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Abstract

Grounded Situation Recognition (GSR), i.e., recognizing the
salient activity (or verb) category in an image (e.g., buying)
and detecting all corresponding semantic roles (e.g., agent
and goods), is an essential step towards “human-like” event
understanding. Since each verb is associated with a specific
set of semantic roles, all existing GSR methods resort to a
two-stage framework: predicting the verb in the first stage
and detecting the semantic roles in the second stage. How-
ever, there are obvious drawbacks in both stages: 1) The
widely-used cross-entropy (XE) loss for object recognition
is insufficient in verb classification due to the large intra-
class variation and high inter-class similarity among daily
activities. 2) All semantic roles are detected in an autore-
gressive manner, which fails to model the complex semantic
relations between different roles. To this end, we propose a
novel SituFormer for GSR which consists of a Coarse-to-
Fine Verb Model (CFVM) and a Transformer-based Noun
Model (TNM). CFVM is a two-step verb prediction model:
a coarse-grained model trained with XE loss first proposes a
set of verb candidates, and then a fine-grained model trained
with triplet loss re-ranks these candidates with enhanced verb
features (not only separable but also discriminative). TNM
is a transformer-based semantic role detection model, which
detects all roles parallelly. Owing to the global relation mod-
eling ability and flexibility of the transformer decoder, TNM
can fully explore the statistical dependency of the roles. Ex-
tensive validations on the challenging SWiG benchmark show
that SituFormer achieves a new state-of-the-art performance
with significant gains under various metrics. Code is available
at https://github.com/kellyiss/SituFormer.

Introduction
Understanding activities in images is one of the core tasks
for computer vision. With the maturity of action recog-
nition (Carreira and Zisserman 2017; Wang et al. 2016)
and object detection (Ren et al. 2015), today’s comput-
ers can recognize action or object categories well. How-
ever, “human-like” activity understanding goes beyond
action-centric or object-centric recognition. A more cru-
cial step is to identify how objects participate in activities,
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Figure 1: (a) An example of GSR. Given this image, a GSR
model needs to not only predict the verb category buying,
but also detect (i.e., classify and ground) all corresponding
semantic roles for buying event, such as agent, goods,
and payment. (b) An overview of the existing two-stage
GSR framework, which consists of a verb model and an
RNN-based noun model to detect all roles autoregressively.

such as “SOMEONE DO SOMETHING WITH SOME-TOOL
AT SOMEPLACE”. Hence, the task Situation Recognition
(SR) (Yatskar, Zettlemoyer, and Farhadi 2016) is proposed
for comprehensive event extraction. As the example in Fig-
ure 1 (a), SR not only recognize the salient activity(or verb)
in the image (e.g., buying), but also recognize all semantic
roles (e.g., agent is woman, place is store). To further
ground the semantic roles in the image, a more challenging
task Grounded Situation Recognition (GSR) (Pratt et al.
2020) was proposed (cf. bounding boxes in Figure 1 (a)). By
describing activities with verb and grounded semantic roles,
GSR provides a visually-grounded structure representation
(named verb frame) for the activity, which benefits many
downstream scene understanding tasks, such as image-text
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Figure 2: Left: A failure example of the verb model trained
with XE loss and its predicted verb distributions. Its ground-
truth verb is buying. Right: Some randomly selected im-
ages from the training set of the same category of hard neg-
ative verbs (i.e., browsing, shopping, and selling).

retrieval (Gordo et al. 2016; Noh et al. 2017), image caption-
ing (Mallya and Lazebnik 2017; Chen et al. 2021a, 2017),
visual grounding (Chen et al. 2021b), and VQA (Cadene
et al. 2019; Chen et al. 2020, 2021c; Xiao et al. 2022).

Since each verb is inherently associated with a specific set
of semantic roles (e.g., semantic role set 〈agent, goods,
payment, seller, place〉 for verb buying), almost all
existing SR methods resort to a two-stage framework: 1) pre-
dicting the verb (or action categories) for the whole image
in the first stage; and 2) predicting nouns (or object cate-
gories) for all semantic roles in the second stage. Inspired
by the success of SR methods, state-of-the-art GSR methods
also follow the same two-stage framework by replacing the
second-stage role classification model with a semantic role
detection model. To the best of our knowledge, there are two
existing SOTA GSR models: ISL and JSL (Pratt et al. 2020).
Specifically, as summarized in Figure 1 (b), they are all two-
stage models. For verb prediction, they train a verb model
with N-way cross-entropy (XE) loss. For semantic role de-
tection, they utilize an RNN-based noun model to predict
and ground the noun for each semantic role autoregressively,
i.e., they feed the predicted noun embedding of the last se-
mantic role back into the RNN to guide the next prediction.

Although existing two-stage GSR methods have achieved
satisfactory performance, we argue that there are still some
unreasonable designs in both two stages:
Verb Model (the first-stage): Since each verb can have dif-
ferent combinations of nouns w.r.t the semantic role set, the
activity patterns are much more complex than objects (i.e.,
larger intra-class variation and higher inter-class similarity).
Thus, even using a deep ConvNet (e.g., ResNet-50 (He et al.
2016)) trained with XE loss can still fail to discriminate am-
biguous verbs which place emphasis on different semantic
roles. For example, in Figure 2, due to the frequent occur-
rences of “people browsing books at bookstore” and similar
scene appearance (cf. images of browsing), the test image
is tended to be wrongly predicted as browsing. Instead, if
the verb model can focus more on some discriminative roles
(e.g., the payment is happening with cash in hands), it
would be easier to distinguish the buying from these plau-

sible verb choices.
Noun Model (the second-stage): 1) RNN-based models sim-
ply formulate each situation as a sequence of semantic roles,
i.e., this link structure fails to model the complex relations
between different semantic roles. 2) This autoregressive se-
quential prediction manner is prone to result in error accu-
mulation. 3) They only utilize noun category embeddings to
guide the training, which is easier to suffer from severe se-
mantic sparsity issue (Yatskar et al. 2017), especially when
the number of noun categories is extremely large (e.g., ≈
10, 000 categories in SWiG benchmark).

In this paper, to address the above-mentioned issues, we
propose a novel two-stage model (i.e., a verb model and a
noun model): Situation Transformer (dubbed SituFormer).

For the verb model, since the verb feature learned with XE
loss is not discriminative enough, we enhance it using triplet
loss with a carefully designed hard triplet mining scheme.
Similar practice are common in face recognition (Schroff,
Kalenichenko, and Philbin 2015; Wen et al. 2016). Specif-
ically, it is a coarse-to-fine two-step model. In the coarse-
grained step, we first predict the top-N verbs with a coarse-
grained verb model trained by XE loss. Then, in the fine-
grained step, we mine hard triplets from images of the top-N
verbs considering the semantic role feature similarity. After
further training a lightweight fine-grained model with triplet
loss to obtain effectively enhanced verb features of all train-
ing samples (the gallery), the fine-grained model can re-rank
top-N verbs by considering the feature similarity with the
support image samples from the gallery.

For the noun model, it is a transformer-based encoder-
decoder model. The input queries for the decoder are a set
of learnable embeddings for a verb and its corresponding
semantic roles. The outputs of the decoder for each query
are the predicted object category and grounding location.
The built-in self-attention mechanism in the decoder implic-
itly formulates each verb frame as a fully-connected graph
structure (vs. the sequence structure in existing GSR mod-
els). Meanwhile, our parallel decoding paradigm can avoid
error accumulation. Moreover, sharing semantic role query
embeddings across different verb frames introduces useful
inductive bias, which alleviates the semantic sparsity issue.

We evaluate our proposed SituFormer on the challenging
GSR benchmark: SWiG (Pratt et al. 2020). Extensive exper-
iments have demonstrated the effectiveness of each compo-
nent. Without bells and whistles, SituFormer outperforms all
state-of-the-art GSR models on all evaluation metrics.

Related Work
Situation Recognition (SR). SR is first proposed by (Gupta
and Malik 2015; Yatskar, Zettlemoyer, and Farhadi 2016),
which generalizes action classification (Carreira and Zisser-
man 2017; Girish, Singh, and Ralescu 2020), HOI (Liao
et al. 2020; Zou et al. 2021; Wei et al. 2020) and SGG (Chen
et al. 2019; Cong et al. 2021), and aims to provide a struc-
tured representation for an activity (event) with a verb frame.
Typically, the verb frame consists of a verb with a spe-
cific semantic role set drawn from FrameNet (Baker, Fill-
more, and Lowe 1998). The early CRF-based SR meth-
ods (Yatskar, Zettlemoyer, and Farhadi 2016; Yatskar et al.
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Figure 3: The overview pipeline of our SituFormer.

2017) jointly predict verb and nouns by structured learning.
However, sharing the visual representation for the two tasks
has been proved inferior to training separate models in a
two-stage way (Mallya and Lazebnik 2017). Hence, recent
RNN-based methods (Mallya and Lazebnik 2017), GNN-
based methods (Li et al. 2017; Suhail and Sigal 2019) and
attention-based methods (Cooray, Cheung, and Lu 2020) al-
ways predict the verb in the first stage and recognize the
semantic roles in the second stage.
Ground Situation Recognition (GSR). GSR (Yang et al.
2016; Silberer and Pinkal 2018; Pratt et al. 2020) extends
the SR task and aims to further ground the semantic roles
which is critical to visual reasoning. The two existing GSR
methods (JSL and ISL) (Pratt et al. 2020) follow the RNN-
based two-stage SR pipeline to first predict the verb and then
sequentially detect the semantic roles. Our method differs in
two aspects: 1) the verb prediction is in a coarse-to-fine man-
ner. 2) the semantic roles are detected in parallel rather than
in autoregressive sequence. Another concurrent work (Cho
et al. 2021) also resorts to Transformer structure for GSR.

Approach
Overview
Given an image I , GSR aims to detect a structured visually-
grounded verb frame G = {v,R,N ,B}, where v ∈ V is
the category of the salient activity (or verb) in image I , and
R = {r1, ..., rm} is the set of manually predefined semantic
roles1 for verb v. N = {n1, ..., nm} and B = {b1, ..., bm}
are the set of object (or noun) categories and bounding boxes
for all semantic roles, i.e., ni ∈ O is the object category of
semantic role ri, and bi ∈ R4 is the bounding box location
of semantic role ri. V andO denote the predefined ontology
of all possible verb and noun categories, respectively.

Currently, almost all existing GSR (or SR) models decom-
pose this task into two steps: verb classification and noun
detection (or classification). Thus, for GSR:

p(G|I) = p(v,R|I)︸ ︷︷ ︸
Verb classification

p(N ,B|v,R, I)︸ ︷︷ ︸
Noun detection

. (1)

In this paper, we propose a novel Situation Transformer
(dubbed as SituFormer). It follows the same spirit and con-
sists of two components: a Transformer-based Noun Model

1These predefined semantic roles can be easily retrieved from
the verb lexicon such as PropBank or FrameNet.
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Figure 4: The architecture of TNM.

(TNM) and a Coarse-to-Fine Verb Model (CFVM). As illus-
trated in Figure 3, given an image I , we first use a coarse-
grained verb model (Verb-c) to propose a set of verb can-
didates (and their corresponding semantic roles), denoted as
Vc and {R}c. Then, for all verb candidates, the TNM will
output their respective noun categories {N}c and bounding
boxes {B}c. Lastly, a lightweight fine-grained verb model
(Verb-f) selects the final verb frame prediction. Thus, we re-
formulate GSR as:
p(G|I) = p({G}c|I)p(G|{G}c, I)

= p(Vc, {R}c, {N}c, {B}c|I)p(G|{G}c, I)

= p(Vc, {R}c|I)︸ ︷︷ ︸
Verb-c

p({N}c, {B}c|Vc, {R}c, I)︸ ︷︷ ︸
TNM

p(G|{G}c, I)︸ ︷︷ ︸
Verb-f

,

where {G}c denotes the set of all verb frame candidates.
In this section, we first introduce each component of Situ-

Former, including TNM and CFVM (Verb-c and Verb-f).
Then, we demonstrate the details of all training objectives.

Transformer-based Noun Model (TNM)
The noun model TNM is designed to detect (i.e., classify and
ground) all semantic roles of a verb frame. Inspired from re-
cently proposed end-to-end transformer-based object detec-
tor DETR (Carion et al. 2020), TNM is also a transformer-
based model. As shown in Figure 4, TNM consists of four
sub-networks: a CNN backbone, a transformer encoder, a
transformer decoder and a noun detection head.

Given image I , the CNN backbone first extracts a feature
map XN ∈ RC×H×W . Since the input for the transformer
encoder is a sequence of tokens, the feature map XN is flat-
tened to a sequence of “visual” tokens: [xN

1 , ...,x
N
H∗W ], and

each token xN
i ∈ RC is a C-dim visual feature. Then, the

visual token sequence is fed into the transformer encoder:[
x̃N
1 , ..., x̃

N
H∗W

]
= F TNM

enc (
[
xN
1 , ...,x

N
H∗W

]
), (2)

where F TNM
enc is a vanilla transformer encoder, which consist

of a position embedding layer, and a set of stacked multi-
head self-attention layers. We refer the readers to the original
Transformer (Vaswani et al. 2017) paper for more details.

Given the encoded visual feature X̃N = [x̃N
1 , ..., x̃

N
H∗W ],

verb v and its semantic role set R = {r1, ..., rm}, we first
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Figure 5: The architecture of CFVM, including Verb-c (left)
and Verb-f (right).

encode the verb v and all semantic roles {ri} into query
embeddings: qv and {qri}. Then, these query embeddings
are regarded as the input queries for the transformer decoder
(cf. Figure 4), and the encoded visual feature X̃N is the key
and value for the cross-attention layer in the decoder, i.e.,

[xv,xn1
, ...,xnm

] = F TNM
dec (X̃N , [qv, qr1 , ..., qrm ]), (3)

where xv and xni
are the output of query qv and qri , re-

spectively. Lastly, a lightweight noun detection head (MLP)
predicts the object category and regresses the normalized
bounding box coordinates for each semantic role query, i.e.,

{ni, bi} = MLP(xni
), (4)

and the output of TNM is the set of object categories and
bounding boxes of all roles, i.e., N and B (cf. Eq. (2)).
Differences with DETR. Although TNM has a similar ar-
chitecture with DETR, there are several notable differences:
1) Meaning of decoder input queries. For DETR, these
queries can be regarded as priors for potential objects with
different sizes and locations. Thus, the query number should
be large (e.g., 100 queries for COCO). Instead, each query in
TNM is the embedding of a semantic role, which is respon-
sible for detecting this specific role, and the maximum num-
ber of semantic roles is small (e.g., 6 queries for SWiG). 2)
Matching algorithm for optimization. For DETR, a matching
algorithm is needed for optimal bipartite matching between
ground-truth and set predictions. While in TNM, there is a
perfect one-to-one match for each role query. Thanks to this
design, TNM can not only take advantage of the prior knowl-
edge of the verb but also reduce computational complexity.

Coarse-to-Fine Verb Model (CFVM)
CFVM is a two-step verb classification model, which con-
sists of two modules: 1) a coarse-grained verb model (Verb-
c) to propose a set of verb candidates; 2) a fine-grained
verb model (Verb-f) to make the final verb prediction. The
overview architecture of CFVM is illustrated in Figure 5.
Coarse-grained Verb Classification. The coarse-grained
verb classification model (Verb-c) aims to propose a set of

verbs as initial candidates. Since the verb (or activity) clas-
sification task inherently needs to model the semantic rela-
tionships between multiple objects in the image, we combine
a CNN backbone with a transformer encoder as our Verb-c
(cf. Figure 5 (left)), i.e., the self-attention mechanism in the
transformer encoder helps to capture global context in the
image. Instead, almost all existing GSR (or SR) methods di-
rectly use a plain CNN backbone (e.g., ResNet or VGG) as
their verb classification model.

Similarly to the TNM, for given image I , the CNN back-
bone first extracts feature map XV ∈ RC×H×W , and XV is
flatten to a sequence of tokens: [xV

1 , ...,x
V
H×W ]. Following

the convention of BERT-family works (Devlin et al. 2019),
we also add a learnable embedding xcls of special token
[CLS] to the token sequence. Then, this augmented token
sequence is fed into the transformer encoder FVerb-c

enc :[
x̃cls, x̃

V
1 , x̃

V
2 , ...

]
= FVerb-c

enc (
[
xcls,x

V
1 ,x

V
2 , ...

]
). (5)

The encoded embedding of [CLS] token (i.e., x̃cls) is used
to represent the gist of the whole image, and it is fed into
a fully-connected layer to make the coarse verb prediction.
We select top-N verbs as candidates and denote them as Vc.
Fine-grained Verb Classification. Up to now, for image I ,
we have obtained the top-N candidate verbs Vc and semantic
role set {R}c from Verb-c. Then, for each candidate vi ∈ Vc
andRi ∈ {R}c, we can also get the corresponding semantic
role detection results from noun model TNM:

Ni,Bi = TNM(vi,Ri, I). (6)

Thus, we obtain the semantic role detection results for all N
verb candidates: {N}c and {B}c.

To determine the final verb prediction, we first retrieveM
support images from the training set for each verb candidate
vi ∈ Vc. The support image set for vi is denoted as Ii =

{I(i)1 , ..., I
(i)
M }. Each support image I(i)j is retrieved based

on the semantic role feature similarity scores S(I, Ik), i.e.,

Ii = arg top-MIk∈Di
S(I, Ik), (7)

where Di is the set of all training set images with ground-
truth verb category vi. The semantic role feature similarity
score S(·) is the average cosine similarity of all roles:

S(I, Ik) =
1

m

m∑
i=1

sim(xI
ni
,xIk

ni
), (8)

where xI
ni

and xIk
ni

is the i-th semantic role features from the
output of TNM (cf. Eq. (3)) of image I and Ik, respectively.
Similarity function sim is cosine similarity.

After retrieving support image set Ii for each verb can-
didate vi, our fine-grained verb model (Verb-f) uses a
lightweight MLP φ(·) to map the original coarse verb feature
x̃cls (cf. Eq. (5)) into a more distinctive embedding space,
i.e., φ is designed to project coarse verb features of image
I and all retrieved support images to focus on fine distinc-
tive details. (We train φ(·) with hard triplets, and the training
details are in the following sections).

In the inference stage, given the coarse-grained classifi-
cation scores {p(v1), p(v2), ..., p(vN )} of all top-N candi-
dates, the Verb-f model re-ranks all verb candidates based on
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the similarity scores between image I and support images.
If p(v1) >= ε (ε is a threshold score), the final verb predic-
tion is v1, i.e., the original Verb-c model performs well. If
p(v1) < ε, the re-ranked scores pr(vi) is calculated as:

pr(vi) = β
∑
Ik∈Ii

sim(φ(x̃I
cls), φ(x̃Ik

cls)) ∗ S(I, Ik) + αp(vi),

(9)
where α and β are weights for the trade-off between orig-
inal verb prediction probability p(vi) from Verb-c and the
confidence from support image set in Verb-f.

Training Objectives
In the training stage, we train all components in SituFormer
separately, including TNM, Verb-c, and Verb-f:
Training Objective of TNM. We denote the ground-truth
noun categories and bounding boxes as N gt,Bgt and the
predicted noun categories and bounding boxes as N̂ , B̂. The
detection loss LTNM of TNM is calculated as:

LTNM =
m∑
i=1

[
XE(ngti , n̂i) + Lbox(bgti , b̂i)

]
, (10)

where XE is the cross-entropy loss and Lbox consists of a
generalize IoU loss (Rezatofighi et al. 2019) and a L1 re-
gression loss.
Training Objective of Verb-c. We denote the ground-truth
verb category as vgt and the predicted verb category as
v̂.The classification loss of Verb-c Lverb-c is calculated as:

Lverb-c = XE(vgt, v̂). (11)

Training Objective of Verb-f. For each training sample Ia
(anchor image), we regard all support images with the same
ground-truth verb category as hard positive sample set I+,
and all support images for other verb categories as hard neg-
ative sample set I−, i.e., I− = {Ii}\I+. The margin-based
triplet loss of Verb-f Lverb-f is calculated as:

Lverb-f = max(0, τ + sim(φ(x̃Ia

cls), φ(x̃
Xn

i

cls ))

− sim(φ(x̃Ia

cls), φ(x̃
Xp

i

cls ))),
(12)

where Xp
i ∈ I+ is the hard positive image and Xn

i ∈ I− is
the hard negative image. τ is a margin value.

Experiments
Experimental Settings
Datasets. We evaluated our method for GSR on the chal-
lenging SWiG benchmark (Pratt et al. 2020). It is an exten-
sion dataset of the SR dataset imSitu (Yatskar, Zettlemoyer,
and Farhadi 2016). Specifically, each image in imSitu is an-
notated with three verb frames by three annotators. SWiG
adds bbox annotations for all visible semantic roles (63.9%
roles have bbox annotations). SWiG consists of 126, 102 im-
ages with 9, 928 object categories, 190 semantic role types
and 504 verb categories. The official splits are 75K/25K/25K
images for training, validation, and test set, respectively.
Evaluation Metrics. We followed prior work (Pratt et al.
2020) to evaluate our method on five metrics: 1) verb: The

accuracy of verb prediction. 2) value: The accuracy of noun
prediction w.r.t each semantic role. 3) value-all (val-all):
The accuracy of noun prediction w.r.t. the whole semantic
role set. 4) grounded-value (grnd): The accuracy of noun
prediction with correct grounding w.r.t each semantic role.
By “correct grounding”, we mean the IoU between pre-
dicted bounding box and ground-truth is large than thresh-
old 0.5. 5) grounded-value-all (grnd-all): The accuracy of
noun prediction with correct grounding w.r.t to the whole se-
mantic role set. Meanwhile, there are three different evalua-
tion settings: 1) Ground-Truth-Verb: The ground-truth
verbs is assumed to be known. 2) Top-1-Verb: verb re-
ports the top-1 accuracy, and all other four value metrics are
considered wrong if verb is wrong. 3) Top-5-Verb: verb
reports the top-5 accuracy, and all other four value metrics
are conditioned on the correct verb having been predicted.
Implementation Details. The CNN backbone of both TNM
and CFVM were ResNet-50 pretrained on ImageNet. The
decoder of TNM used sine position encodings. For TNM,
we followed DETR and set the layer number of the encoder
and decoder as 6 by default except as otherwise noted. Fol-
lowing prior works, TNM only predicted the top 2, 000 most
frequent object categories, which covers about 95% noun
annotations. TNM was trained with AdamW optimizer and
the initial learning rate of transformer and CNN backbone
was set to 10−4 and 10−5 respectively. We trained it for 20
epoch with a learning rate drop by a factor of 10 after 10
epoch on 4 V100 GPUs. The total batch size was set to 128.
Verb-c model had the same training strategy with TNM. For
Verb-f model, the hard negative sample set was constructed
from the top-5 verb candidates, and the size of support im-
age set of each verb was set to 10. At each training step, we
randomly chose a negative sample and a positive sample to
compose the training triplet. Verb-f was trained for 20 epoch
with an initial learning rate 5× 10−4 drop by a factor of 10
after 10 epoch. The margin τ was set to 0.2. In the inference
stage, the threshold score ε = 0.4 and weights α = β = 0.5.

Comparisons with State-of-the-Arts
Settings. We compared our SituFormer with state-of-the-art
GSR and SR models on SWiG dataset. Based on their model
architectures, existing SR models are be coarsely grouped
into: 1) CRF-based models: CRF (Yatskar, Zettlemoyer, and
Farhadi 2016) and CRF+DataAug (Yatskar et al. 2017).
2) RNN-based models: VGG+RNN (Mallya and Lazebnik
2017). 3) GNN-based models: FC-Graph (Li et al. 2017),
Kernel-Graph (Suhail and Sigal 2019). 4) Attention-based:
CAQ (Cooray, Cheung, and Lu 2020). For GSR, all existing
model: ISL and JSL (Pratt et al. 2020) are RNN-based. The
results on the development (dev) set and test set are illus-
trated in Table 1 and Table 2, respectively.
Results under Ground-Truth-Verb Setting. Under
this setting, we can evaluate the model performance on se-
mantic role detection (i.e., TNM). Based on results on Ta-
ble 1 and Table 2, we can have the following observations: 1)
For role classification (i.e., value and val-all metrics), Situ-
Former outperforms all existing GSR (and SR) models on
both metrics. Compared to the best performer Kernel-Graph,
we achieve 2.94% (76.08% vs. 73.14%) and 0.47% absolute
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Models Top-1-Verb Top-5-Verb Ground-Truth-Verb
verb value val-all grnd grnd-all verb value val-all grnd grnd-all value val-all grnd grnd-all

Situation Recognition Models
CRF 32.25 24.56 14.28 – – 58.64 42.68 22.75 – – 65.90 29.50 – –
CRF+DataAug 34.20 25.39 15.61 – – 62.21 46.72 25.66 – – 70.80 34.82 – –
VGG+RNN 36.11 27.74 16.60 – – 63.11 47.09 26.48 – – 70.48 35.56 – –
FC-Graph 36.93 27.52 19.15 – – 61.80 45.23 29.98 – – 68.89 41.07 – –
CAQ 37.96 30.15 18.58 – – 64.99 50.30 29.17 – – 73.62 38.71 – –
Kernel-Graph 43.21 35.18 19.46 – – 68.55 56.32 30.56 – – 73.14 41.68 – –
Grounded Situation Recognition Models
ISL 38.83 30.47 18.23 22.47 7.64 65.74 50.29 28.59 36.90 11.66 72.77 37.49 52.92 15.00
JSL 39.60 31.18 18.85 25.03 10.16 67.71 52.06 29.73 41.25 15.07 73.53 38.32 57.50 19.29
SituFormer
Gains (∆)

44.32 35.35 22.10 29.17 13.33 71.01 55.85 33.38 45.78 19.77 76.08 42.15 61.82 24.65
+4.72 +4.17 +3.25 +4.14 +3.17 +3.30 +3.79 +3.65 +4.53 +4.70 +2.55 +3.83 +4.32 +5.36

Table 1: Performance (%) of state-of-the-art GSR (and SR) methods on SWiG dataset development (dev) set.

Models Top-1-Verb Top-5-Verb Ground-Truth-Verb
verb value val-all grnd grnd-all verb value val-all grnd grnd-all value val-all grnd grnd-all

ISL 39.36 30.09 18.62 22.73 7.72 65.51 50.16 28.47 36.60 11.56 72.42 37.10 52.19 14.58
JSL 39.94 31.44 18.87 24.86 9.66 67.60 51.88 29.39 40.60 14.72 73.21 37.82 56.57 18.45
SituFormer
Gains (∆)

44.20 35.24 21.86 29.22 13.41 71.21 55.75 33.27 46.00 20.10 75.85 42.13 61.89 24.89
+4.26 +3.80 +2.99 +4.36 +3.75 +3.61 +3.87 +3.88 +5.40 +5.38 +2.64 +4.31 +5.32 +6.44

Table 2: Performance (%) of state-of-the-art GSR methods on SWiG dataset test set.

performance gains under value and val-all metrics (on the
dev set), respectively. 2) As for the grounding metrics (i.e.,
grnd and grnd-all metrics), SituFormer also outperforms all
existing GSR models. Compared to JSL, performance gains
are much more significant, e.g., 5.36% (24.65% vs. 19.29%)
and 6.44% (24.89% vs. 18.45%) absolute performance gains
under grnd-all metric on dev and test set, respectively.
Results under Top-N-Verb settings. From the verb met-
ric, we can observe that SituFormer outperforms all exist-
ing GSR (and SR) models on both top-1 and top-5 verb ac-
curacy, which demonstrate the superiority of CFVM. With
the SOTA results of both TNM and CFVM, SituFormer also
achieves the best results on val-all, grnd and grnd-all under
this setting. Although SR model Kernel-Graph outperforms
SituFormer slightly on the value metric (i.e., 0.47% under
Top-5-Verb setting), they actually significantly sacrifice
their performance on val-all metric due to the joint training
of their verb model and noun model.

Ablation Studies
We conducted extensive ablation studies to demonstrate the
effectiveness of each component of our Situformer.
Effectiveness and Hyper-parameters Choices of CFVM.
Effectiveness of Coarse-to-Fine Classification. To validate
the effectiveness of Verb-f, we conducted ablations by using
only Verb-c as the verb model and TNM as the noun model
(i.e., denoted as “SituFormer w/o Verb-f”). The results under
Top-1-Verb setting are reported in Table 3. From the re-
sults, we can observe that the Verb-f model (i.e., the coarse-
to-fine strategy) can directly improve the final top-1 verb ac-
curacy by 1.12%. Accordingly, all value-related (i.e., value,
val-all, grnd, grnd-all) metrics are further boosted.

Models verb value val-all grnd grnd-all
SituFormer 44.20 35.24 21.86 29.22 13.41
w/o Verb-f 43.08 34.20 21.24 28.45 12.90

Table 3: Performance (%) under Top-1-Verb setting.

Layer Numbers of the Encoder in Verb-c. We investigated
verb accuracy (both top-1 and top-5) of Verb-c with differ-
ent layer numbers of transformer encoder (up to 6), and the
results are reported in Table 4 (a). The baseline model (de-
noted as 0 layer) is the ResNet-50 model, which is the same
verb model used in JSL. From Table 4 (a), we can observe
that applying the transformer encoder can gradually improve
the verb accuracy (e.g., 43.08% vs. 39.94%). And when the
stacked layer number more than 4 layers, their performances
reach the plateaus. To trade-off between accuracy and com-
putation, we used four encoder layers in our Verb-c model.
The Size of Support Images Set in Verb-f. We explored var-
ious support image set sizes to show the robustness of the
retrieve-and-rerank scheme of the verb-f, and we reported
the top-1 verb accuracy in Table 4 (b). From the results, we
can observe that larger support image set size can perform
better but the accuracy plateaus when n > 5. This is because
the possible number of hard support image is limited.
Query Designs in TNM. Since one of key differences be-
tween TNM and DETR-family models is the design of de-
coder queries, we also investigated several different designs:
Importance of Verb Query (V-queries). Since the verb itself
provide useful inductive bias for semantic role prediction,
it is intuitive that introducing auxiliary verb query is help-
ful. To validate the effectiveness of the verb query, we con-
ducted ablations under the Ground-Truth-Verb setting,
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Figure 6: Left: For each image, the top-5 verb candidates and re-ranked verbs are shown below “Verb-c” and “Verb-f”, re-
spectively. The semantic role detection are shown in the third row. Incorrectly object category prediction is scratched out with
ground-truth shown in red brackets. The correct groundings are shown in solid boxes while the incorrect ones shown in dotted
boxes. ∅ means no ground-truth grounding for that role. Right: The retrieved support images of top-4 verb candidates for I4.

Layers Top-1 Top-5 Layers Top-1 Top-5
0(JSL) 39.94 67.60 4 43.08 71.21

1 41.88 70.10 5 42.74 71.22
2 42.52 70.95 6 42.34 70.56
3 42.79 70.93

(a) Top-1 & top-5 verb accuracy w.r.t. different layer num-
bers of the encoder in Verb-c (i.e., w/o Verb-f).

Support Imgs 1 3 5 10
Top-1 43.50 43.96 44.19 44.20

(b) Verb accuracy w.r.t. sizes of support images.

Table 4: Results (%) on different hyper-parameters choices
of CFVM.

V-query Shared
R-query

value val-all grnd grnd-all

! ! 75.85 42.13 61.89 24.89
% ! 74.17 39.37 60.16 22.86
! % 73.26 38.13 57.02 20.42
% % 70.96 34.87 55.37 19.02

Table 5: Results (%) of different query designs in TNM un-
der Ground-Truth-Verb setting.

and the results are reported in Table 5. From the results, we
can observe that the verb query brings 1.68% and 2.30% ab-
solute performance gains on the value metric. It is also worth
noting that TNM without verb query already achieves new
state-of-the-art performance on all four metrics.
Effectiveness of Sharing Role Queries (R-queries). To mit-
igate semantic sparsity issue, TNM shares the role em-
beddings as queries among all different verbs. To val-
idate the effectiveness, we conducted ablations by us-
ing TNM without sharing role queries. Results under
Ground-Truth-Verb setting are reported in Table 5.
From the results, we can observe that the improvement of

sharing role queries is obvious (e.g., ≈ 2% and 3% perfor-
mance gains for the value and val-all metrics.
Effectiveness of parallel decoding. As shown in Table 1 &
Table 2 Ground-Truth-Verb setting where the effect of verb
model is exempted, the quantitative improvements to ISL
and JSL attest to the effectiveness of parallel decoding.
Qualitative Results. In Figure 6, we display coarse-to-fine
verb predictions and semantic role detection results of some
images (I1∼ I4) from the test set (left) and retrieved support
image sets (right). For all four examples, their initial top-
1 verb predictions from Verb-c are wrong but the ground-
truth verbs are probabilities ascend to the 1st place after re-
ranking by Verb-f. We can see that discriminative details are
needed to distinguish ground-truth verb from these candi-
dates (e.g., tiny interaction between the cat and the stick in
I4). We also display some errors of TNM. In I2, the AGENT
of Swinging is incorrectly predicted as man. This error
may be caused by the rare occurrence of “a cat is swing-
ing”. While in I3, the incorrect team for STUDENT is actu-
ally more reasonable than the ground-truth people. On the
right part of Figure 6, we show retrieved support images of
Pawing and the top-3 wrong predicted verbs.

Conclusions
In this paper, we argue that the existing two-stage GSR mod-
els have drawbacks in both verb prediction stage and seman-
tic role detection stage. To alleviate these drawbacks, we
propose SituFormer which consists of a two-step coarse-to-
fine verb model and a transformer-based noun model which
uses the flexibility of transformer to integrate the recognition
and grounding of roles. We achieved significant gains over
all metrics on challenging benchmark SWiG, and conducted
ablative analysis for each component.
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