
Multi-Modal Answer Validation for Knowledge-Based VQA

Jialin Wu1, Jiasen Lu2, Ashish Sabharwal2, Roozbeh Mottaghi2

1 The University of Texas at Austin
2 Allen Institute for AI

jialinwu@utexas.edu, {jiasenl, ashishs, roozbehm}@allenai.org

Abstract

The problem of knowledge-based visual question answering
involves answering questions that require external knowl-
edge in addition to the content of the image. Such knowl-
edge typically comes in various forms, including visual, tex-
tual, and commonsense knowledge. Using more knowledge
sources increases the chance of retrieving more irrelevant or
noisy facts, making it challenging to comprehend the facts
and find the answer. To address this challenge, we propose
Multi-modal Answer Validation using External knowledge
(MAVEx), where the idea is to validate a set of promising
answer candidates based on answer-specific knowledge re-
trieval. Instead of searching for the answer in a vast collec-
tion of often irrelevant facts as most existing approaches do,
MAVEx aims to learn how to extract relevant knowledge from
noisy sources, which knowledge source to trust for each an-
swer candidate, and how to validate the candidate using that
source. Our multi-modal setting is the first to leverage external
visual knowledge (images searched using Google), in addi-
tion to textual knowledge in the form of Wikipedia sentences
and ConceptNet concepts. Our experiments with OK-VQA,
a challenging knowledge-based VQA dataset, demonstrate
that MAVEx achieves new state-of-the-art results. Our code is
available at https://github.com/jialinwu17/MAVEX

Introduction
Over the past few years, the domain of Visual Question An-
swering (VQA) has witnessed significant progress (Antol
et al. 2015; Zhu et al. 2016; Hudson and Manning 2019).
However, there is a recent trend towards knowledge-based
VQA (Wang et al. 2017, 2018; Marino et al. 2019) which re-
quires information beyond the content of the images. Besides
visual recognition, the model needs to perform logical reason-
ing and incorporate external knowledge about the world to
answer these challenging questions correctly. These knowl-
edge facts can be obtained from various sources, such as
image search engines, encyclopedia articles, and knowledge
bases about common concepts and their relations.

Figure 1 illustrates a few visual questions and the knowl-
edge from different external sources that helps answer them.
Each question needs a different type of external knowledge.
For example, to identify the movie that featured a man telling
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Q: Is this a healthy dish?

• Forrest gump, named after general 
Nathan Bedford Forrest, narrates the 
story of his life.

• Gump is portrayed as viewing the …

Wikipedia facts

• Vegetarian food 

ConceptNet relations

• Eating vegetables
• Beans

HasProperty

HasProperty
RelatedTo

Healthy
Healthy
Healthy

Q: Which movie featured a 
man in this position telling 
his life story to strangers?

Q: What breed of dog is
the dog in this photo?

Image knowledge

Ours: Yes

Ours: Forrest Gump

Ours: Golden retriever

Baseline: Cloth

Baseline: No

Baseline: Shepherd

Figure 1: We address the problem of knowledge-based ques-
tion answering. Retrieving relevant knowledge among di-
verse knowledge sources (visual knowledge, textual facts,
concepts, etc.) is quite challenging. This paper aims to learn
what knowledge source should be used for a particular ques-
tion and how to validate a set of potential answer candidates
using different knowledge sources.

his life story to strangers, we need to link the image content
and question to some textual facts; Vegetarian food and eating
vegetables are related to the concept of health; the retrieved
images for a “golden retriever.” are visually similar to the
dog in the question image. The challenge is to retrieve and
correctly incorporate such external knowledge effectively in
an open domain question answering framework.

We also witness a shift in knowledge-based VQA datasets
from structured retrieved knowledge such as triplets and
dense captions (Wang et al. 2017, 2018) to unstructured open
knowledge (Marino et al. 2019). Most current knowledge-
based VQA systems (Marino et al. 2019; Wang et al. 2018;
Zhu et al. 2020; Marino et al. 2021) follow a two-stage frame-
work, where a retriever first looks up knowledge relevant to
the question and the image, and then a separate comprehen-
sion model predicts the answer.

However, knowledge retrieved directly for the question and
image is often noisy and not helpful in predicting the correct
answer. For example, as shown in Figure 2, the sentences
retrieved using only the words in questions and objects in
images (top) or a wrong answer (middle) are hardly helpful to
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What English city is famous 
for a tournament for the 
sport this man is playing?

The modern game of tennis originated in Birmingham, England, in the late 
19th century as lawn tennis.

It is popular for sports fixtures and hosts several annual events including a
free opera concert at the opening of the opera season, other open-air
concerts, carnival and labour day celebrations, and the Copenhagen historic
grand prix, a race for antique cars.

Wimbledon is notable for the longest running sponsorship in sports history
due to its association with slazenger who have supplied all tennis balls for the
tournament since 1902.

Question +   
Image

Question +
Image +
Incorrect Answer
(Copenhagen)

Question +
Image +
Correct Answer
(Wimbledon)

Figure 2: Examples of retrieved Wikipedia sentences using different sets of search words. The sentences retrieved using only
the words in questions and objects in images (top) and the wrong answer (middle) are hardly helpful to answer the question.
However, with the correct answer “Wimbledon” (bottom), the quality of the retrieved fact is significantly improved.

answer the question. This increases the burden on the answer
predictor, leading to only marginal improvements from the
use of retrieved knowledge (Marino et al. 2019). Interestingly,
with the correct answer “Wimbledon” (bottom), the quality of
the retrieved fact is significantly improved, making it suitable
for answering the question. This observation motivates us to
use retrieved knowledge for answer validation rather than for
producing the answer.

To address this challenge, we propose a new system called
MAVEx or Multi-modal Answer Validation using External
knowledge. We use a three-stage framework. First, since
state-of-the-art VQA models are surprisingly effective at
generating a small set of promising answer candidates, we
employ them for this purpose. Second, in the knowledge re-
trieval stage, we parse noun phrases from the question and
answers, and generate queries for each phrase to query ex-
ternal resources. In order to better comprehend the retrieved
knowledge, we embed it at multiple levels of granularity,
from the basic query-level embedding to a noun-phrase-level
embedding and finally to a question-level knowledge em-
bedding. The goal of this multi-granular representation is to
put more emphasis on queries that are important for each
phrase, and on noun phrases that are critical for the question.
Finally, in the validation stage, we predict how trustworthy
each knowledge source is for the given question and answer
candidate, and score the candidates accordingly.

We evaluate MAVEx on OK-VQA (Marino et al. 2019), the
largest knowledge-based VQA dataset to date. Our approach
achieves state-of-the-art results (score 40.3, ensemble score
41.4), demonstrating that answer-specific knowledge retrieval
results in more informative supporting evidence and a more
solid knowledge-based VQA system.

Our main contributions are: (a) We introduce a novel
approach that uses answer candidates to guide knowledge
retrieval among noisy facts; (b) We leverage multi-modal
knowledge by retrieving from both visual and textual re-
sources; and (c) We demonstrate that incorporating retrieved
knowledge at multiple levels of granularity, based on the
question and candidate answers, is an effective strategy.

Related Work
Visual Question Answering. Visual Question Answering
(VQA) has made significant progress over the past few years

(Antol et al. 2015; Lu et al. 2016; Anderson et al. 2018; Kim,
Jun, and Zhang 2018; Ben-Younes et al. 2017; Cadene et al.
2019). More recent VQA systems (Lu et al. 2019; Tan and
Bansal 2019; Liu et al. 2019; Li et al. 2019; Yu et al. 2019; Li
et al. 2020; Zhou et al. 2020; Chen et al. 2020; Lu et al. 2020)
first extract visual features from a pre-trained object detector.
Then they feed both visual and textual embeddings into a
multi-modal transformer, which is pre-trained on auxiliary
tasks using large-scale multi-modal datasets such as (Sharma
et al. 2018; Hudson and Manning 2019; Kazemzadeh et al.
2014). These models achieve remarkable performance on the
VQA (Antol et al. 2015) dataset; however, they can only rea-
son based on the image content and do not have a mechanism
to incorporate knowledge from external sources explicitly.
Knowledge-Based VQA Datasets. KB-VQA dataset (Wang
et al. 2017) includes 2,402 questions generated by templates
for 700 images. F-VQA (Wang et al. 2018) contains 5,826
questions, where each question-answer sample is annotated
with a ground-truth fact triplet retrieved from the knowledge
base. OK-VQA dataset (Marino et al. 2019) is a more recent
open-domain dataset that covers a wide range of topics and
includes 14,055 questions on 14,031 images. Our focus is on
the OK-VQA dataset since it provides a larger scale dataset
that requires open-domain knowledge. Due to the difficulty
of collecting such datasets, knowledge-based VQA datasets
are typically small compared to the traditional VQA datasets.
The small scale of the datasets adds to the challenges of
learning robust models.
Knowledge-Based VQA Models. Recent methods for
knowledge-based VQA mainly follow two trends, template
fitting, and learning-based approaches. For example, (Wang
et al. 2017) fit the query to several pre-defined query tem-
plates and explicitly reason about the answer using the tem-
plates. The main limitation of the template fitting approaches
is that the template is hand-designed, and it is hard to accom-
modate the rich knowledge required to answer the questions.

Learning-based approaches are proposed to fetch helpful
facts and commonsense knowledge for better performance.
Narasimhan and Schwing (2018) propose to retrieve rele-
vant facts from a knowledge base. Wang et al. (2018) de-
sige a system to find the mappings from the question to a
query triplet. GCN (Tompson et al. 2014) is applied on the
fact graph in (Narasimhan, Lazebnik, and Schwing 2018)
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where each node is a representation of an image-question-
entity triplet. Li, Wang, and Zhu (2020) introduce a knowl-
edge graph augmentation approach to retrieve context-aware
knowledge subgraphs and then learn to aggregate the useful
visual and question-relevant knowledge. Zhu et al. (2020)
propose a modality-aware heterogeneous GCN capturing the
most supporting evidence.

Most recent KB-VQA systems (Gardères et al. 2020;
Marino et al. 2021; Shevchenko et al. 2021) utilize multi-
modal transformers (Lu et al. 2019; Li et al. 2019) as base
systems to incorporate the implicit knowledge they gathered
from the large scale pre-training. In particular, (Gardères
et al. 2020; Marino et al. 2021) combine the implicit knowl-
edge with external symbolic knowledge and (Shevchenko
et al. 2021) focus on injecting knowledge from the knowl-
edge base into finetuning transformers. In contrast to these
approaches, we formulate our problem as answer validation,
where the idea is to learn to validate a set of potential answers
using multi-modal noisy knowledge sources.
External Knowledge in Knowledge-Based VQA. To an-
swer knowledge-based visual questions, most systems ac-
quire external knowledge from various textual resources. For
example, Wikipedia articles and ConceptNet concepts are fre-
quently used as sources to provide factual and commonsense
knowledge. There are two common approaches to utilize the
knowledge. The first approach is parsing the knowledge in a
symbolic format (Zhu et al. 2020; Narasimhan and Schwing
2018; Narasimhan, Lazebnik, and Schwing 2018; Li, Wang,
and Zhu 2020; Marino et al. 2021) that usually consists of
a collection of (subject, relation, object) triplets. Although
each triplet presents explicit knowledge, many conditions and
context are lost when producing these triplets. The missing in-
formation could prevent VQA systems from learning whether
the knowledge is valid for the question and disambiguating
the entities in the triplet. On the contrary, the second ap-
proach relies on simply using free-form knowledge (Wu et al.
2016; Marino et al. 2019; Qu et al. 2021) and use the raw
text as input. While preserving most information, identify-
ing helpful knowledge is quite challenging, especially in the
multi-modal settings. (Wu et al. 2016; Marino et al. 2019)
employ rule-based approaches that find knowledge relevant
to one or a combination of objects detected in images or
mentioned questions. (Qu et al. 2021) employ a dense re-
trieval approach that measures the relevance of the articles
and the question-image pair in the feature space. However,
being relevant to certain visual content cannot guarantee the
helpfulness of the knowledge to predict the answer. To this
end, we present answer-guided knowledge retrieval where
the retrieved knowledge contains both the answer candidates
and relevant visual content. Besides textual knowledge from
Wikipedia and ConceptNet, we also explore external visual
knowledge retrieved from the Google Images search engine.
Answer Validation. The idea of using answer candidates has
been used in various question answering settings, including
textual QA (Zhang, Vu, and Moschitti 2021), product QA
(Zhang et al. 2020), commonsense VQA (Wu, Chen, and
Mooney 2020), movie QA (Kim et al. 2019), allowing sys-
tems to perform a more in-depth examination of each answer
candidate. We extend this idea to knowledge-based VQA,

where the system accesses answer-specific external knowl-
edge to assess the correctness of each answer candidate.

The MAVEx Framework
We present the MAVEx framework, a three-stage scheme
that first generates a set of promising answer candidates, re-
trieves knowledge guided by these answer candidates, and
finally validates these answer candidates. Different from pre-
vious works (Gardères et al. 2020; Marino et al. 2021) that
utilize textual knowledge, we propose to mine multi-modal
answer-specific knowledge. In particular, we consider three
knowledge sources: Wikipedia and ConceptNet for text, and
Google for images. These provide factual, commonsense, and
visual knowledge, respectively. For validation, we test each
answer candidate using the retrieved multi-modal knowledge.

Answer Candidate Generation
In order to use answer candidates to inform knowledge re-
trieval, we use ViLBERT-multi-task system (Lu et al. 2019),
a state-of-the-art VQA model, to generate answer candidates.
In particular, we finetune a ViLBERT-multi-task model on
the OK-VQA dataset that outputs a score for each answer
collected from the training set. The highest-scoring answers
are used as the candidates. Note that any VQA model or
other approaches (for example, querying ontology knowl-
edge bases) can be used for this purpose. However, as we will
discuss in the experiments section, we found ViLBERT to be
particularly effective at generating a small set of promising
candidates.

Answer Guided Knowledge Retrieval
Given a question q about an image I and a set of answer
candidates A, we retrieve external knowledge supporting A
in three main steps. Figure 3 shows the entire process for an
example question and a candidate answer.

S1: Query Extraction. We first collect short phrases in q,
each answer candidate in A, and concepts represented in I
as a starting point for retrieving external information. This
involves the following sub-steps:

Extract noun phrases from question and answers: We
parse the question and the candidate answers using a
constituency parser to obtain the parse tree. Then, we extract
all the nouns on the leaves of the parse tree together with
the words that describe the nouns and belong to one of the
types from ADJP, ADVP, PP, SBAR, DT or JJ. We extract
three kinds of noun phrases for modeling: (1) The target
noun phrase that contains ‘wh’ or ‘how’ word (e.g. ‘which
movie’), denoted by nq

0. (2) Question noun phrases from the
rest of the question (e.g., ‘man in this position’), denoted
by nq

i , i ∈ {1, . . . , N}. N is the number of noun phrases in
the question. (3) Answer noun phrase for each answer ai,
denoted by nai (e.g., ‘Forrest Gump’). These nouns help us
link the mentioned objects to the images.

Link phrases to objects: As images usually contain plenty
of question-irrelevant content, making the retrieval process
hard, we propose narrowing the search to the objects referred
to by the question or the answer candidates. In particular, we
use a separate ViLBERT-multi-task (Lu et al. 2020) model
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Visual knowledge Pool (S2)

Visual knowledge

: Strangers 

Q: Which movie featured a man in 
this position telling his life story to 
strangers?

Forrest Gump featured a man in this position…
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…
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Concepts Pool (S2)

    Forrest Gump 
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…
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Speed is a 1994 American action thriller film 
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ConceptNet Knowledge
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..
..

Speed featured a man in this position telling… 
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..

Matched Knowledge (S3)
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… 
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… 

… 
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nq1

nqN
na1

…
 

Figure 3: An example of the retrieval process for one question-answer pair. The numbers in parentheses denote the step number
in Section . The noun phrase, its generated queries, and the matched visual knowledge are marked in the same color.

as the object linker, where it takes as inputs a set of detected
objects and a noun phrase from the question, and outputs a
linking score for each detected object to indicate how likely
the noun phrase refers to the object. We approve the link-
ing when the score is higher than 0.5 and extract the linked
objects.

Generate search query set: We further generate a set of
search queries to search the external knowledge base. For
each noun phrase, we first extract the head of a phrase by
finding the innermost NP from the dependency tree. Then, we
obtain the visual attributes of the head of the noun phrase by
using a pre-trained object-with-attribute detector (Anderson
et al. 2018) for the corresponding linked objects. For example,
the visually grounded queries for ‘man in this position’ are

‘man’ and ‘sitting man’ where sitting is inferred from visual
attributes. We denote the set of queries as rni , i ∈ {1, . . . ,K},
where n is the corresponding noun phrase, K is the maximum
number of queries per noun phrase.

S2: Answer Guided Knowledge Pool Construction. We
now use the visually grounded queries from step S1 to con-
struct knowledge pool as follows:

Conversion to a natural language statement: In order to
use the answer candidate a to inform the retrieval step, we
convert q and a ∈ A into a natural language statement sqa us-
ing a T5 model (Raffel et al. 2020) finetuned on the QA-NLI
dataset (Demszky, Guu, and Liang 2018). Such conversion
is effective as statements occur much more frequently than
questions in textual knowledge sources (Khot, Sabharwal,
and Clark 2017). These statements are later used to compute
the relevance of the retrieved facts as described below.

Retrieval of textual facts and concepts: We search each
query in the query set generated from the last sub-step in S1
in Wikipedia and ConceptNet. We compute the BERTScore
(Zhang* et al. 2020) between each sentence from the re-
trieved article and each statement sqa. For each statement,
the top-15 sentences (according to the BERTScore) from
each retrieved article are pushed to the sentence pool. Then,
we decontextualize (Choi et al. 2021) each sentence in the
Wikipedia pool for better knowledge quality.

Retrieval of visual knowledge: Pure textual knowledge is
often insufficient due to two main reasons: (1) textual knowl-
edge might be too generic and not specific to the question im-
age, (2) it might be hard to describe some concepts using text,
and an image might be more informative (e.g., the third ques-
tion in Figure 1). Hence, visual knowledge can complement
textual information, further enriching the external knowledge
space. We consider both internal and external visual knowl-
edge. For the given image, we utilize a MaskRCNN (He et al.
2017) object detector to detect common objects as internal
knowledge. We use Google image search to retrieve the top-5
images using the statement sqa as the query for each answer
candidate a as the external visual knowledge.

S3: Matching Knowledge Pool to Queries. Instead of
simply using each query’s top retrieved sentences as the
query’s knowledge, we propose matching the sentences from
the entire pool to each query. The intuition is that most queries
cannot directly retrieve helpful facts; however, they can help
retrieve important aspects that should be contained in the
external knowledge.

Matching Textual Knowledge: For each query, the sen-
tences from both Wikipedia and ConceptNet pool with a
mean recall greater than 0.6 are considered the retrieved re-
sults. Mean recall is the average cosine similarity between the
Glove embedding of the words in the query and their most
similar word in the sentence. To ensure knowledge relevance,
we remove sentences that are matched to only a single query.
For each query rni , according to the maximum BERTScore
between the sentence and all of the statements Sq , we extract
at most m sentences from both Wikipedia and ConceptNet
pools, denoted by W (rni ) and C(rni ).

Matching Visual Knowledge: For each noun phrase in the
question, we can directly use the results from the object
linker defined in S1. Specifically, we find the top-3 referenced
objects in the image for each question noun phrase, denoted
M(n).

For each answer noun phrase nai , we use Google image
search to retrieve the top-5 images, denoted M(nai).

2715



… 

Which movie featured a man 
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Incorrect answer:
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Figure 4: Model overview for validating two candidate answers. We explore three sources of external knowledge, i.e. Wikipedia,
ConceptNet, and Google Images presented by the three parallel knowledge embedding modules. The black blocks denote features
shared by all answer candidates, and the green blocks denote answer-specific features. Different colors denotes the features for
different noun phrases and their queries.

Answer Candidate Validation
The answer validation module takes as input an answer can-
didate ai and the supporting knowledge, and outputs a scalar
score indicating how well the knowledge supports ai. As
we will discuss, in order to better aggregate the knowledge,
we first compute the knowledge embedding for each query.
Then, we compute an embedding for each noun phrase that
aggregates the embedding for the queries generated from the
noun phrase1. Finally, the embedding for the entire question
aggregates the embedding computed for all noun phrases.

We build MAVEx on top of the ViLBERT system. Given
a question q and an image I , ViLBERT provides textual
features U ∈ R|q|×d, visual features V ∈ R|V |×d from the
last layer, where |q| is the number of tokens in q, d is the
feature dimension, |V | is the number of objects in the image
plus one for the representation for the entire image, and a
joint visual-textual representation z ∈ Rd. For each sentence
in the retrieved textual knowledge W (rni ) and C(rni ), we
use TinyBERT (T-BERT) model (Turc et al. 2019) to extract
the corresponding features. We further average the sentence
features for each query rni , resulting wn

i and cni .
For each image in the retrieved visual knowledge M(na),

we use MaskRCNN (He et al. 2017) to extract object features.
Then, we average the object features of visual detection re-
sults as the image features and denote them as mn

i . Note
that we directly use the object features for the linked objects.
Figure 4 shows the overview of the model.

Multi-Granular Knowledge Embedding Module. In or-
der to better aggregate the retrieved knowledge, we employ a
multi-granular knowledge embedding module that learns to
recognize the critical queries for each noun phrase, and then
the critical noun phrases for answering the question.

1Recall that our queries rni are created based on noun phrase n.

Note that our knowledge embedding module is identical
for each knowledge source but with different learnable param-
eters. We only show knowledge from Wikipedia for brevity.
Given the knowledge embeddings wn

i for each query rni in
the question, we compute the knowledge embedding w̃n for
each noun phrase in question as follows:

w̃n = MHAtt(un, {wn
i }i∈{1,...,K}, {wn

i }i∈{1,...,K}), (1)

where MHAtt(query,key,value) is the multi-head at-
tention operator. un is the attentive pooled (Lee et al. 2017)
ViLBERT features according to the span {s, e} of the phrase
n. We use un as the query in MHAtt module to aggregate
the retrieved knowledge, where the corresponding knowledge
embeddings {wn

i }i∈{1,...,K} serve as key and value.
Similarly, for each answer a2, we compute the knowledge

embedding wa using a MHAtt module over the knowledge
features wna

i as follows:

wa = MHAtt(z, {wna
i }i∈{1,...,K}, {wna

i }i∈{1,...,K}),
(2)

where the joint visual-textual embeddings z from ViLBERT
system is used as the keys.

Then, another MHAtt module is used to gather the knowl-
edge from each noun phrase n ∈ {nq

1, . . . , n
q
N}. Specifically,

given the knowledge embedding for each noun phrase, the
knowledge embeddings w is computed as follows:

ŵ = MHAtt(w̃nq
0 , {w̃nq

i }i∈1,...,N , {w̃nq
i }i∈1,...,N ) (3)

Answer Prediction and Validation Module Given the
knowledge embedding k ∈ {ŵ, ĉ, m̂} from each one of
the three knowledge sources, MAVEx predicts the answers’
probability as Pk = FFN(k+z), where FFN denotes a feed-
forward layer. The final prediction P is the answer that has

2For simplicity we omit the subscript index of the answer in this
section when there is only one answer involved in the current step.
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the maximum confidence over the three knowledge sources
for each answer, i.e. P = max

k
{Pk}.

The validation module takes as inputs the answer candi-
date a and the knowledge features ka′ ∈ {wa′

, ca
′
,ma′}

from the three sources to learn how well the knowledge
supports the answer candidate. We first embed the answer
candidate using the summation of the BERT features of the
corresponding statement and the glove features of the an-
swer itself, i.e. fans(a) = (BERT(sqa) + glove(a)). Then,
the validation score J(a, a′) for answer candidate a using
the knowledge retrieved for a′ (a different candidate) is com-
puted as Jk(a, a′) = FFN(fans(a)◦ka′

), where the ◦ means
element-wise multiplication. The final validation score is the
maximum validation confidence over the three knowledge
sources, i.e. J(a, a′) = max

k
{Jk(a, a′)}.

Consistency Criteria. The intuition behind our consistency
criteria is that for the correct answer a, the knowledge re-
trieved for a from the most confident source (the one with the
highest supportiveness score J for a) should support a more
than it supports other answer candidates, and it should also
support a more than knowledge retrieved for other answer
candidates. Specifically, we approve the answer validation
score J(a, a) only if it is higher than the scores computed
using this knowledge for all other answers as well as the
score for a when using knowledge retrieved for other an-
swers. We also eliminate the case where the top-1 prediction
from P is not in the answer candidate set. Mathematically,
the consistency criteria checks that J(a, a) > J(a′, a) and
J(a, a) > J(a, a′) for all a′ ̸= a. If the above condition
is not met, we output the answer with the maximum VQA
prediction score P (a); otherwise, we output the answer with
the maximum VQA-weighted validation score J(a, a)P (a).

Training and Implementation Details
Implementation. We implemented our approach on top
of ViLBERT-multi-task (Lu et al. 2019), which utilizes a
Mask-RCNN head (He et al. 2017) in conjunction with a
ResNet-152 base network (He et al. 2016) as the object
detection module. Convolutional features for at most 100
objects are then extracted for each image as the visual
features, i.e. a 2,048-dimensional vector for each object. We
used the constituent parser from AllenNLP to extract the
nouns phrases in the question. For linking the mentioned
objects, we adopt a separate ViLBERT-multi-task system.
For converting the question and answer, we finetuned a
T5-base model (Raffel et al. 2020) on the QA-NLI dataset
(Demszky, Guu, and Liang 2018) for 4 epochs. We detected
100 objects using Mask-RCNN to encode the retrieved
Google images. For question embedding, following (Devlin
et al. 2019), we use a BERT tokenizer on the question and
use the first 23 tokens as the question tokens. We encode at
most 4 sentences per query, 3 queries per noun phrase. The
number of hidden units in the multi-head attention modules
is set to 512. We use Pytorch 1.4 on a single TITAN V GPU
with 12M memory for each run, and it generally costs 22
hours to train a single model.

Training. The OK-VQA test images are a subset of COCO

validation images that are used to pre-train most transformer-
based vision and language models (Lu et al. 2019; Tan and
Bansal 2019; Li et al. 2019). Although the test questions
never appear in the pre-training process, other questions on
the test images may help the system understand the image
better, leading to higher performance. Besides, there is also
data contamination from extra object annotations from Visual
Genome (VG) dataset, which also contains some OK-VQA
test images. As the VG dataset is used to pre-train the object
detector, those test images can access the ground truth object
annotations. Therefore, we carefully remove all OK-VQA
test images from the pre-training and re-train the ViLBERT-
multi-task model and the object detector from scratch using
the default configurations.

We finetune the ViLBERT-multi-task model on OK-VQA
using the default configuration for 150 epochs for answer
candidate generation. Binary cross-entropy loss and VQA
soft score are employed to optimize the system. OK-VQA
provides five annotations for each question. Soft scores are
0, 0.6, and 1 corresponding to 0, 1, more than 1 matching
answer annotations. We use the finetuned model to extract
the top 5 answers for each question in the training and test
set. We follow the default settings of ViLBERT and apply
the BertAdam optimizer (Devlin et al. 2019) with a linear
warmup learning rate.

For the training of the answer validation module, we opti-
mize the validation score J(a, a′) using the loss in Eq. 4 for
the three knowledge sources, where s(a) denotes the VQA
soft scores for answer a. We also add the standard VQA
losses on the predictions from the three external sources. We
train the system for 75 epochs using a learning rate of 2e-5
for the ViLBERT parameters and 5e-5 for the additional pa-
rameters introduced in the validation module. We freeze the
first 10 layers of the ViLBERT base network. We use Lbce to
denote binary cross-entropy loss.

LMAVEx = Lbce

(
max

a
s.t. a ̸= a′

J(a, a′), 0
)

+ Lbce

(
max
a′

s.t. a ̸= a′

J(a, a′), 0
)

+ Lbce

(
J(a, a), s(a)

)
(4)

Experiments
We evaluate our framework on the OK-VQA dataset. We
first briefly describe the dataset and then present our results,
comparing with the current state-of-the-art systems.

OK-VQA dataset (Marino et al. 2019) is the largest
knowledge-based VQA dataset at present. The questions are
crowdsourced from Amazon Mechanical Turkers, leading
to two main advantages: (1) the questions indeed require
outside knowledge beyond images; (2) there are no existing
knowledge bases that cover all the questions, thus requiring
systems to explore open-domain resources. The dataset con-
tains 14,031 images and 14,055 questions covering a variety
of knowledge categories. The metric is the VQA soft score.
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Method Knowledge Resources Performance
ArticleNet (AN) (Marino et al. 2019) Wikipedia 5.3
Q-only (Marino et al. 2019) — 14.9
MLP (Marino et al. 2019) — 20.7
BAN (Kim, Jun, and Zhang 2018) — 25.2

+ AN (Marino et al. 2019) Wikipedia 25.6
+ KG-AUG (Li, Wang, and Zhu 2020) Wikipedia + ConceptNet 26.7

MUTAN (Ben-Younes et al. 2017) — 26.4
+ AN (Marino et al. 2019) Wikipedia 27.8

Mucko (Zhu et al. 2020) Dense Caption 29.2
ConceptBert (Gardères et al. 2020) ConceptNet 33.7
KRISP (Marino et al. 2021) Wikipedia + ConceptNet 38.9∗

RVL† (Shevchenko et al. 2021) Wikipedia + ConceptNet 39.0†
MAVEx (ours) Wikipedia + ConceptNet 39.45∗
MAVEx (ours) Wikipedia + ConceptNet + Google Images 40.28∗
MAVEx (ours) (Ensemble 3) Wikipedia + ConceptNet + Google Images 41.37∗

Table 1: MAVEx outperforms current state-of-the-art approaches on OK-VQA. The middle column lists the external knowledge
sources, if any, used in each system. † indicates that the system uses a pretrained model contaminated by OK-VQA test images.
∗ indicates that the results have been reported on version 1.1 of the dataset.

For the experiments of this paper, we used version 1.1 of the
dataset.

Intrinsic Evaluation

We begin with an intrinsic evaluation of MAVEx, assessing
the quality of the answer candidate generation step.

Answer Candidate Accuracy. Our answer candidate gener-
ation module, based on the finetuned ViLBERT-multi-task
model, outputs its top-5 answers as the candidates. We found
that the best answer in this small candidate set achieves a
VQA soft score of 59.7 on the test set, substantially higher
than other state-of-the-art systems without data contamina-
tion. We also evaluate the score achieved by slightly larger
candidate sets, consisting of the top 6, 8, and 10 candidates.
These achieve VQA soft scores of 62.1, 65.1, and 67.1, re-
spectively. Since our answer validation framework needs to
retrieve and encode answer-specific knowledge, we use only
top-5 answer candidates as a reasonable trade-off between
efficiency, answer coverage, and overall accuracy. Note that
our method cannot produce answers not in the candidate set.

Main Results

Table 1 shows that MAVEx consistently outperforms prior
approaches by a clear margin. For example, MAVEx
single model outperforms recent state-of-the-art models,
KRISP (Marino et al. 2021), and ConceptBert (Gardères
et al. 2020) by 1.4, 6.6 points, respectively. An ensemble of
three MAVEx models with different initializations provides
2.47 points improvement compared to KRISP. All of our re-
sults, except for the ensemble model, are averaged across 3
different initialization seeds. The standard deviation is 0.21
for the single model computed from the three runs.

Ablation Studies

Knowledge Sources. We report the performance of using
the different combinations of knowledge sources in Table 2.
We see that the three sources (WikiPedia, ConceptNet, and
Images) improve the performance by 3.4, 3.3, and 3.1, re-
spectively, compared to the base ViLBERT system. This
indicates the effectiveness and value of all three sources. The
decontextualization technique (Choi et al. 2021) improves the
performance compared to using only the Wikipedia source
by 0.4%. The decontextualization partially helps address
the co-reference issue since the retrieved sentences provide
more information from their paragraph. Combining the three
sources achieves a net performance gain of 5% over the ViL-
BERT baseline, supporting the intuition that the three sources
together provide complementary pieces of knowledge.

We show some qualitative examples in Figure 5, where the
VQA model (ViLBERT) is wrong but provides good answer
candidates. Our MAVEx gathers the external knowledge from
the three sources and predicts the correct answers.

System
Knowledge Source Score
ViLBERT 35.20
Wikipedia (w/o decontextualization) 38.21
Wikipedia 38.63
ConceptNet 38.56
Images 38.30
Wikipedia + ConceptNet 39.45
ConceptNet + Images 39.60
Wikipedia + Images 39.37
Wikipedia + ConceptNet + Images 40.28
Wikipedia + ConceptNet + Images (Oracle) 47.76

Table 2: Ablation study using different combinations of
knowledge sources.
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What is the complimentary 
color to the frisbee

Blue (MAVEx)

Because orange and blue are 
complementary colors, life 
rafts and life vests are 
traditionally orange, to 
provide the highest contrast 
and visibility when seen from 
ships or aircraft over the 
ocean

In the indian subcontinent, 
red is the traditional color of 
bridal dresses, and is 
frequently represented in the 
media as a symbolic color for 
married women

Red (VQA)

Umpire,related to, referee
Umpire, synonym, referee
Umpire, related to, baseball 
official

Umpire (MAVEx)Who is the official in this 
sport

Pitcher (VQA)

Chandelier(MAVEx)What kind of lamp is this Lava(VQA)

Figure 5: Examples where the VQA model is wrong but
MAVEx with the three external knowledge sources answers
correctly. The correct answer is in the green box and the
incorrect answer is shown in the red box. The grey box shows
the question. Sample retrieved knowledge content is shown
in the boxes under the predicted answers.

Knowledge Embedding Granularity. We ablate different
levels of granularity used in the MAVEx system by com-
paring to two baseline systems, where we replace the noun-
phrase level or the question level multi-head attention module
with an average pooling operation. When replacing the noun-
phrase level MHAtt modules (i.e. three MHAtt modules
corresponding to merging queries’ features for question noun
phrases, question target phrase and the answer phrases), the
performance reduces to 39.77. When replacing the question
level MHAtt module with an average pooling operation for
the question, the performance reduces to 39.60.
Answer Validation Step. We consider a MAVEx baseline
model that uses the retrieved knowledge (w̃, c̃, m̃) as ad-
ditional inputs but without answer validation. This model
achieves an overall score of 39.2, 4% higher than the ViL-
BERT base model and 1.1% lower than the full model, in-
dicating that using answer-guided retrieved knowledge is
helpful, and answer validation further improves performance.

Oracle Experiments
Oracle Source Selector. We report an oracle score obtained
by manually choosing the best verification score Jk(a, a)
from the three sources k ∈ {w̃, c̃, m̃} to weigh the predic-
tion P . As a result, our answer validation framework achieves
an oracle score of 47.76 as reported in Table 2. This indicates
that the three knowledge sources provide complementary
features, leaving further potential to improve the system.

How is this form of transportation 
powered?

Answer candidates:  clay, dirt, 
concrete, tennis court, pavement
Sample fact: 
Clay has context of tennis
Clay is related to surface
Predicted answer: tennis court
GT answers: clay

Answer candidates: electricity, 
diesel, gas, gasoline, engine
Sample fact: 
Some locomotives use two-stroke 
diesel engines
Predicted answer: diesel
GT answers: electricity

What other surfaces might this 
sport be played on?

Answer candidates: time zone, 
tell time, time, storage, to tell time
Sample fact: 
The primary purpose of a clock is 
to display the time
Predicted answer: tell time
GT answers: time zone

What purpose is there to having 
all of these clocks on the wall?

Figure 6: Some typical failure cases of our model have been
shown. In these examples, the model falsely focuses on the
retrieved fact (left), visual content (middle), or does not gen-
erate proper search word (right).

Failures Cases Analysis
Figure 6 shows some common types of failure examples.
In the left example, the model over-relies on the retrieved
fact “some locomotives use diesel engines” and ignores the
key visual clue in the image (the wires above the train). In
the middle example, the model relies on the visual content
“tennis court” and does not use the retrieved knowledge. In
the example shown on the right, the model fails to realize that
the key clue is the difference in displayed time on the clocks.

Conclusion
We presented MAVEx, a novel approach for knowledge based
visual question answering. The goal is to retrieve answer-
specific textual and visual knowledge from different knowl-
edge sources and learn what sources contain the most relevant
information. Searching through the vast amount of retrieved
knowledge, which is often quite noisy, is challenging. Hence,
we formulate the problem as answer validation, where the
goal is to learn to verify the validity of a set of candidate
answers according to the retrieved knowledge. More specif-
ically, an answer candidate validation module predicts the
degree of support provided by the knowledge retrieved for
each candidate, and decides which sources to trust for each
candidate answer. MAVEx demonstrates the clear advantages
of answer-guided knowledge retrieval, achieving the state-of-
the-art performance on the OK-VQA dataset.
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