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Abstract

Astronomical interferometry enables a collection of tele-
scopes to achieve angular resolutions comparable to that of
a single, much larger telescope. This is achieved by com-
bining simultaneous observations from pairs of telescopes
such that the signal is mathematically equivalent to sam-
pling the Fourier domain of the object. However, reconstruct-
ing images from such sparse sampling is a challenging and
ill-posed problem, with current methods requiring precise
tuning of parameters and manual, iterative cleaning by ex-
perts. We present a novel deep learning approach in which
the representation in the Fourier domain of an astronomical
source is learned implicitly using a neural field representa-
tion. Data-driven priors can be added through a transformer
encoder. Results on synthetically observed galaxies show that
transformer-conditioned neural fields can successfully recon-
struct astronomical observations even when the number of
visibilities is very sparse.

Introduction
Improvements in astronomical imaging have continuously
transformed humanity’s understanding of physics and the
universe. Currently, the highest angular resolutions are
achieved using the technique of astronomical interferome-
try, which combines measurements from multiple telescopes
to approximate that of a single telescope with a much larger
aperture. Astronomical observations using radio interferom-
etry have generated numerous scientific discoveries, includ-
ing the first resolved images of protoplanetary disks (ALMA
Partnership et al. 2015), circumplanetary disks (Benisty
et al. 2021), and the event horizon of a supermassive black
hole (Event Horizon Telescope Collaboration 2019).

A single telescope’s angular resolution θ relates to its di-
ameter as θ ∝ λ

D , where λ is the observed wavelength and
D is the diameter of the aperture. Interferometers, on the
other hand, employ many telescopes at many different loca-
tions, and do not image an object directly. Instead, each pair
of telescopes in the array measures a point in the spatial fre-
quency domain of the celestial object. The effective angular
resolution of a pair of telescopes is θ ∝ λ

B , where B is the
projected pairwise distance orthogonal to the line of sight
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to the source. Given this pairwise distance relationship to
effective angular resolution, B can be maximized on Earth
by utilizing a global network of telescopes, a class of inter-
ferometry referred to as very-long-baseline interferometry
(VLBI). One such example is the Event Horizon Telescope
(EHT), which observed the M87 supermassive black hole
with 25 µarcsec resolution at 1.3 mm wavelength achieved
through VLBI baselines up to 10,700 km (Event Horizon
Telescope Collaboration 2019).

However, as longer baselines are added to an interfero-
metric array, the relative sparsity of the spatial frequency
domain samples also increases. Recovering the original ce-
lestial image based only on these sparse measurements is a
highly ill-posed problem which depends strongly on appro-
priate priors to constrain an infinite solution space of valid
images. This is the primary challenge of interferometric im-
age reconstruction.

Astronomical interferometry falls into a broader class of
inverse problems, which generally involve the reconstruc-
tion of an unknown signal based on limited observations
from a typically non-invertible forward process. Many com-
putational imaging tasks, such as deblurring, deconvolu-
tion, and inpainting, also fit under this framework and have
achieved success through neural networks.

The work presented in this paper incorporates recent ad-
vancements in the computer vision and deep learning com-
munities into a novel method for interferometric image re-
construction. Our main contributions are outlined as follows:

• We introduce a “neural interferometry” approach based
on coordinate-based neural fields to perform sparse-to-
dense inpainting in the spectral domain

• We show that learned priors can be incorporated through
conditioning via a transformer encoder in a data-driven
fashion

We demonstrate the effectiveness of our approach on a
large dataset of astronomical images. We hope this work fur-
ther inspires additional cross-pollination between the astro-
physics and computer vision communities.

Interferometry Background
A cornerstone of astronomical interferometry is the Van
Cittert-Zernike theorem, which states that the Fourier trans-
form of the spatial intensity distribution I(l,m) of a distant,
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(a) GT scene (b) visibilities

(c) dirty image (d) our reconstruction
Figure 1: We reconstruct the image using the sparse mea-
surements in the spectral domain. (a) The ground truth
scene being imaged using Very-Long-Baseline Interferom-
etry (VLBI). (b) The measured sparse visibility. Due to
small field-of-view spanned by the imaged scene, the spec-
tral measurements span a limited central region of the full
spectrum, as shown in the inset. (c) The image reconstructed
directly using the sparse visibilities in (b). (d) The image re-
constructed using our proposed method.

incoherent source is equal to a measurable complex value
called the “visibility”, V (u, v). Thus, it is possible to con-
vert to and from the image domain (l,m) and the Fourier
domain (u, v) via the following transform pairs,

V (u, v) =

∫
l

∫
m

e−2πi(ul+vm)I(l,m)dldm (1)

I(l,m) =

∫
u

∫
v

e2πi(ul+vm)V (u, v)dudv. (2)

The telescope baselines lie in (u, v) space, which is di-
mensionless (normalized by observed wavelength), and each
baseline corresponds to a unique coordinate which samples
one value of the complex visibility.

A sharp image I(l,m) can be recovered with high fidelity
only if the full spectral domain has been densely sampled. In
reality, however, dense sampling becomes exceedingly dif-
ficult when imaging celestial objects of smaller angular size
at higher angular resolution.

Figure 1 illustrates the challenge in image reconstruction
based on the sparse samplings in the Fourier domain. Even
with large baselines, the angular resolution is still rather lim-
ited due to the vast distance between the imaged scene and
the Earth. As a result, the spectral measurements only span
a limited range of the full spectrum, as shown in the inset in
Figure 1 (b). In addition, the samples are sparse in the spec-
tral domain due to limited number of viable observatories

built on the Earth. The small sampling range and sparse sam-
pling density make it difficult to faithfully recover even the
low frequency component of the scene, as shown in Figure 1
(c). In this paper, we propose a learning-based method to re-
cover the image from sparse spectral measurements within a
limited range.

Related Work
Interferometric Image Reconstruction
Two primary classes of imaging algorithms are used in the
field of interferometry: the standard CLEAN approach (e.g.,
Högbom 1974; Clark 1980) and regularized maximum like-
lihood (RML) approaches (e.g., Narayan and Nityananda
1986; Wiaux et al. 2009).

CLEAN The traditional approach used throughout radio
interferometry is the CLEAN algorithm. CLEAN is an
inverse-modeling approach for performing a deconvolution
to recover the original image, i.e., F−1[V (u, v)W (u, v)] =
F−1[V (u, v)] ∗ F−1[W (u, v)] = I(l,m) ∗ F−1[W (u, v)].
The particular configuration of the telescope array W (u, v)
forms a corresponding point-spread function in the im-
age plane, F−1[W (u, v)] or ”dirty beam”. The image con-
structed directly from the complex visibilities (“dirty im-
age”) is equivalent to the dirty beam convolved with the orig-
inal celestial image I(l,m). Deconvolution is approximated
by iteratively subtracting the peak emission (convolved with
the dirty beam) from the dirty image while building up a
model of the “clean” emission.

CLEAN approximates the astronomical image using a
collection of point sources, so this method is limited in its
ability to reconstruct objects with extended emission. Addi-
tionally, self-calibration is generally required in cases where
time-varying noise affects the visibility phase and ampli-
tude.

RML RML is a forward-modeling approach that looks
for an image that is consistent with the complex visibilities
while optimizing for other properties such as smoothness or
sparsity. RML methods can perform image reconstruction
using either the complex visibilities or closure quantities
that are more robust to atmospheric noise at the expense of
fewer independent input values. Many RML methods have
been developed for the EHT, through approaches such as
sparse modeling (Honma et al. 2014; Akiyama et al. 2017),
Bayesian patch priors (Bouman et al. 2016), and maximum
entropy methods (Chael et al. 2018).

Neural Fields
Neural fields, also sometimes referred to as coordinate-
based neural representations, have recently gained pop-
ularity in the computer vision and computer graphics
communities with the advent of Neural Radiance Fields
(NeRF) (Mildenhall et al. 2020), DeepSDFs (Park et al.
2019), and Occupancy Networks (OccNet) (Mescheder et al.
2019). Neural field techniques approximate some (typically
low-dimensional) function by learning a set of network
weights that successfully reproduce a given set of input/out-
put mappings. For the case of DeepSDFs and OccNets, 3D
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Figure 2: Training a base model to fit the neural field. Given the ground truth image and frequency coverage, we simulate the
reference corresponding visibility using Eq. 1 based on the Van Cittert-Zernike theorem. The neural field Φ(u, v; Θ) utilizes
an architecture similar to that proposed by DeepSDF (Park et al. 2019) and NeRF (Mildenhall et al. 2020), shown here as an 8
layer MLP with a single skip connection and input positional encoding (PE). The MLP weights Θ are learned by minimizing
the reconstruction loss within the UV coverage in the frequency space. Note that, like NeRF, an unconditional model as shown
here must be re-trained from scratch every time the measured scene changes. Thus, we investigate additional conditioning
mechanisms to allow learned data priors and enable efficient single-shot feed-forward inference.

geometry is implicitly learned through level set supervision.
NeRF and its follow-up works accumulate occlusion densi-
ties along rays inside of a volumetric rendering paradigm.
Though conceptually quite simple, this general technique
has emerged as a leading performer for tasks like novel view
synthesis (Barron et al. 2021; Wang et al. 2021), superres-
olution (Chen, Liu, and Wang 2021), and 3D reconstruc-
tion (Niemeyer et al. 2020; Saito et al. 2019).

One main benefit of using a neural field representation
as opposed to an explicit, discrete representation (e.g. pixel-
based or voxel-based) is that the neural field can have con-
tinuously varying input coordinates. Handling continuous
coordinates in a pixel or voxel approach typically requires
some sort of interpolation scheme, with accuracy limited
by the density of the pixels/voxels. Coordinate-based neural
representations, on the other hand, are more naturally suited
to handle applications needing continuous coordinates, with
effective resolution only limited by the capacity of the net-
work (Davies, Nowrouzezahrai, and Jacobson 2020). Given
that interferometric measurements produce complex visibili-
ties that do not fall neatly onto integer coordinates, we found
it natural to model the (u, v) spectrum with a neural field.

Transformers
Starting with the seminal paper, Attention is All You
Need (Vaswani et al. 2017a), transformers and attention
mechanisms have become ubiquitous in the field of deep
learning. More recently, transformer-based approaches have
been successfully applied to computer vision, where con-
volutional network architectures previously tended to dom-
inate (He et al. 2016). The effective application of trans-
formers in computer vision domains such as classification
(ViT; Dosovitskiy et al. 2020), detection (DETR; Carion
et al. 2020), dense prediction (DPT; Ranftl, Bochkovskiy,
and Koltun 2021), iterative perception (Perceiver; Jaegle
et al. 2021b,a), and autoregressive generation (PixelTrans-
former; Tulsiani and Gupta 2021), (DALL-E; Ramesh et al.

2021) show that transformer architectures can be extremely
general.

In particular for neural interferometry, we are attracted to
the transformer architecture due to its natural permutation
invariance. That is, the visibility patterns that result from the
interferometric measurements have no ordering. As such,
the transformer is well-suited to ingest this kind of data as a
means of conditioning our neural field representation.

Method
Instead of modifying the image domain directly, we present
a deep learning approach designed to learn the neural field
within the Fourier domain based only on the sparsely sam-
pled visibilities V̂ (u, v).

Base Model
Given the sparsely sampled visibilities V̂ (u, v), rather than
directly estimate the complex visibilities V (u, v), we aim to
find a neural field Φ(u, v) such that it satisfies the constraint
defined by a functional F that relates Φ with the sparse mea-
surements:

F (Φ(u, v), V̂ (u, v)) = 0 (3)
One straightforward selection for functional F is the norm-
2 function which encourages the reconstruction of the mea-
surements. We propose approximating the implicit function
Φ(u, v) with a Multi-Layer Perceptron (MLP) parameter-
ized by its weights Θ. The intuition of this approximation
is that the continuous coordinate input of the MLP makes
it possible to learn the latent manifold from data more ef-
ficiently than traditional models (Davies, Nowrouzezahrai,
and Jacobson 2020). Based on this property, there have been
several recent successful applications of MLP-based models
for learning image synthesis and 3D representations (Sitz-
mann et al. 2020; Mildenhall et al. 2020).

In our case, we aim to learn the representation in the fre-
quency domain given the sparse visibility measurements.
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Figure 3: Proposed model. The Transformer maps the sparse spectral measurements to output tokens that condition the layers
of the MLP via FiLM (Perez et al. 2018; Dumoulin et al. 2018). During training, the weights of the Transformer and MLP are
jointly learned. During testing, given the queried spectral coordinates (uq, vq) on a dense grid, the dense spectral reconstruction
can be estimated with a single forward pass. Note that we use 8 output tokens to condition the 8 MLP layers. We include only
three output tokens here for simplicity of illustration.

More specifically, during training we optimize the MLP
weights Θ to minimize the reconstruction loss in the fre-
quency domain:

min
Θ

∑
u,v∈ΩM

|Φ(u, v; Θ)− V̂ (u, v)|2 (4)

where ΩM is the subset of the frequency domain where the
frequency coverage function W (u, v) = 1. In implementa-
tion, we use a NeRF-style (Mildenhall et al. 2020) positional
encoding (axis-aligned, powers-of-two frequency sinusoidal
encodings) to make it easier for the MLP to learn high fre-
quency information (Tancik et al. 2020a).

Figure 2 illustrates the process of training a neural field
using the sparse measurements of a single synthetic scene.
Like the NeRF-style methods, this requires retraining from
scratch every time the measured scene changes. However,
the interferometric situation is even more challenging: the
sparse visibility patterns common to many VLBI configura-
tions represent an extreme case of spectral inpainting. Un-
like the strong “deep image prior” inductive biases shown
to be present in convolutional networks for spatial inpaint-
ing (Ulyanov, Vedaldi, and Lempitsky 2018), the natural in-
ductive biases of MLP-based neural fields for spectral in-
painting were found to be unsuitable under such sparse guid-
ance. Thus, we aim to extend the learned neural field by
adding a learning-based prior.

Learning Priors from Data
With the proposed setup above, the weights of this network
will be overfit to a single set of observations and cannot gen-
eralize. Further, when the sampling pattern becomes very
sparse, such as in the case of VLBI, the reconstruction ca-
pability becomes poor. Due to these challenges, we propose
a Transformer-based encoder that can learn appropriate data
priors, given many observations. An added benefit of this
approach is that, opposed to a computationally expensive
NeRF-style optimizer, our proposed data-conditional con-
struction needs only a single forward pass at inference time.

Transformer Encoded MLP Our chosen approach for
learning prior knowledge from data is through a Transformer

encoder. Compared with the CNN-based architecture, the
Transformer architecture does not require the the input data
to be defined on a regular grid such as discrete 2D image
or 3D voxels. Instead, with continuous positional encoding
such as a sinusoidal function, we can map the inputs defined
on a continuous domain to the output tokens with a Trans-
former. As a result, a Transformer encoder is more suitable
to encode the sparse visibilities measured on the continuous
spectral (u, v) coordinates.

Our Transformer architecture is based on similar encod-
ing architectures from (Vaswani et al. 2017b; Dosovitskiy
et al. 2021). We feed in individual tuples of spectral (u, v)
coordinates and complex visibilities as the inputs. The spec-
tral coordinates are positionally encoded before being con-
catenated with the complex visibilities to form the input to-
kens. Then, the input tokens are mapped to the latent tokens
via multi-headed self-attention layers.

Conditioning the Neural Field Each output token mod-
ulates a corresponding layer of the MLP through a data-
dependent scale and bias to the ith layer’s activation xi. This
type of conditioning is known as FiLM (Perez et al. 2018;
Dumoulin et al. 2018) and can be defined as a modulation of
xi in terms of its corresponding token ti,

FiLM(xi) = γ(ti)⊙ xi + β(ti) (5)

In our experiments, we use an 8-layer MLP and 8 output
tokens for the Transformer. Both γ(·) and β(·) are imple-
mented as simple affine layers with non-linearities.

The architecture of the Transformer Encoder that encodes
the visibilities into FiLM conditioning variables is shown
in Figure 4. The Transformer takes as input the continuous
spectral coordinates (u, v) and the complex measurements
as tuples. The spectral coordinates are mapped into posi-
tional encoding (PEs) while the complex measurements are
treated as 2D input and linearly embedded. The dimensions
of the PE and linear embedding are both 512, with PE be-
ing the Random Fourier Embedding (Tancik et al. 2020b).
The embedded measurements and the PEs are concatenated
to form the input tokens to the Transformer layers.

The multi-headed self-attention layers all have five heads.
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Figure 4: Architecture of the Transformer Encoder that en-
codes the visibilities into FiLM conditioning variables. The
Transformer takes as input the continuous spectral coordi-
nates (u, v) and the complex measurements as tuples. The
spectral coordinates are mapped into positional encodings
(PEs) while the complex measurements are treated as 2D
input and linearly embedded. The embedded measurements
and the PEs are concatenated to form the input tokens to
the transformer layers. The MLPs between two neighboring
Multiheaded Self-Attention layers share the same weights.
The output tokens are used as the conditioning variables in
the following FiLM layers to condition the MLP layers.

The two-layer MLPs between two neighboring self-attention
layers share weights. The 1024-dimension output tokens are
used as the conditioning variables in the following FiLM
layers to condition the MLP layers. We use the same token
reduction methods as in (Dosovitskiy et al. 2020) - (1) either
the output tokens from the final attention layer are linearly
weighted or (2) only the first 8 tokens are used for FiLM
conditioning. We found these two reduction methods per-
form equally well.

The Transformer-based architecture is suitable for encod-
ing the spectral visibility measurements since visibilities are
over the continuous, rather than grid-coordinate, spectral do-
main. The sparsity of the measurements makes it computa-
tional feasible to use each spectral sampling point as one to-
ken, given that the complexity of the transformer is quadratic
in the number of tokens. In addition, the dense connections
in the layers of the transformer (i.e. the self-attention layers)
make it possible to learn the long range correlation among
points that are far away in the spectral domain. This is a vi-
tal property to enable better image reconstruction since each
sample visibility in the spectral domain will influence the
entire image reconstruction, and thus the operations in the
spectral domain have non-local effects in the image domain.

During training, we jointly optimize the weights of the
MLP Θm and the Transformer Θt to minimize the recon-
struction loss in the frequency domain over random u, v
samples from a continuous bounded domain Ω, with bounds
determined by the maximum baseline of the telescope array:

min
Θm,Θt

∑
u,v∈Ω

|Φ(u, v; {ti}; Θm)− Vgt(u, v)|2

with {ti} = Ψ
(
{us, vs, V̂ (us, vs)}; Θt

)
,

(6)

where {us, vs, V̂ (us, vs)} is the set of sparse spectral sam-
plings, and {ti} is the set of output tokens from the Trans-
former.

Training Data
Datasets
To learn priors from a large amount of data, we synthe-
sized interferometric observations of the Galaxy10 (SDSS)
and Galaxy10 (DECals) datasets (Leung 2021). The two
Galaxy10 datasets each contain approximately 20,000 col-
ored galaxy images from the Sloan Digital Sky Survey and
DESI Legacy Imaging Survey, respectively (Lintott et al.
2008, 2011). Galaxy10 (SDSS) images are 69x69 while
Galaxy10 (DECals) images are 256x256.

Each image was converted to grayscale, scaled to
200x200 via cubic interpolation, and then synthetically ob-
served using the eht-imaging toolkit (Chael et al. 2018). The
observing parameters were set to match an 8-telescope EHT
configuration for observations of M87* from 2017 and can
be seen in Figure 5. Each synthetic observation returns a set
of sparse continuous visibilities {us, vs, V̂ (us, vs)}, which
acts as input to our Transformer model. We assume that the
visibilities are well-calibrated (e.g., no atmospheric phase
errors) in order to focus on the core reconstruction problem.

For ground truth, we sample the Fourier domain of our
dataset images in a 256x256 grid pattern set within the max-
imum baseline of the telescope array. These dense visibil-
ities are used for supervision during training. We note that
the image used for ground truth is one reconstructed from
the densely sampled grid of complex visibilities, and is thus
lower resolution than the latent Galaxy10 sample due to an
upper limit on the range of frequencies the array can access.

Results and Discussion
During testing, given the learned weights Θ, we can estimate
the visibility Ṽ (uq, vq) for any queried frequency (uq, vq)
even if (uq, vq) is not in the domain ΩM where the measure-
ments are available. This process is analogous to the extrap-
olation or inpainting operation, where the dense continuous
data is recovered from discrete and possibly sparse measure-
ments with analytical basis. However, we have replaced this
with the neural field in our case.

Comparison of Methods
We compare the images reconstructed by our transformer-
conditioned neural field model against standard baseline
methods. Figure 6 illustrates how each method performed
in reconstructing images from the Galaxy10 (DECals) syn-
thetic observations. The challenge of reconstruction is high-
lighted by the dirty images, with the sparse visibilities pro-
ducing strong side-lobes where real emission is not present.

Interpolation Baseline We show results from a naive ap-
proach of inpainting the real and imaginary spectral domains
through cubic interpolation. The images reconstructed from
these interpolated visibilities exhibit strong patterns of non-
physical artefacts.

CLEAN The CLEAN algorithm is able to reduce the
amount of spurious emission. However, the method’s as-
sumption of point-like sources is evident, as extended emis-
sion is not smoothly reconstructed.
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Figure 5: Dataset sample. The ground truth data are shown in the top row while the sparsely sampled data are shown on
the bottom. (Left) Reconstructed image based the complex visibilities; (Middle) the corresponding real visibility component;
(Right) the corresponding imaginary visibility component.

Deep Learning Baseline In order to provide a deep learn-
ing baseline, we also use a U-Net approach (Ronneberger,
Fischer, and Brox 2015) in which the inputs are the sparse
visibilities discretized to a regular 256x256 domain and
the supervised outputs are the ground truth reconstruction.
We trained the U-Net on Galaxy10 (SDSS) and tested on
Galaxy10 (DECals). The U-Net struggles to generalize to
the slight variations between the two datasets, reconstruct-
ing galaxies with jagged features.

Results Our transformer model was similarly trained on
Galaxy10 (SDSS) and tested on Galaxy10 (DECals). As
shown in the inset of Figure 1 (b), the visible measurements
only span a limited portion of the spectral domain in the cen-
ter, which only includes the low-frequency information in
the image. This makes the recovery of the celestial objects
of interest in the image difficult, given their small sizes in
FOV (e.g., galaxies that only span a small region in the im-
age). In spite of the challenge, our method faithfully recov-
ers the main objects in the image, as shown in Figure 6 (c).
The resulting image reconstruction matches well with the
ground truth reconstruction, reproducing the shape, orienta-
tion, and even multiplicity to a high degree. The quantitative
results are shown in Table 1. Our method performs better
than all the compared methods in terms of both MSE and
SSIM score. Our method is not only more accurate but also
much faster than the standard traditional method (CLEAN),
given that only one single forward pass of the network is
needed to get the queried spectral measurement values.

Model MSE ↓ SSIM ↑
Dirty 2.66e−3± 1.37e−3 0.358± 0.077

Cubic Interp. 9.85e−4± 1.18e−4 0.717± 0.043
CLEAN 2.40e−3± 1.39e−4 0.174± 0.007
U-Net 1.46e−3± 6.64e−4 0.786± 0.096

Transformer 4.46e−7± 2.55e−7 0.968± 0.018

Table 1: Quantitative Metrics on Test Set Observations. Our
proposed transformer outperforms both traditional methods
(CLEAN) and also a strong deep learning baseline (U-Net).

Conclusion and Future Work
Very long baseline interferometry (VLBI) presents an ex-
tremely challenging and ill-posed inverse problem in the
spectral domain. We demonstrate how a neural field ap-
proach combined with a transformer-based encoding and
conditioning mechanism can outperform established and
widely used interferometry techniques like CLEAN.

Innovations in the deep learning and computer vision
community are likely to bear fruit in related scientific fields,
like astronomy. In this work, we show one such example by
exploring a cross-pollination of techniques from deep learn-
ing with astronomical imaging. We hope this work can po-
tentially serve as an inspiration for further research into the
application of neural networks to astronomical imaging.

Code is available at https://github.com/wubenjamin/neural-
interferometry.
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(a) Dirty Image (b) Cubic Interp. (c) CLEAN (d) U-Net (e) Ours (f) Ground Truth

Figure 6: Visual comparison of different methods. Results from left to right: (a) Dirty image, (b) Cubic interpolation, (c)
CLEAN, (d) U-Net, (e) Ours, (f) Ground truth reconstruction. Different validation samples from the Galaxy10 (DECals) dataset
are shown in each row. The smaller panels below each image show the real (left) and imaginary (right) components of the
visibilities corresponding to each image.
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