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Abstract

In image retrieval, deep local features learned in a data-driven
manner have been demonstrated effective to improve retrieval
performance. To realize efficient retrieval on large image
database, some approaches quantize deep local features with
a large codebook and match images with aggregated match
kernel. However, the complexity of these approaches is non-
trivial with large memory footprint, which limits their capa-
bility to jointly perform feature learning and aggregation. To
generate compact global representations while maintaining
regional matching capability, we propose a unified framework
to jointly learn local feature representation and aggregation.
In our framework, we first extract deep local features using
CNNs. Then, we design a tokenizer module to aggregate them
into a few visual tokens, each corresponding to a specific vi-
sual pattern. This helps to remove background noise, and cap-
ture more discriminative regions in the image. Next, a refine-
ment block is introduced to enhance the visual tokens with
self-attention and cross-attention. Finally, different visual to-
kens are concatenated to generate a compact global repre-
sentation. The whole framework is trained end-to-end with
image-level labels. Extensive experiments are conducted to
evaluate our approach, which outperforms the state-of-the-art
methods on the Revisited Oxford and Paris datasets.

Introduction
Given a large image corpus, image retrieval aims to effi-
ciently find target images similar to a given query. It is
challenging due to various situations observed in large-scale
dataset, e.g., occlusions, background clutter, and dramatic
viewpoint changes. In this task, image representation, which
describes the content of images to measure their similarities,
plays a crucial role. With the introduction of deep learning
into computer vision, significant progress (Babenko et al.
2014; Gordo et al. 2017; Cao, Araujo, and Sim 2020; Xu
et al. 2018; Noh et al. 2017) has been witnessed in learn-
ing image representation for image retrieval in a data-driven
paradigm. Generally, there are two main types of represen-
tation for image retrieval. One is global feature, which maps
an image to a compact vector, while the other is local feature,
where an image is described with hundreds of short vectors.

*Corresponding Author
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(d) Ours (joint feature learning and aggregation)

(c) HOW (local aggregation with a large codebook)

(b) SOLAR (global)

(a) DELG (global)

Query 

Figure 1: Top-5 retrieval results of different methods, includ-
ing DELG (Cao, Araujo, and Sim 2020), SOLAR (Ng et al.
2020), HOW (Tolias, Jenicek, and Chum 2020) and ours.
Query image is on the left (black outline) with a target ob-
ject (orange box), and the right are the top-ranking images
for the query. Our approach achieves similar results as HOW,
which use large visual codebook to aggregate local features,
with lower memory and latency. Green solid outline: posi-
tive images for the query; red solid outline: negative results.

In global feature based image retrieval (Radenović, To-
lias, and Chum 2018; Babenko and Lempitsky 2015), al-
though the representation is compact, it usually lacks capa-
bility to retrieve target images with only partial match. As
shown in Fig. 1 (a) and (b), when the query image occupies
only a small region in the target images, global features tend
to return false positive examples, which are somewhat simi-
lar but do not indicate the same instance as the query image.

Recently, many studies have demonstrated the effective-
ness of combining deep local features (Tolias, Jenicek, and
Chum 2020; Noh et al. 2017; Teichmann et al. 2019) with
traditional ASMK (Tolias, Avrithis, and Jégou 2013) aggre-
gation method in dealing with background clutter and occlu-
sion. In those approaches, the framework usually consists of
two stages: feature extraction and feature aggregation, where
the former extracts discriminative local features, which are
further aggregated by the latter for the efficient retrieval.
However, they require offline clustering and coding proce-
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dures, which lead to a considerable complexity of the whole
framework with a high memory footprint and long retrieval
latency. Besides, it is difficult to jointly learn local features
and aggregation due to the involvement of large visual code-
book and hard assignment in quantization.

Some existing works such as NetVLAD (Arandjelovic
et al. 2016) try to learn local features and aggregation simul-
taneously. They aggregate the feature maps output by CNNs
into compact global features with a learnable VLAD layer.
Specifically, they discard the original features and adopt the
sum of residual vectors of each visual word as the repre-
sentation of an image. However, considering the large varia-
tion and diversity of content in different images, these visual
words are too coarse-grained for the features of a particular
image. This leads to insufficient discriminative capability of
the residual vectors, which further hinders the performance
of the aggregated image representation.

To address the above issues, we propose a unified frame-
work to jointly learn and aggregate deep local features. We
treat the feature map output by CNNs as original deep lo-
cal features. To obtain compact image representations while
preserving the regional matching capability, we propose a
tokenizer to adaptively divide the local features into groups
with spatial attention. These local features are further ag-
gregated to form the corresponding visual tokens. Intu-
itively, the attention mechanism ensures that each visual to-
ken corresponds to some visual pattern and these patterns
are aligned across images. Furthermore, a refinement block
is introduced to enhance the obtained visual tokens with self-
attention and cross-attention. Finally, the updated attention
maps are used to aggregate original local features for en-
hancing the existing visual tokens. The whole framework is
trained end-to-end with only image-level labels.

Compared with the previous methods, there are two ad-
vantages in our approach. First, by expressing an image with
a few visual tokens, each corresponding to some visual pat-
tern, we implicitly achieve local pattern alignment with the
aggregated global representation. As shown in Fig. 1 (d),
our approach performs well in the presence of background
clutter and occlusion. Secondly, the global representation
obtained by aggregation is compact with a small memory
footprint. These facilitate effective and efficient semantic
content matching between images. We conduct comprehen-
sive experiments on the Revisited Oxford and Paris datasets,
which are further mixed with one million distractors. Abla-
tion studies demonstrate the effectiveness of the tokenizer
and the refinement block. Our approach surpasses the state-
of-the-art methods by a considerable margin.

Related Work
In this section, we briefly review the related work including
local feature and global feature based image retrieval.
Local feature. Traditionally local features (Lowe 2004;
Bay, Tuytelaars, and Van Gool 2006) are extracted us-
ing hand-crafted detectors and descriptors. They are first
organized in bag-of-words (Sivic and Zisserman 2003;
Zhou et al. 2010) and further enhanced by spatial vali-
dation (Philbin et al. 2007), hamming embedding (Jegou,
Douze, and Schmid 2008) and query expansion (Chum

et al. 2007). Recently, tremendous advances (Mishchuk et al.
2017; Tolias, Jenicek, and Chum 2020; Dmytro Mishkin
2018; Noh et al. 2017; Tian et al. 2019; Cao, Araujo, and
Sim 2020) have been made to learn local features suitable
for image retrieval in a data-driven manner. Among these
approaches, the state-of-the-art approach is HOW (Tolias,
Jenicek, and Chum 2020), which uses attention learning to
distinguish deep local features with image-level annotations.
During testing, it combines the obtained local features with
the traditional ASMK (Tolias, Avrithis, and Jégou 2013) ag-
gregation method. However, HOW cannot jointly learn fea-
ture representation and aggregation due to the very large
codebook and the hard assignment during the quantization
process. Moreover, its complexity is considerable with a
high memory footprint. Our method uses a few visual to-
kens to effectively represent image. The feature representa-
tion and aggregation are jointly learned.
Global feature. Compact global features reduce memory
footprint and expedite the retrieval process. They simplify
image retrieval to a nearest neighbor search and extend the
previous query expansion (Chum et al. 2007) to an effi-
cient exploration of the entire nearest neighbor graph of the
dataset by diffusion (Fan et al. 2019). Before deep learn-
ing, they are mainly developed by aggregating hand-crafted
local features, e.g., VLAD (Jégou et al. 2011), Fisher vec-
tors (Perronnin et al. 2010), ASMK (Tolias, Avrithis, and
Jégou 2013). Recently, global features are obtained sim-
ply by performing the pooling operation on the feature map
of CNNs. Many pooling methods have been explored, e.g.,
max-pooling (MAC) (Tolias, Sicre, and Jégou 2016), sum-
pooling (SPoC) (Babenko and Lempitsky 2015), weighted-
sum-pooling (CroW) (Kalantidis, Mellina, and Osindero
2016), regional-max-pooling (R-MAC) (Tolias, Sicre, and
Jégou 2016), generalized mean-pooling (GeM) (Radenović,
Tolias, and Chum 2018), and so on. These networks are
trained using ranking (Radenović, Tolias, and Chum 2018;
Revaud et al. 2019) or classification losses (Deng et al.
2019). Differently, our method tokenizes the feature map
into several visual tokens, enhances the visual tokens using
the refinement block, concatenates different visual tokens
and performs dimension reduction. Through these steps,
our method generates a compact global representation while
maintaining the regional matching capability.

Methodology
An overview of our framework is shown in Fig. 2. Given
an image, we first obtain the original deep local features
F ∈ RC×H×W through a CNN backbone. These local fea-
tures are obtained with limited receptive fields covering part
of the input image. Thus, we follow (Ng et al. 2020) to apply
the Local Feature Self-Attention (LFSA) operation on F to
obtain context-aware local features F c ∈ RC×H×W . Next,
we divide them into L groups with spatial attention mech-
anism, and the local features of each group are aggregated
to form a visual token t ∈ RC . We denote the set of ob-
tained visual tokens as T =

[
t(1), t(2), · · · , t(L)

]
∈ RL×C .

Furthermore, we introduce a refinement block to update the
obtained visual tokens T based on the previous local fea-
tures F c. Finally, all the visual tokens are concatenated and
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Figure 2: An overview of our framework. Given an image, we first use a CNN and a Local Feature Self-Attention (LFSA)
module to extract local features F c. Then, they are tokenized into L visual tokens with spatial attention. Further, a refinement
block is introduced to enhance the obtained visual tokens with self-attention and cross-attention. Finally, we concatenate all the
visual tokens to form a compact global representation fg and reduce its dimension.

we reduce its dimension to form the final global descriptor
fg . ArcFace margin loss is used to train the whole network.

Tokenizer
To effectively cope with the challenging conditions observed
in large datasets, such as noisy backgrounds, occlusions,
etc., image representation is expected to find patch-level
matches between images. A typical pipeline to tackle these
challenges consists of local descriptor extraction, quanti-
zation with a large visual codebook created usually by k-
means and descriptor aggregation into a single embedding.
However, due to the offline clustering and hard assignment
of local features, it is difficult to optimize feature learning
and aggregation simultaneously, which further limits the dis-
criminative power of the image representation. To alleviate
this problem, we here use spatial attention to extract the de-
sired visual tokens. By training, the attention module can
adaptively discover discriminative visual patterns.

For the set of local features F c, we generate L attention
maps A = {a(1),a(2), · · · ,a(L)}, which are implemented
by L 1 × 1 convolutional layers. We denote the parame-
ters of the convolution layers as W = [w1,w2, · · · ,wL] ∈
RL×C , and the attention maps are calculated as

a
(i)
h,w =

exp(wi · F c
h,w)∑L

l=1 exp(wl · F c
h,w)

. (1)

Then, the visual tokens T =
[
t(1), t(2), · · · , t(L)

]
are com-

puted as

t(i) =
1

γ(a(i))

∑
h∈H,w∈W

a
(i)
h,wF

c
h,w, (2)

where γ(a(i)) =
∑
h∈H,w∈W a

(i)
h,w and t(i) ∈ RC .

Relation to GMM. Tokenization aggregates local features
into visual tokens, which helps to capture discriminative vi-
sual patterns, leading to a more general and robust image
representation. The visual tokens represent several specific

region patterns in an image, which share the similar ratio-
nale of learning a Gaussian Mixture Model (GMM) over the
original local features of an image. GMM is a probabilistic
model that assumes all the data points are generated from
a mixture of a finite number of Gaussian distributions with
unknown mean vectors and data variances. Formally,

p(fi|z = j) =
1

(2πσ2
j )

C
2

exp

(
− 1

2σ2
j

‖fi − cj‖2
)
,

p(fi) =
N∑
j=1

p(z = j)p(fi|z = j).

(3)

Here, N is the number of Gaussian mixtures, fi is the lo-
cal feature of an image with dimension C. z is the latent
cluster assignment variable, cj and σj correspond to the
mean vector and variance of the j-th Gaussian distribu-
tion, respectively. The Expectation-Maximization algorithm
is commonly used to solve this problem. Iteratively, it es-
timates for each point a probability of being generated by
each component of the model and updates the mean vectors:

cj =

∑M
i=1 p(z = j|fi)fi∑M
i=1 p(z = j|fi)

, j = 1, 2, · · · , N,

p(z = j|fi) =
p(z = j) · exp

(
−‖fi−cj‖2

2σ2
j

)
∑N
l=1 p(z = l) · exp

(
−‖fi−cl‖2

2σ2
l

) , (4)

where M is the total feature number. In GMM, p(z = j|fi)
represents the posterior probability of a local feature fi ∈
RC being assigned to the j-th cluster.

In our approach, considering that wi·F c
h,w = 1

2‖F
c
h,w‖2+

1
2‖wi‖2 − 1

2‖F
c
h,w −wi‖2, Eq. (1) can be reformulated as

a
(i)
h,w =

φ
(
‖wi‖2

)
· exp

(
− 1

2‖F
c
h,w −wi‖2

)
∑L
l=1 φ (‖wl‖2) · exp

(
− 1

2‖F
c
h,w −wl‖2

) , (5)
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where φ
(
‖wi‖2

)
= exp( 12‖wi‖2)/

∑L
j=1 exp(

1
2‖wj‖2).

We set σ in Eq. (3) as 1 and p(z = j) as φ
(
‖wi‖2

)
. a(i)

h,w can
be interpreted as a soft cluster assignment of local features
F c
h,w to i-th visual pattern, which is the same as the mean-

ing of p(z = j|fi). wi is the mean vector corresponding to
the i-th visual pattern, whose L2 norm is proportional to the
probability of occurrence of that visual pattern. Since W
is the network parameter that learned from the image data
distribution, it enables the alignment of the corresponding
visual patterns across different images. Further, as shown in
Eq. (2), the visual token t(i) obtained by weighted aggrega-
tion are equivalent to the updated mean vectors cj in GMM.

Refinement Block
The two major components of our refinement block are the
relationship modeling and visual token enhancement. The
former allows the propagation of information between to-
kens, which helps to produce more robust features, while the
latter is utilized to relocate the visual patterns in the original
local features and extract the corresponding features for en-
hancing the existing visual tokens T .
Relationship modeling. During tokenization, different at-
tention maps are used separately. It excludes any relative
contribution of each visual token to the other tokens. Thus,
we employ the self-attention mechanism (Vaswani et al.
2017) to model the relationship between different visual
tokens t(i), generating a set of relation-aware visual to-
kens Tr =

[
t
(1)
r , t

(2)
r , · · · , t(L)r

]
∈ RL×C . Specifically, we

first map visual tokens T to Queries (Qs ∈ RL×C), Keys
(Ks ∈ RL×C) and Values (Vs ∈ RL×C) with three C×C-
dimensional learnable matrices. After that, the similarity
S ∈ RL×L between visual tokens is computed through

S(Qs,Ks) = SOFTMAX(
QsK

T
s√

C
) ∈ RL×L, (6)

where the normalized similarity Si,j models the correlation
between different visual tokens ti and tj . To focus on mul-
tiple semantically related visual tokens simultaneously, we
calculate similarity S with Multi-Head Attention (MHA).

In MHA, different projection matrices for Queries, Keys,
and Values are used for different heads, and these matrices
map visual tokens to different subspaces. After that, S(i) of
each head, calculated by Eq. (6), is used to aggregate seman-
tically related visual tokens. MHA then concatenates and
fuses the outputs of different heads using the learnable pro-
jection WM ∈ RC×C . Formally,

T (i)
s =DROPOUT(S(i)V (i)

s ), for i = 1, 2, · · · , N,
Ts =CONCAT(T (1)

s ,T (2)
s , · · · ,T (N)

s )WM ,
(7)

where N is head number and T
(i)
s is output of the i-th head.

Finally, Ts is normalized via Layer Normalization and added
to original T to produce the relation aware visual tokens:

Tr = T + LAYERNORM(Ts). (8)

Visual token enhancement. To further enhance the exist-
ing visual tokens, we next extract features from F c with the

cross-attention mechanism. As shown in Fig. 2, we first flat-
ten F c into a sequence

[
f1
c ,f

2
c , · · · ,fHWc

]
∈ RHW×C .

Then, with different fully-connected (FC) layers, Tr is
mapped to Queries (Qc ∈ RL×C) and F c is mapped to
Keys (Kc ∈ RHW×C) and Values (Vc ∈ RHW×C), re-
spectively. The similarity between the visual tokens Tr and
the original local feature F c is calculated as

S(Qc,Kc) = SOFTMAX(
QcK

T
c√

C
) ∈ RL×HW . (9)

Here, the similarity Si,j indicates the probability that the
j-th local feature f jc in F c should be assigned to the i-th vi-
sual token, which is different from the meaning S in Eq. (6).
Then, the weighted sum of F c and S is added to Tr to pro-
duce the updated visual tokens:

Tc = DROPOUT(SVc),

Tupdate = Tr + LAYERNORM(Te).
(10)

As in Eq. (7), MHA is also used to calculate the similarity.
We stack N refinement blocks to obtain more discrimi-

native visual tokens. The refined visual tokens Tupdate ∈
RL×C come from the output of the last block of our model.
We concatenate the different visual tokens Tupdate into a
global descriptor and a fully-connected layer is adopted to
reduce its dimension to d:

fg = CONCAT(t
(1)
update, t

(2)
update, · · · , t

(L)
update)Wg, (11)

where Wg ∈ RLC×d is the weight of the FC layer.

Training Objectives
Following DELG (Cao, Araujo, and Sim 2020), ArcFace
margin loss (Deng et al. 2019) is adopted to train the whole
model. The ArcFace improves the normalization of the clas-
sifier weight vector Ŵ and the interval of the additive an-
gles m so as to enhance the separability between classes
and meantime enhance the compactness within class. It has
shown excellent results for global descriptor learning by in-
ducing smaller intra-class variance. Formally,

L = − log

 exp
(
γ ×AF

(
ŵT
k f̂g, 1

))
∑
n exp

(
γ ×AF

(
ŵT
n f̂g, yn

))
 , (12)

where ŵi refers to the i-th row of Ŵ and f̂g is the L2-
normalized fg . y is the one-hot label vector and k is the
ground-truth class index (yk = 1). γ is a scale factor. AF
denotes the adjusted cosine similarity and it is calculated as:

AF (s, c) = (1− c)× s+ c× cos (acos (s) +m) , (13)

where s is the cosine similarity, m is the ArcFace margin,
and c is a binarized value that denotes whether it is the
ground-truth category.

Experiments
Experimental Setup
Training dataset. The clean version of Google landmarks
dataset V2 (GLDv2-clean) (Weyand et al. 2020) is used for
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METHOD
MEDIUM HARD

ROxf ROxf+R1M RPar RPar+R1M ROxf ROxf+R1M RPar RPar+R1M
(A) Local feature aggregation
HesAff-rSIFT-ASMK?+SP 60.60 46.80 61.40 42.30 36.70 26.90 35.00 16.80
DELF-ASMK?+SP(GLDv1-noisy) 67.80 53.80 76.90 57.30 43.10 31.20 55.40 26.40
DELF-R-ASMK?+SP(GLDv1-noisy) 76.00 64.00 80.20 59.70 52.40 38.10 58.60 58.60
R50-HOW-ASMK?(SfM-120k) 79.40 65.80 81.60 61.80 56.90 38.90 62.40 33.70
R101-HOW-VLAD†(GLDv2-clean) 73.54 60.38 82.33 62.56 51.93 33.17 66.95 41.82
R101-HOW-ASMK?†(GLDv2-clean) 80.42 70.17 85.43 68.80 62.51 45.36 70.76 45.39
(B) Global features + Local feature re-ranking
R101-GeM+DSM 65.30 47.60 77.40 52.80 39.20 23.20 56.20 25.00
R50-DELG+SP(GLDv2-clean) 78.30 67.20 85.70 69.60 57.90 43.60 71.00 45.70
R101-DELG+SP(GLDv2-clean) 81.20 69.10 87.20 71.50 64.00 47.50 72.80 48.70
R101-DELG+SP†(GLDv2-clean) 81.78 70.12 88.46 76.04 64.77 49.36 76.80 53.69
(C) Global features
R101-R-MAC(NC-clean) 60.90 39.30 78.90 54.80 32.40 12.50 59.40 28.00
R101-R-MAC†(GLDv2-clean) 75.14 61.88 85.28 67.37 53.77 36.45 71.28 44.01
R101-GeM-AP(GLDv1-noisy) 67.50 47.50 80.10 52.50 42.80 23.20 60.50 25.10
R101-NetVLAD†(GLDv2-clean) 73.91 60.51 86.81 71.31 56.45 37.92 73.61 48.98
R50-DELG(GLDv2-clean) 73.60 60.60 85.70 68.60 51.00 32.70 71.50 44.40
R50-DELG†(GLDv2-clean) 76.40 64.52 86.74 70.71 55.92 38.60 72.60 47.39
R101-DELG(GLDv2-clean) 76.30 63.70 86.60 70.60 55.60 37.50 72.40 46.90
R101-DELG†(GLDv2-clean) 78.55 66.02 88.58 73.65 60.89 41.75 76.05 51.46
R101-SOLAR(GLDv1-noisy) 69.90 53.50 81.60 59.20 47.90 29.90 64.50 33.40
R101-SOLAR†(GLDV2-clean) 79.65 67.61 88.63 73.21 59.99 41.14 76.15 50.98
R50-Ours(GLDv2-clean) 80.53 68.29 87.55 73.90 62.14 43.36 73.80 53.32
R101-OursPQ8(GLDv2-clean) 82.02 70.06 89.16 75.58 65.90 46.52 78.07 54.46
R101-OursPQ1(GLDv2-clean) 82.30 70.51 89.33 76.65 66.62 47.43 78.55 55.90
R101-Ours(GLDv2-clean) 82.28 70.52 89.34 76.66 66.57 47.27 78.56 55.90

Table 1: mAP comparison against existing methods on the full benchmark. R101: ResNet101; R50: ResNet50; +SP: spatial
verification; “?”: binarized local features; “†”: our re-implementation. Training datasets are shown in brackets. PQ8 and PQ1
denote PQ quantization using 8 and 1-dimensional subspaces, respectively. Black bold: best results.

training. It is first collected by Google and further cleaned by
researchers from the Google Landmark Retrieval Competi-
tion 2019. It contains a total of 1,580,470 images and 81,313
classes. We randomly divide it into two subsets ‘train’/‘val’
with 80%/20% split. The ‘train’ split is used for training
model, and the ‘val’ split is used for validation.

Evaluation datasets and metrics. Revisited versions of the
original Oxford5k (Philbin et al. 2007) and Paris6k (Philbin
et al. 2008) datasets are used to evaluate our method, which
are denoted as ROxf and RPar (Radenović et al. 2018) in
the following. Both datasets contain 70 query images and
additionally include 4,993 and 6,322 database images, re-
spectively. Mean Average Precision (mAP) is used as our
evaluation metric on both datasets with Medium and Hard
protocols. Large-scale results are further reported with the
R1M dataset, which contains one million distractor images.

Training details. All models are pre-trained on ImageNet.
For image augmentation, a 512 × 512-pixel crop is taken
from a randomly resized image and then undergoes ran-
dom color jittering. We use a batch size of 128 to train our
model on 4 NVIDIA RTX 3090 GPUs for 30 epochs, which

takes about 3 days. SGD is used to optimize the model, with
an initial learning rate of 0.01, a weight decay of 0.0001,
and a momentum of 0.9. A linearly decaying scheduler is
adopted to gradually decay the learning rate to 0 when the
desired number of steps is reached. The dimension d of the
global feature is set as 1024. For the ArcFace margin loss,
we empirically set the margin m as 0.2 and the scale γ as
32.0. Refinement block number N is set to 2. Test images
are resized with the larger dimension equal to 1024 pix-
els, preserving the aspect ratio. Multiple scales are adopted,
i.e.,

[
1/
√
2, 1,
√
2
]
. L2 normalization is applied for each

scale independently, then three global features are average-
pooled, followed by anotherL2 normalization. We train each
model 5 times and evaluate the one with median perfor-
mance on the validation set.

Results on Image Retrieval
Setting for fair comparison. Commonly, existing meth-
ods are compared under different settings, e.g., training set,
backbone network, feature dimension, loss function, etc.
This may affect our judgment on the effectiveness of the pro-
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Figure 3: Qualitative examples. (a) Visualization of the at-
tention maps associated with different visual tokens for eight
images. #i denotes the i-th visual token. (b) Detailed analy-
sis of the top-2 retrieval results of the “hertford” query in the
ROxf dataset. The 2nd visual token focus on the content of
the query image in the target image, which is boxed in red.

posed method. In Tab. 1, we re-train several methods under
the same settings (using GLDv2-clean dataset and ArcFace
loss, 2048 global feature dimension, ResNet101 as back-
bone), marked with †. Based on this benchmark, we fairly
compare the mAP performance of various methods and ours.
Comparison with the state of the art. Tab. 1 compares our
approach extensively with the state-of-the-art retrieval meth-
ods. We divide the previous methods into three groups:
(1) Local feature aggregation. The current state-of-the-art
local aggregation method is R101-HOW. We outperform it
in mAP by 1.86% and 4.06% on the ROxf dataset and by
3.91%, and 7.80% on the RPar dataset with Medium and
Hard protocols, respectively. The results show that our ag-
gregation method is better than existing local feature aggre-
gation methods based on large visual codebook.
(2) Global single-pass. When trained with GLDv2-clean,
R101-SOLAR achieves the best performance mostly. When
using ResNet101 as the backbone, the comparison between
our method and it in mAP is 82.28% vs. 79.65%, 66.57%
vs. 59.99% on the ROxf dataset and 89.34% vs. 88.63%,
78.56% vs. 76.15% on the RPar dataset with Medium and
Hard protocols, respectively. These results well demonstrate
the superiority of our framework.
(3) Global feature followed by local feature re-ranking. We
outperform the best two-stage method (R101-DELG+SP) in
mAP by 0.50%, 1.80% on the ROxf dataset and 0.88%,
1.76% on the RPar datasets with Medium and Hard proto-
cols, respectively. Although 2-stage solutions well promote
their single-stage counterparts, our method that aggregates
local features into a compact descriptor is a better option.

METHOD RET.
(S)

EXT.
(MS)

MEM. (GB)

ROxf + R1M RPar + R1M

DELF-RASMK? 1.5341 1410 27.6 27.8
DELF-ASMK? 0.5732 176 10.3 10.4
HOW-VLAD 0.4047 263 7.6 7.6
HOW-ASMK? 0.7123 257 14.3 14.4
DELG 0.4189 109 7.6 7.6
DELG+SP? 49.3821 259 22.6 22.7
Ours 0.2871 125 3.9 3.9
OursPQ1 0.2217 128 1.0 1.0
OursPQ8 0.1042 126 0.1 0.1

Table 2: Extraction (EXT.), retrieval (RET.) latency and
memory footprint (MEM.) on a single thread GPU (RTX
3090) / CPU (Intel Xeon CPU E5-2640 v4 @ 2.40GHz).

Qualitative results. We visualize the spatial attention gener-
ated by the cross-attention layer of the last refinement block
in the Fig. 3 (a). Although there is no direct supervision, dif-
ferent visual tokens are associated with different visual pat-
terns. Most of these patterns focus on the foreground build-
ing and remain consistent across images, which implicitly
enable pattern alignment. e.g., the 3rd visual token reflects
the semantics of “the upper edge of the window”.

We further select the top-2 results of the “hertford” query
from theROxf dataset for the case study. As shown in Fig. 1,
when the query object only occupies a small part of the tar-
get image, the state-of-the-art methods with global features
return false positives which are semantically similar to the
query. Our approach uses visual tokens to distinguish dif-
ferent visual patterns, which has the capability of regional
matching. In Fig. 3 (b), the 2nd visual token corresponds to
the visual pattern described by the query image.

Speed and memory costs. In Tab. 2, we report retrieval la-
tency, feature extraction latency and memory footprint on
R1M for different methods. Compared to the local fea-
ture aggregation approaches, global features have a smaller
memory footprint. To perform spatial verification, “R101-
DELG+SP” needs to store a large number of local fea-
tures, which requires about 485 GB of memory. Our method
uses 4 tokens to represent the image, generating a 1024-
dimensional global feature, which requires 3.9 GB mem-
ory. This is further compressed with PQ quantization (Jégou,
Douze, and Schmid 2011). As shown in Tab. 1 and Tab. 2,
the compressed features greatly reduce the memory footprint
with only a small performance loss. Our method appears to
be a good solution in the performance-memory trade-off.

The extraction of global features is faster, since the ex-
traction of local features usually requires scaling the image
to more scales. Our aggregation method requires tokeniza-
tion and iterative enhancement, which is slightly slower than
direct spatial pooling, e.g., 125 ms for ours vs. 109 ms for
“R101-DELG”. The average retrieval latency of our method
on R1M is 0.2871 seconds, which demonstrates the poten-
tial of our method for real-time image retrieval.
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Ablation Study
Verification of different components. In Tab. 3, we pro-
vide experimental results to validate the contribution of the
three components in our framework, by adding individual
components to the baseline framework. When the tokenizer
is adopted, there is a significant improvement in overall per-
formance. mAP increases from 77.0% to 79.8% on ROxf-
Medium and 56.0% to 62.5% onROxf-Hard. This indicates
that dividing local features into groups according to visual
patterns is more effective than direct global spatial pool-
ing. From the 3rd and last row, the performance is further
enhanced when the refinement block is introduced, which
shows that enhancing the visual tokens with the original fea-
tures further makes them more discriminative.

LFSA TOKENIZER REFINEMENT
MEDIUM HARD

ROxf RPar ROxf RPar

77.0 86.6 56.0 73.0
X 79.8 88.2 62.5 76.0

X X 80.4 88.4 63.0 76.3
X X 81.3 89.2 65.0 78.5

X X X 82.3 89.3 66.6 78.6

Table 3: Ablation studies of different components. We use
R101-SPoC as the baseline and incrementally add tokenizer,
Local Feature Self-Attention (LFSA) and refinement block.

Impact of each component in the refinement block. The
role of the different components in the refinement block is
shown in Tab. 4. By removing the individual components,
we find that modeling the relationship between different vi-
sual words before and further enhancing the visual tokens
using the original local features demonstrate the effective-
ness in enhancing the aggregated features.

SELF-ATT CROSS-ATT
MEDIUM HARD

ROxf RPar ROxf RPar

80.4 88.4 63.0 76.3
X 81.3 89.3 63.5 78.2

X 80.9 88.5 62.8 77.5
X X 82.3 89.3 66.6 78.5

Table 4: Analysis of components in the refinement block.

Impact of tokenizer type. In Tab. 5, we compare our Atten-
based tokenizer with the other two tokenizers: (1) Vq-Based.
We directly define visual tokens as a matrix T ∈ RL×C .
It is randomly initialized and further updated by a moving
average operation in one mini-batch. See the appendix for
details. (2) Learned. It is similar to the Vq-Based method,
except that T is set as the network parameters, learned dur-
ing training. Our method achieves the best performance. We
use the attention mechanism to generate visual tokens di-
rectly from the original local features. Compared with the
other two, our approach obtains more discriminative visual
tokens with a better capability to match different images.

TOKENIZER TYPE
MEDIUM HARD

ROxf RPar ROxf RPar

VQ-BASED 79.4 87.7 62.2 75.9
LEARNED 81.1 87.8 63.7 76.2

ATTEN-BASED 82.3 89.3 66.6 78.5

Table 5: mAP comparison of different variants of tokenizers.

Impact of token number. The granularity of visual to-
kens is influenced by their number. As shown in Tab. 6, as
L increases, mAP performance first increases and then de-
creases, achieving the best at L = 4. This is due to the lack
of capability to distinguish local features when the number
of visual tokens is small; conversely, when the number is
large, they are more fine-grained and noise may be intro-
duced when grouping local features.

TOKEN NUMBER
MEDIUM HARD

ROxf RPar ROxf RPar

L=1 79.8 87.9 60.4 75.7
L=2 80.3 88.7 62.3 76.3
L=3 81.6 89.4 64.9 78.5
L=4 82.3 89.3 66.6 78.5
L=6 81.0 88.2 62.5 78.9
L=8 79.3 87.1 61.8 76.6

Table 6: mAP comparison of visual tokens number L.

Conclusion
In this paper, we propose a joint local feature learning and
aggregation framework, which generates compact global
representations for images while preserving the capability of
regional matching. It consists of a tokenizer and a refinement
block. The former represents the image with a few visual to-
kens, which is further enhanced by the latter based on the
original local features. Extensive experiments demonstrate
that the proposed method achieves superior performance on
image retrieval benchmark datasets. In the future, we will
extend the proposed aggregation method to a variety of ex-
isting local features, which means that instead of directly
performing local feature learning and aggregation end-to-
end, local features of images are first extracted using existing
methods and further aggregated with our method.
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