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Abstract

To enhance low-light images to normally-exposed ones is
highly ill-posed, namely that the mapping relationship be-
tween them is one-to-many. Previous works based on the
pixel-wise reconstruction losses and deterministic processes
fail to capture the complex conditional distribution of nor-
mally exposed images, which results in improper brightness,
residual noise, and artifacts. In this paper, we investigate to
model this one-to-many relationship via a proposed normaliz-
ing flow model. An invertible network that takes the low-light
images/features as the condition and learns to map the distribu-
tion of normally exposed images into a Gaussian distribution.
In this way, the conditional distribution of the normally ex-
posed images can be well modeled, and the enhancement
process, i.e.. the other inference direction of the invertible
network, is equivalent to being constrained by a loss func-
tion that better describes the manifold structure of natural
images during the training. The experimental results on the
existing benchmark datasets show our method achieves better
quantitative and qualitative results, obtaining better-exposed
illumination, less noise and artifact, and richer colors.

Introduction
Low-light image enhancement aims to improve the visibility
of low-light images and suppress captured noise and artifacts.
Deep learning-based methods (Zhang et al. 2019; Zamir et al.
2020; Chen et al. 2018) achieve promising performance by
utilizing the power of large collections of data. However, most
of them mainly rely on the pixel-wise loss functions (e.g.,
l1 or l2) in the network training that derive a deterministic
mapping between the low-light and normally exposed images.
This enhancement paradigm encounters two issues. First, this
pixel-wise loss cannot provide effective regularization on the
local structures in diverse contexts. As one low-light image
may correspond to several reference images with different
brightness (Zhang et al. 2021), this pixel-to-pixel determin-
istic mapping is easily trapped into the “regression to mean”
problem and obtains the results that are the fusion of several
desirable ones, which inevitably leads to improperly exposed
regions and artifacts. Second, due to the simplified assump-
tion of the pixel-wise losses about the image distribution,
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Figure 1: Illustration of the superiority of our normalizing
flow model in measuring the visual distance compared to
l1 loss for low-light image enhancement. Although (b) is
more visually similar to (c), i.e., reference image, than (a),
their l1 losses are the same. Benefiting from better capturing
the complex conditional distribution of normally exposed
images, our model can better capture the error distribution
and therefore provide the measure results more consistent
with human vision.

these losses might fail in describing the real visual distance
between the reference image and enhanced images in the im-
age manifold as shown in Fig. 1, which further undermines
the performance. Though the GAN-based scheme can partly
alleviate this issue, these approaches require careful tuning
during training (Wolf et al. 2021) and might overfit certain
visual features or the properties of the training data.

Recently, researchers have shown the effectiveness of nor-
malizing flow in the field of computational photography.
(Wolf et al. 2021; Lugmayr et al. 2020; Xiao et al. 2020)
The normalizing flow is capable to learn a more compli-
cated conditional distribution than the classical pixel-wise
loss, which can well solve the above-mentioned two issues.
Beyond previous CNN-based models that learn a determin-
istic mapping from the low-light image to an image with
specific brightness, the normalizing flow learns to map the
multi-modal image manifold into a latent distribution. Then,
the loss enforced on the latent space equivalently constructs
an effective constraint on the enhanced image manifold. It
leads to better characterization of the structural details in var-
ious contexts and better measurement of the visual distance
in terms of high-quality well-exposed images, which helps
effectively adjust the illumination and suppress the image
artifacts. However, since the classical normalizing flow is
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biased towards learning image graphical properties such as
local pixel correlations (Kirichenko, Izmailov, and Wilson
2020), it may fail to model some global image properties
like the color saturation, which can undermine the perfor-
mance when applying these methods for the low-light image
enhancement problem.

To address the above issues, in this paper, we propose
LLFlow, a flow-based low-light image enhancement method
to accurately learn the local pixel correlations and the global
image properties by modeling the distributions over the nor-
mally exposed images. As shown in Fig. 2, to merge the
global image information into the latent space, instead of
using standard Gaussian distribution as the prior of latent
features, we propose to use the illumination-invariant color
map as the mean value of the prior distribution. More specifi-
cally, the encoder is designed to learn a one-to-one mapping
to extract the color map that can be regarded as the intrinsic
attributes of the scene that do not change with illumination.
Simultaneously, another component of our framework, the in-
vertible network, is designed to learn a one-to-many mapping
from a low-light image to distribution of normally exposed
images. As such, we expect to achieve better low-light image
enhancement performance through our proposed framework.

In summary, contributions can be concluded as follows.

• We propose a conditional normalizing flow to model the
conditional distribution of normally exposed images. It
equivalently enforces an effective constraint on the en-
hanced image manifold. Via better characterization of the
structural details and better measurement of the visual dis-
tance, it better adjusts illumination as well as suppresses
noise and artifacts.

• We further introduce a novel module to extract the il-
lumination invariant color map inspired by the Retinex
theory as the prior for the low-light image enhancement
task, which enriches the saturation and reduces the color
distortion.

• We conduct extensively experiments on the popular bench-
mark datasets to show the effectiveness of our proposed
framework. The ablation study and related analysis show
the rationality of each module in our method.

The code is released at https://github.com/wyf0912/LLFlow.

Related Works
Low-Light Image Enhancement
As an active research topic in the past several years, a large
number of low-light image enhancement methods have been
proposed. Early methods mainly utilize the Retinex theory
to correct the image illumination and suppress the artifacts.
Recently, with the emergence of deep learning schemes, more
tasks have benefited from the deep learning model. For ex-
ample, LLNet (Lore et al. 2017) uses a deep auto-encoder
to adaptively enlighten the image. Multi-scale features are
adopted (Shen et al. 2017; Tao et al. 2017; Lv et al. 2018; Ren
et al. 2019) to obtain better visual quality. The (Shen et al.
2017) illustrates the close relationship between Retinex and
CNN with Gaussian convolution kernels, two separated deep
networks are used for decomposition in (Wei et al. 2018), and

(Wang et al. 2019b) propose a progressive Retinex framework
that the illumination and reflection maps are trained in a mutu-
ally reinforced manner. In addition, different losses are used
to guide the training, e.g., MSE (Lore et al. 2017; Cai, Gu, and
Zhang 2018), l1 loss(Cai, Gu, and Zhang 2018), structural
similarity (SSIM) (Cai, Gu, and Zhang 2018), smoothness
loss (Wang et al. 2019a; Zhang et al. 2019) and color loss
(Wang et al. 2019a; Guo et al. 2020; Shen et al. 2017). Mean-
while, (Cai, Gu, and Zhang 2018) demonstrates that training
the same network with different reconstruction losses will
have different performances which demonstrates the signif-
icance of conditional distribution design. Introducing care-
fully designed color loss can be also regarded as refining the
conditional distribution, i.e., give color distortion pictures a
greater penalty coefficient. Different from previous works
that carefully design the reconstruction loss for end-to-end
training, in this paper, we propose to utilize a normalizing
flow to build the complex posterior distribution which has
proven to be more effective and can generate images with
higher quality, less noise, and artifact.

Normalizing Flow
A normalizing flow is a transformation of a simple probabil-
ity distribution (e.g., a standard normal) into a more complex
distribution by a sequence of invertible and differentiable
mappings (Kobyzev, Prince, and Brubaker 2020). Meanwhile,
the probability density function (PDF) value of a sample can
be exactly obtained by transforming it back to the simple
distribution. To make the network invertible and computation
tractable, the layers of the network need to be carefully de-
signed so that the inversion and the determinant of Jacbian
matrix can be easily obtained which limits the capacity of
the generative model. To this end, many powerful transforma-
tions have been proposed to enhance expressiveness capacity
of the model. For example, affine coupling layers (Dinh,
Krueger, and Bengio 2014), split and concatenation (Dinh,
Krueger, and Bengio 2014; Dinh, Sohl-Dickstein, and Ben-
gio 2016; Kingma and Dhariwal 2018), Permutation (Dinh,
Krueger, and Bengio 2014; Dinh, Sohl-Dickstein, and Ben-
gio 2016; Kingma and Dhariwal 2018), and 1 × 1 convo-
lution (Kingma and Dhariwal 2018). Recently, conditional
normalizing flows are investigated to improve the expressive-
ness of the model. (Trippe and Turner 2018) propose to use
different normalizing flows for each condition. Recently, con-
ditional affine coupling layer (Ardizzone et al. 2019; Winkler
et al. 2019; Lugmayr et al. 2020) is used to build a stronger
connection with the conditional feature and improve the ef-
ficiency of memory and computational resource. Benefiting
from the development of normalizing flow, the scope of ap-
plication has been greatly expanded. For instance, (Liu et al.
2019) generates faces with specific attributes, (Pumarola et al.
2020; Yang et al. 2019) use conditional flow to generate point
clouds. In the super-resolution tasks, (Lugmayr et al. 2020;
Winkler et al. 2019; Wolf et al. 2021) generate the distribu-
tion of high-resolution images based on one low-resolution
input based on the conditional normalizing flow. Besides, the
conditional normalizing flow is also used in image denoising
(Abdelhamed, Brubaker, and Brown 2019; Liu et al. 2021b)
to generate extra data or restore the clean image. In addi-
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Figure 2: The architecture of our proposed LLFlow. Our model consists of a conditional encoder to extract the illumination-
invariant color map and an invertible network that learns a distribution of normally exposed images conditioned on a low-light
one. For training, we maximize the exact likelihood of a high-light image xh by using change of variable theorem in Eq. (3) and a
random selector is used to obtain the mean value of latent variable z which obey Gaussian distribution from the color map C(xh)
of reference image or the extracted color map g(xl) from low-light image through the conditional encoder. For inference, we can
randomly select z from N (g(xl),1) to generate different normally exposed images from the learned conditional distribution
fflow(x|xl). (The color maps in the blue area are squeezed to the same size with latent feature z.)

tion, the inductive biases of normalizing flows are explored
(Jaini et al. 2020; Kirichenko, Izmailov, and Wilson 2020).
(Kirichenko, Izmailov, and Wilson 2020) reveals that the nor-
malizing flow prefers to encode simple graphical structures
which may be helpful to suppress the noise in the low-light
image.

Methodology
In this section, we first introduce the limitations of previous
pixel-wise reconstruction loss-based low-light enhancement
methods. Then, the overall paradigm of our framework in
Fig. 2 is introduced. Finally, two components of our proposed
framework are illustrated separately.

Preliminary
The goal of low-light image enhancement is to generate a
high-quality image with normal exposure xh using a low-
light image xl. Paired samples (xl, xref ) are usually col-
lected to train a model Θ by minimizing the l1 reconstruction
loss as follows:

arg min
Θ

E [l1(Θ(xl), xref )] = arg max
Θ

E [log f(Θ(xl)|xref )] ,

(1)
where Θ(xl) is the normal-light image generated by the
model and f is the probability density function conditioned
on the reference image xref defined as follows:

f(x|xref ) =
1

2b
exp

(
−|x− xref |

b

)
, (2)

where b is a constant related to the learning rate. However,
such a training paradigm has a limitation that the pre-defined
distribution (e.g., the distribution in Eq. 2) of images is not

strong enough to distinguish between the generated realis-
tic normally exposed image and the images with noises or
artifacts such as the example in Fig. 1.

Framework
To this end, we propose to model the complicated distribution
of normally exposed images using a normalizing flow so that
the conditional PDF of a normally exposed image can be
expressed as fflow(x|xl). More specifically, a conditional
normalizing flow Θ is used to take a low-light image itself
and/or its features as input and maps a normally exposed
image x to a latent code z which has the same dimension
with x, i.e., z = Θ(x;xl). By using the change of variable
theorem, we can obtain the relationship between fflow(x|xl)
and fz(z) as follows:

fflow(x|xl) = fz (Θ(xref ;xl))

∣∣∣∣det
∂Θ

∂xref
(xref ;xl)

∣∣∣∣ .
(3)

To make the model better characterize the properties of
high-quality normally exposed images, we use the maximum
likelihood estimation to estimate the parameter Θ. Specifi-
cally, we minimize the negative log-likelihood (NLL) instead
of l1 loss to train the model

L(xl, xref ) = − log fflow(xref |xl)

= − log fz(Θ(xref ;xl))−
N−1∑
n=0

log | det
∂θn

∂zn
(zn; gn(xl))|,

(4)

where the invertible network Θ is divided into a se-
quence of N invertible layers {θ1, θ2, ..., θN} and hi+1 =
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(a) xl (b) h(xl) (c) C(xl) (d) N(xl)

Figure 3: The components of the input for the encoder g. The
low-light image xl, low-light image after histogram equal-
ization h(xl), color map C(xl) and noise map N(xl) are
concatenated to form the input with 12 channels.

θi(hi; gi(xl)) is the output of layer θi (i ranges from 0 to
N − 1), h0 = xref and z = hN . gn(xl) is the latent feature
from the encoder g that has the compatible shape with the
layer θn. fz is the PDF of the latent feature z.

In summary, our proposed framework includes two compo-
nents: an encoder g which takes a low-light image xl as input
and output illumination invariant color map g(xl) (which can
be regarded as reflectance map inspired by Retinex theory),
and an invertible network that maps a normally exposed im-
age to a latent code z. The details of the two components are
introduced in the following subsections.

Encoder for Illumination Invariant Color Map: To gen-
erate robust and high quality illumination invariant color
maps, the input images are first processed to extract useful
features and the extracted features are then also concatenated
as a part of the input of the encoder built by Residual-in-
Residual Dense Blocks (RRDB) (Wang et al. 2018). The
detailed architecture of the encoder g is in appendix due
to limited space. The visualizations of each component are
shown in Fig. 3 and the details are as follows:

Histogram Equalized Image h(xl): Histogram equaliza-
tion is conducted to increase the global contrast of low-light
images. The histogram equalized image can be regarded as a
more illumination invariant one. By including the histogram
equalized image as a part of the network’s input, the network
can better deal with the areas that are too dark or bright.

(a) C(xl) (b) g(xl) (c) C(xref ) (d) xref

Figure 4: The color map directly extracted from the low-light
image xl, obtain from the encoder g, directly extracted from
the reference image xref , and the reference image itself.

Color Map C(x): Inspired by Retinex theory, we propose
to calculate the color map of an image x as follows:

C(x) =
x

meanc(x)
, (5)

where meanc calculates the mean value of each pixel among
RGB channels. The comparison between the color map from
the low-light image, reference image, and the color map
fine-tuned by the encoder g is shown in Fig. 4. As we can

see, the color maps C(xl) and C(xref ) are consistent to an
extent under different illumination so they can be regarded as
representations similar to the reflectance map, degraded with
intensive noises in C(xl). We can also find that the encoder
g can generate a high-quality color map that suppresses the
strong noises to an extent and preserves the color information.

Noise Map N(xl): To remove the noise in C(xl), a noise
map N(xl) is estimated and fed into the encoder as an atten-
tion map. The noise map N(xl) is estimated as follows:

N(x) = max(abs(∇xC(x)), abs(∇yC(x))), (6)

where∇x, and ∇y are the gradient maps in the directions of
x and y, where max(x, y) is the operation that returns the
maximum value between x and y at the pixel channel level.

Invertible Network: Different from the encoder that learns
a one-to-one mapping to extract illumination invariant color
map which can be seen as the intrinsic invariant properties
of the objects, the invertible network aims to learn a one-
to-many relationship since the illumination may be diverse
for the same scenario. Our invertible network is composed
of three levels, and at each level, there are a squeeze layer
and 12 flow steps. More details about the architecture can be
found in the appendix.

According to our assumption that the normalizing flow
aims to learn a conditional distribution of the normally ex-
posed images conditioned on the low-light image/the illu-
mination invariant color map, the normalizing flow should
work well conditioned on both g(xl) andC(xref ) since these
two maps are expected to be similar. To this end, we train
the whole framework (both the encoder and the invertible
network) in the following manner:

L(xl, xref ) = − log fz(Θ(xref ;xl))

−
N−1∑
n=0

log

∣∣∣∣det
∂θn

∂zn
(zn; gn(xl))

∣∣∣∣ , (7)

where fz is the PDF of the latent feature z defined as follows

fz(z) =
1√
2π

exp

(
−(z − r(C(xref ), g(xl)))

2

2

)
(8)

and r(a, b) is a random selection function that is defined as
follows:

r(a, b) =

{
a α ≤ p
b α > p

, α ∼ U(0, 1), (9)

in which p is a hyper-parameter and we set p to be 0.2 for
all experiments. As shown in Fig. 4, even without the help
of pixel reconstruction loss, the encoder g can learn a similar
color map with the reference image.

To generate a normally exposed image using a low-light
image, the low-light image is first passed through the encoder
to extract the color map g(xl) and then the latent features
of the encoder are used as the condition for the invertible
network. For the sampling strategy of z, one can randomly
select a batch of z from the distribution N (g(xL),1) to get
different outputs and then calculate the mean of generated
normally-exposed images to achieve better performance. To

2607



speed up the inference, we directly select g(xl) as the input
z and we empirically find that it can achieve a good enough
result. So for all the experiments, we just use the mean value
g(xl) as the latent feature z for the conditional normalizing
flow if not specified.

Experiments
Experimental Settings
The patch size is set to 160 × 160 and the batch size is set
to 16. We use Adam as the optimizer with a learning rate of
5 × 10−4 and without weight decay. For LOL dataset, we
train the model for 3 × 104 iterations and the learning rate
is decreased with a factor of 0.5 at 1.5 × 104, 2.25 × 104,
2.7 × 104, 2.85 × 104 iterations. For VE-LOL dataset, we
train the model for 4× 104 iterations and the learning rate is
decreased with a factor of 0.5 at 2× 104, 3× 104, 3.6× 104,
3.8× 104 iterations.

Evaluation on LOL
We first evaluate our method on the LOL datset (Wei et al.
2018) including 485 images for training and 15 images for
testing. Three metrics are adopted for quantitative compari-
son including PSNR, SSIM (Wang et al. 2004), and LPIPS
(Zhang et al. 2018). The numerical results among different
methods are reported in Table 1. From Table 1, we can find
that our method significantly outperforms all the other com-
petitors. The higher PSNR values show that our method is
capable of suppressing the artifacts and better recovering
color information. The better SSIM values demonstrate that
our method better preserves the structural information with
high-frequency details. In terms of LPIPS, a metric designed
for the human perception, our method also achieves the best
performance, which indicates our method better align with
the human perception. The qualitative results are shown in
Fig. 5 Our method achieves more promising perceptual qual-
ity by better suppressing the artifacts and revealing image
details.

Method PSNR ↑ SSIM ↑ LPIPS ↓
Zero-DCE (Guo et al. 2020) 14.86 0.54 0.33

LIME (Guo, Li, and Ling 2016) 16.76 0.56 0.35
EnlightenGAN (Jiang et al. 2021) 17.48 0.65 0.32

RetinexNet (Wei et al. 2018) 16.77 0.56 0.47
RUAS (Risheng et al. 2021) 18.23 0.72 0.35

DRBN (Yang et al. 2020) 20.13 0.83 0.16
(Lv, Li, and Lu 2021) 20.24 0.79 0.14

KinD (Zhang et al. 2019) 20.87 0.80 0.17
KinD++ (Zhang et al. 2021) 21.30 0.82 0.16

LLFlow (Ours) 25.19 0.93 0.11

Table 1: Quantitative comparison on the LOL dataset (Wei
et al. 2018) in terms of PSNR, SSIM and LPIPS. ↑ (↓) denotes
that, larger (smaller) values lead to better quality.

Evaluation on VE-LOL
To better evaluate the performance and generality of our
method, we further perform evaluation on VE-LOL (Liu
et al. 2021a) dataset. It is a large-scale dataset including 2500

paired images with more diversified scenes and contents, thus
is valuable for the cross-dataset evaluation.
Cross-Dataset Evaluation: We first evaluate the generality
of our method in a cross-dataset manner, i.e., we train our
method on the LOL dataset (Wei et al. 2018) and test the
model on the testing set of VE-LOL dataset (Liu et al. 2021a).
The quantitative results are reported in Table 2. From the
results, our method significantly outperforms other methods
in terms of all metrics. The qualitative comparisons of real-
captured image are given in Fig. 7. The results generated by
our methods are with less noise and better color saturation.

Method PSNR ↑ SSIM ↑ LPIPS ↓
RetinexNet (Wei et al. 2018) 14.68 0.5252 0.6423

BIMEF (Ying, Li, and Gao 2017) 15.95 0.6386 0.4573
DeepUPE (Wang et al. 2019a) 13.19 0.4902 0.4634

JED (Ren et al. 2018) 16.73 0.6817 0.3899
LIME (Guo, Li, and Ling 2016) 14.07 0.5274 0.4021
SICE (Cai, Gu, and Zhang 2018) 18.06 0.7094 0.5078

LLNet (Lore et al. 2017) 17.57 0.7388 0.4021
SRIE (Fu et al. 2016) 13.66 0.5509 0.4577

KinD (Zhang et al. 2019) 18.42 0.7658 0.2879
KinD++ (Zhang et al. 2021) 17.63 0.7994 0.2257
Zero-DCE (Guo et al. 2020) 21.12 0.7705 0.2480

EnlightenGAN (Jiang et al. 2021) 20.43 0.7921 0.2416
LLFlow (Ours) 23.85 0.8986 0.1456

Table 2: Quantitative comparison on the VE-LOL dataset in
terms of PSNR, SSIM and LPIPS. The models are trained on
the training set of LOL. ↑ (↓) denotes that, larger (smaller)
values lead to better quality.

Intra-Dataset Evaluation: To further evaluate the perfor-
mance of our proposed model, we compare our method with
SOTA methods in an intra-dataset setting, i.e., we retrain all
the methods using the training set of VE-LOL dataset and
report the performance on its corresponding test set. The
quantitative results are reported in Table 3. We can find that
our method has the best performance and outperforms others
by a large margin. Meanwhile, with the help of more diverse
data, all the metrics of our method are improved comparing
with the model trained on LOL.

Method PSNR ↑ SSIM ↑ LPIPS ↓
Zero-DCE (Guo et al. 2020) 20.54 0.7786 0.3312

KinD (Zhang et al. 2019) 22.15 0.8535 0.2576
LLFlow (Ours) 26.02 0.9266 0.0996

Table 3: Quantitative comparison on the VE-LOL dataset in
terms of PSNR, SSIM, and LPIPS. The models are re-trained
on the training set of VE-LOL dataset. ↑ (↓) denotes that,
larger (smaller) values lead to better quality.

Ablation Study
The Losses Estimated by Our Method and l1: To verify
our motivation that conditional normalizing flow can model
a more complicated error distribution comparing with pixel-
wise reconstruction loss, we further compare the losses ob-
tained by our method and l1. As shown in Table 4, the image
with intensive noises and that with slightly different bright-
ness have the same likelihood values under the measurement
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(a) Input (b) LIME (c) RetinexNet (d) EnlightenGAN (e) DRBN

(f) Kind++ (g) Kind (h) Zero-DCE (i) Ours (j) Reference

Figure 5: Visual comparison with state-of-the-art low-light image enhancement methods on LOL dataset. The normally exposed
image generated by our method has less noise and artifact, and better colorfulness.

(a) (b) (c)

Figure 6: (a) and (b) are the generated normally exposed
images with different z (monotonically, each column) from a
well-trained model. There are strong artifacts in (c) obtained
from an early checkpoint of the model when it cannot well
distinguish the artifacts and the variance of data. Zoom in to
see details.

of l1 loss, while the latter has much higher likelihood values
under the measurement of our model than the former, which
is better aligned with human perception.

Degradation NLL estimated by our method l1

Reference -6.09 N/A
Brightness reduced by 201 -5.95 20

Brightness increased by 20 -6.15 20
Reference + random noise r2 4.84 20
1 The range of pixel value is 0− 255.
2 The random noise r has the same shape with the reference image and

the mean value and mean absolute value of r are 0 and 20 respectively.

Table 4: The differences under l1 and negative log likelihood
(NLL) estimated by our method for images with brightness
variance and strong noise. The mean values among the test
set of the LOL dataset are reported in the table.

The Effect of Different z: A major advantage of our method
over existing ones is that LLFlow can better encode the bright-
ness variance into the latent space z. To verify the effective-
ness of such strategy, we add a constant to the extracted g(xl)
from −0.4 to 0.4 with a step of 0.2. The results in Fig. 6
demonstrate that the brightness of the image is monotonous

with the value of z, which indicates that our model can en-
code the variance of the dataset, i.e., the inevitable uncertainty
when collecting the data pairs.
The Activation Area of LLFlow: To better understand how
our model builds a more strong constraint, we visualize the
gradient activation map of our method. For a normally ex-
posed image xhigh which can be a reference image or the
output from a low-light enhancement network from its corre-
sponding low-light image xlow, the gradient activation map
G can be obtained as follows:

G = h(||∇xL(xl, xhigh)‖|2) (10)

where h is the histogram equalization operation to better
visualize the results. From the results in Fig. 8, we can find
that the area with artifacts has a higher gradient activation
value. It demonstrates that even without the reference image,
our model can distinguish the unrealistic areas according to
the learned conditional distribution.
The Effectiveness of Model Components and Training
Paradigm: To investigate the effectiveness of our training
paradigm and different components in our framework, We
evaluate the performance of our conditional encoder indi-
vidually and the performance of our whole framework via
training them using l1 loss.

For the evaluation of our whole framework under l1 loss,
we empirically find that training directly with it cannot
converge. To this end, we first pretrain the framework for
1,000 iterations by minimizing the negative log likelihood
L(xl, xref ). All the networks are trained with the same batch
size, patch size, image prepossessing pipeline in the related
experiments. We finetune other hyper-parameters, e.g., learn-
ing rate and weight decay, in a wide range to achieve the best
performance.

The results evaluated on LOL dataset (Wei et al. 2018) are
reported in Table 5. The model trained by minimizing NLL
loss has a huge improvement in all metrics comparing with
the model trained by l1 loss. A visual comparison between
the results from l1 loss trained model and NLL trained model
are shown in Fig. 9. From the results, the model trained by l1
loss produces more obvious artifacts. Both quantitative and
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(a) Input (b) LIME (c) RetinexNet (d) EnlightenGAN (e) LLNet

(f) Kind++ (g) Kind (h) Zero-DCE (i) Ours (j) Reference

Figure 7: Visual comparison with state-of-the-art low-light image enhancement methods on the real-captured set of VE-LOL
dataset.

(a) (b) (c) (d)

Figure 8: Gradient activation map from our model. (a): The
stitched picture that its left half is from not fully trained
model and its right half is from the reference image. (b): The
gradient activation map from (a). (c): The stitched picture
that its right half is from not fully trained model and its left
half is the reference image. (d): The gradient activation map
from (c).

qualitative results demonstrate the superiority of our flow-
based method in modeling the distribution of images with
normal brightness over a simplified pixel-wise loss.

(a) reference image (b) by NLL loss (c) by L1 loss

Figure 9: The effect of different training paradigm for the
same network.

The Effect of Different Latent Feature Distributions: To
evaluate the effectiveness of our proposed illumination invari-
ant color map and different hyper-parameters p, we evaluate
them using the LOL dataset (Wei et al. 2018). The results in
Table 6 show that our whole model with the newly designed
color map achieves better PSNR values. The higher SSIM
and LPIPS values show that the color map helps improve the
color and brightness consistency.

Loss PSNR ↑ SSIM ↑ LPIPS ↓
Only encoder (L1 loss) 21.90 0.8587 0.1672

LLFlow (L1 loss) 22.68 0.8391 0.2038
LLFlow (Ours) 25.19 0.9252 0.1131

Table 5: Quantitative comparison between training the model
with l1 and NLL loss on the LOL dataset. ↑ (↓) denotes that,
larger (smaller) values lead to better quality.

Latent Distribution PSNR ↑ SSIM ↑ LPIPS ↓
LLFlow w/o color map 24.46 0.9235 0.1146

LLFlow w/ color map, p = 0.5 24.85 0.9232 0.1192
LLFlow w/ color map, p = 0.2 25.19 0.9252 0.1131

Table 6: The effect of different latent feature distributions. ↑
(↓) denotes that, larger (smaller) values lead to better quality.

Conclusion

In this paper, we propose a novel framework for low-
light image enhancement through a novel normalizing flow
model. Compared with the existing techniques based on the
pixel-wise reconstruction losses with deterministic processes,
the proposed normalizing flow trained with negative log-
likelihood (NLL) loss taking the low-light images/features as
the condition naturally better characterizes the structural con-
text and measures the visual distance in image manifold. With
these merits, our proposed method naturally better captures
the complex conditional distribution of normally exposed
images and can achieve better low-light enhancement quality,
i.e., well-exposed illumination, suppressed noise and arti-
facts, as well as rich colors. The experimental results on the
existing benchmark datasets show that our proposed frame-
work can achieve better quantitative and qualitative results
compared with state-of-the-art techniques.
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