67± 1.37
LEOC − 4.43± 2.74 2.95± 1.93 − 2.59± 1.53 2.51± 1.79 2.24± 1.58
Sn − 3.90± 3.26 1.97± 1.06 − 2.52± 1.69 − 1.82± 1.44
MRC − 5.45± 3.12 − − 2.42± 1.44 2.60± 1.80 2.05± 1.51
MLC − 6.00± 3.94 − − 2.18± 1.44 2.65± 1.76 2.00± 1.58
Li − 6.90± 5.31 − − 2.50± 1.41 2.37± 1.81 2.33± 1.63

Mean 6.33± 4.93 4.88± 3.30 2.88± 1.76 4.66± 2.50 2.34± 1.36 2.32± 1.69 1.97± 1.50
SR − − − 93.52% − 99.54% 100.0%

Table 1: Comparisons of 8 individual landmarks in terms of ME ± Std and SR on the BU-3DFE datasets. The bold indicates
the best in each row.

(Segundo et al.
2010)

(Perakis et al.
2012)

(Gilani, Shafait,
and Mian 2015)

(Fan et al.
2016)

(Križaj et al.
2018)

(Zhang et al.
2020)

Ours

REIC 3.35± 2.33 4.15± 2.35 2.73± 2.14 1.33± 1.47 3.1± 3.8 2.81± 1.81 2.70± 1.69
REOC − 5.58± 3.33 3.74± 2.79 2.53± 1.62 3.6± 4.1 3.41± 2.13 3.20± 1.90
LEIC 3.69± 2.26 4.41± 2.49 3.12± 2.09 2.49± 1.67 3.1± 3.8 2.63± 1.73 2.49± 1.65
LEOC − 5.83± 3.42 4.50± 2.97 1.39± 1.84 3.6± 4.1 3.24± 1.93 3.15± 1.89
NT 2.73± 1.39 4.09± 2.41 2.68± 1.48 4.38± 2.90 3.6± 5.7 1.87± 1.30 1.30± 1.14
MRC − 5.56± 3.93 4.38± 2.08 3.85± 3.05 3.4± 3.4 3.02± 1.85 2.66± 1.65
MLC − 5.42± 3.84 5.31± 2.05 4.07± 3.36 3.4± 3.4 2.90± 1.85 2.76± 1.68
Ls − − 3.31± 2.65 − − − 2.06± 1.50

Mean 3.25± 1.99 5.00± 3.11 3.72± 2.28 2.86± 2.27 3.40± 4.04 2.84± 1.80 2.54± 1.64
SR − 97.85% − 97.30% 99.60% 99.58% 100.0%

Table 2: Comparisons of 8 individual landmarks in terms of ME ± Std and SR on the FRGCv2 datasets. The bold indicates the
best in each row.

Dataset BU-3DFE

Model
Metric

ME Std SR

PointNet++ (Qi et al. 2017b) 2.59 1.95 100.0%
DGCNN (Wang et al. 2019b) 2.08 1.55 100.0%
GACNet (Wang et al. 2019a) 2.37 1.85 100.0%
DeepGCN (Li et al. 2019) 2.62 1.57 100.0%
Bow Pool (Zhang 2021) 2.22 1.92 100.0%
Ours 1.97 1.50 100.0%

Table 3: Comparisons of ME, Std and SR with different
point cloud learning methods on the BU-3DFE dataset.

leftmost column of Fig. 2(a). We can see that our method
achieves considerable improvement for all the evaluation
metrics on all datasets. Specifically, our proposed method
achieves 15.1% and 10.6% improvements in terms of the
average ME on the BU-3DFE dataset and FRGCv2 dataset,
respectively. Among all the landmarks, the corners of the
mouth (“MRC” and “MLC”), the lower lip (Li), and the
upper lip (Ls) are challenging and easily affected by fa-
cial expressions as indicated by some prior works (Perakis
et al. 2012; Zhang et al. 2020). Nevertheless, our proposed

method achieves significant improvement over the existing
works on these landmarks, demonstrating its effectiveness.

Then, we show some qualitative results in Fig. 2(a). The
detected landmarks are almost indistinguishable from the
ground truth. Since we only use 3D shapes for landmark
detection, the visual differences to the ground truth (com-
monly labeled with both shapes and textures) are considered
reasonable. We owe the successful detection of landmarks to
effective learning of the geometric features of 3D face.

Evaluation on FaceScape
FaceScape is a recently published dataset on which we are
the first to report the landmark detection results. We con-
duct experiments on all 68 landmarks in order to obtain
a whole benchmark for future research. The ME and Std
scores by the proposed method reach 1.60 and 1.18, respec-
tively, with better quality for facial point cloud and sufficient
training data in this dataset. Some qualitative results in the
publishable list for this dataset are shown in Fig. 2(b).

Ablation Study
In this part, we evaluate the impact of two key compo-
nents of our proposed method: the validity of the customized
GCN network for feature (heatmap) extraction and the post-
processing method for landmark prediction from heatmaps.
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Dataset BU-3DFE FRGCv2

Method
Metric

ME Std SR ME Std SR

soft-argmax 2.61 5.87 97.86% 3.42 9.96 96.08%
argmax 2.26 1.61 100.0% 2.84 2.26 99.92%
Ours w/o weight 1.99 1.50 100.0% 2.59 1.77 99.92%
Ours w/ weight 1.97 1.50 100.0% 2.54 1.64 100.0%

Table 4: Comparisons between soft-argmax, argmax, and the proposed post-processing method for 3D landmark detection.

First, we compare the GCN structure in the proposed
method with some state-of-the-art networks on BU-3DFE
in Table 3. We replace the main feature extraction block
with the other networks, while modifying the last feature
layer to be compatible with the output heatmaps. The re-
sults show that the customized network in this work signifi-
cantly outperforms the baseline networks of DGCNN, GAC-
Net, PointNet, DeepGCN, and Bow Pool, demonstrating the
PAConv and spatial transformer modules are effective for
learning adaptive geometric features for 3D landmark de-
tection. In addition, we find that very deep GCN networks,
such as the DeepGCN, do not necessarily benefit the land-
mark detection task in this work.

Then, we compare the performance of the proposed post-
processing method with the common argmax and soft-
argmax methods as shown in Table 4. We set the hyper-
parameter β = 1000 in Eq. 6 and Eq. 7 for the soft-argmax
operation. Table 4 shows the comparative results, where
the proposed post-processing method gains the best perfor-
mance. Compared with the argmax method, we attribute
the improvement to less sensitivity to noise by an ensem-
ble of multiple coordinates. Compared with the soft-argmax
method, we use a local surface unfolding and registration
method to ensure the predicted landmark lying on the fa-
cial surface. In addition, the weighting strategy also gains
some improvement. It demonstrates the effectiveness of the
proposed post-processing method for the prediction of 3D
facial landmarks.

Hyper-Parameter Settings

In this part, we evaluate the influence of two hyper-
parameters for the proposed method. 1) We use k nearest
neighbors for the dynamic construction of the adjacent ma-
trix for GCN. 2) The post-processing of 3D heatmap in-
volves r vertices with maximum heatmap values.

Number of neighbors. Table 5 shows the result of using
different k on the detection results. In some prior works for
GCN, k should not be too large or too small. In this work,
we observe that our model achieves the best performance in
terms of ME when setting k to 30.

Number of regression points. We observe that larger r re-
duces the effectiveness of MDS for local surface unfolding,
while smaller r hinders the robustness of the soft-argmax
method. Table 6 shows the impact of different r in terms of
ME. We set r = 10 in our experiments.

k

ME Data
BU-3DFE FRGCv2

20 3.54 3.62
25 2.13 2.76
30 1.97 2.54
35 2.03 2.64

Table 5: Results in terms of ME for different number of
neighboring points in the graph construction.

r

ME Data
BU-3DFE FRGCv2

15 1.98 2.59
12 2.13 2.60
10 1.97 2.54
8 2.00 2.61

Table 6: Results in terms of ME for different number of re-
gression points for local surface unfolding.

Discussion and Conclusion
In this work, we propose a novel 3D face alignment
method1, which localizes some feature points given the in-
put point cloud of a 3D face. The proposed method is moti-
vated by the recent progress in deep point cloud learning and
heatmap-based 2D face alignment. The key element of our
proposed method is an advanced GCN structure for adap-
tive heatmap regression and a compatible post-processing
method to predict landmarks from regressed heatmaps. Ex-
tensive experiments on some representative 3D face datasets
demonstrate the effectiveness of the proposed method.

A limitation is that the Farthest Point Sampling method
as a pre-processing step is not efficient for real-time per-
formance. The accuracy is also limited by the number of
sampling points. In the future, we will study some adaptive
sampling methods for both lifted accuracy and efficiency.
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