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Abstract

Batch Normalization (BN) as an important component assists
Deep Neural Networks in achieving promising performance
for extensive learning tasks by scaling distribution of feature
representations within mini-batches. However, the application
of BN suffers from performance degradation under the sce-
nario of Unsupervised Domain Adaptation (UDA), since the
estimated statistics fail to concurrently describe two differ-
ent domains. In this paper, we develop a novel normalization
technique, named Collaborative Normalization (CoN), for
eliminating domain discrepancy and accelerating the model
training of neural networks for UDA. Unlike typical strategies
only exploiting domain-specific statistics during normaliza-
tion, our CoN excavates cross-domain knowledge and simulta-
neously scales features from various domains by mimicking
the merits of collaborative representation. Our CoN can be
easily plugged into popular neural network backbones for
cross-domain learning. On the one hand, theoretical analysis
guarantees that models with CoN promote discriminability of
feature representations and accelerate convergence rate; on
the other hand, empirical study verifies that replacing BN
with CoN in popular network backbones effectively improves
classification accuracy in most learning tasks across three
cross-domain visual benchmarks.

Introduction
The hierarchical structure of Deep Neural Networks (DNN)
facilitates itself to achieve appealing performances with pro-
lific semantic representations in most learning tasks (Xu et al.
2019; Liu et al. 2020; Li et al. 2021). As an indispensable
component in DNN, batch normalization (BN) aims to scale
internal features to promote modeling ability of DNN (Ioffe
and Szegedy 2015). Concretely, typical BN preserves the
scale of distribution invariant among various network layers
by normalizing features, avoiding gradient vanishing and ac-
celerating model convergence (Li et al. 2018; Gao et al. 2021).
To accurately estimate property of distribution, the training
of DNN thus requires abundant well-labeled instances, which
is unsuitable for real-life scenarios.

Unsupervised Domain Adaptation (UDA) casts a light on
such a barren condition and explores external source domain
with sufficient annotation to build a model generalized to
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unlabeled target domain (Tang, Chen, and Jia 2020). The
primary challenge for UDA is to overcome domain shift
that multi-domains belong to various distributions (Xia and
Ding 2020; Sharma, Kalluri, and Chandraker 2021). Existing
mainstream solutions attempt to eliminate cross-domain dis-
crepancy by learning domain-invariant representations with
DNN (Zhang et al. 2019; Du et al. 2021). Along this line, one
successful strategy adopts adversarial mechanism between
feature extractor and domain discriminator to perform do-
main confusion (Liu et al. 2019; Xiao and Zhang 2021). Other
efforts (Kang et al. 2019; Li et al. 2020) focusing on the align-
ment of various distributions expect both domains to share
the identical statistics (e.g., mean value and co-variance). For
the convenient implementation, these works generally bind
the corresponding constraints with full-connection features
following convolutional operations. However, the effect of
objective function flowing in stacked network architecture
gradually becomes too weak to align source and target fea-
tures specially on shallow layers during back propagation.

To overcome such a problem, the variants of BN linking ad-
jacent layers attract massive attentions on domain adaptation.
Traditional methods typically adopt domain-specific BNs to
separately scale source and target features (Kang et al. 2019;
Tang, Chen, and Jia 2020), however, their major drawback
lies in the difficulty of capturing cross-domain association.
From statistical perspective, adaptive batch normalization
(AdaBN) (Li et al. 2018) thus exploits the same BN module
across various domains by training normalization component
on source domain and fixing parameters to identify target
samples for inference stage. However, significant domain dis-
crepancy has negative influence on the direct application of
source statistics on target domain. To mitigate collision, the
automatic domain alignment layer (Cariucci et al. 2017) con-
siders the linear combination of source and target statistics as
indicator of BN. The primary challenge is accurately to select
the combination coefficient as the key to succeed. Another
perspective delves into the learning of transferable feature
representations. Specifically, TransNorm (TN) claims that the
similar convolutional channels across both domains tend to
record similar patterns intensified in BN operation to promote
the transferability of features (Wang et al. 2019a). For visual
signals, theses attributions, however, are corresponding to the
same concepts such as blue sky, green grass et.al instead of
our interested objects. Therefore, the enhancement of them
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brings a little benefit for classification of target domain.
Different from their viewpoints, we explore cross-domain

feature alignment during forward propagation from mani-
fold distribution perspective (Luo et al. 2020; Fernando et al.
2013). Although convolutional representations distribute in
high-dimensional feature space, instances from the identical
category lie in the same cluster within each domain. However,
domain divergence results in constituting various subspaces
of source and target features with the same annotation. In this
paper, we have alternatively transformed domain adaptation
task into subspace fusion problem. Thus, we propose a novel
collaborative normalization (CoN) to answer how to carry out
cross-domain subspace alignment in forward propagation of
features. First, CoN module exploits domain-specific statis-
tics to normalize features to avoid destroying original data
distribution. Second, CoN investigates cross-domain struc-
tural information through the global pooling of convolutional
features. Finally, CoN attempts to estimate the location of
source (target) features in target (source) subspace and grad-
ually align samples from its own subspace to the other. The
main contributions of our work are summarized as:

• We advance traditional BN with a novel feature adjust-
ment mechanism in forward propagation and easily plug
our proposed CoN module into convolutional layers with-
out additional parameters.

• Our theoretical analysis further illustrates why our CoN
achieves domain alignment via translation between source
and target samples and accelerates convergence speed.

• Experimental evaluations on several visual domain adapta-
tion benchmarks demonstrate that our CoN facilitates con-
volutional neural network to learn better domain-invariant
feature representations than other normalization tech-
niques as traditional BN.

Related Work
In this section, we mainly review unsupervised domain adap-
tation problem and batch normalization strategies, and high-
light the difference between our proposed method.

Unsupervised Domain Adaptation
Unsupervised Domain Adaptation (UDA) aims to train a
source-supervised model with high generalization on target
domain (Zhang et al. 2019; Xia et al. 2021). The primary
challenges for UDA are to learn transferable feature and
achieve the alignment of distribution (Jing and Ding 2021;
Sharma, Kalluri, and Chandraker 2021; Xia, Zhao, and Ding
2021). To overcome such issues, domain-adversarial man-
ner is adopted to train a neural network with generator and
discriminator and learn domain-invariant features (Xiao and
Zhang 2021). Another solution claims that statistics of data
reflect the situation of distribution and forces source and tar-
get domains to share the identical indicators such as MMD
and its variants (Li et al. 2020; Tang, Chen, and Jia 2020).
Both schemes apply back propagation to delivery the cor-
responding constraints by using objective function on top
layers. However, gradient vanishing as the increasing number
of network layers gradually decreases the effect of condition

on bottom layers. Unlike them, this paper attempts to elimi-
nate cross-domain discrepancy during forward propagation
by proposing a novel network normalization component.

Batch Normalization
Batch Normalization (BN) as an important component has
been widely studied to demonstrate that it effectively pro-
motes the performance of DNN by scaling internal repre-
sentations across network layers (He et al. 2016). There
exist many variants of BN to satisfy specific requirement
for other applications (Cooijmans et al. 2016; Wang et al.
2018; Nam and Kim 2018). To fight off domain mismatch, a
few works thus explore novel techniques based on domain-
specific BN to address issue of domain adaptation (Li et al.
2018; Wang et al. 2019b; Roy et al. 2019). AutoDIAL at-
tempts to construct new statistics through the linear combi-
nation of indicators derived from source and target domains
to concurrently normalize all features (Cariucci et al. 2017).
However, the optimal parameters of combination are yet not
simply accessible. DSBN (Chang et al. 2019) adopts domain-
specific BN to scale source and target features to preserve
more domain-specific knowledge, which difficultly captures
the cross-domain association to achieve distribution align-
ment. Furthermore, TN points out several channels of con-
volutional features are more likely to record similar content
for both domains and intensifies representation of these chan-
nels to promote the transferability of features (Wang et al.
2019a). The sense of TN is that these similar contents are
task-relevant patterns such as objects instead of background,
which it is difficult to guarantee. Differently, the proposed
method considers the translation of sample from one domain
to another and carries such motivation into normalization.
Such a strategy not only overcomes domain shift, but also
promotes the discriminability of features due to advantage of
collaborative representation.

The Proposed Approach
Preliminaries and Motivation
Denote a well-labeled source domain Ds = {(Xs

i , lsi )}
ns
i=1

and a target domain Dt = {Xt
i}

nt
i=1 without any annota-

tion, where X
s/t
i represents visual signal from the corre-

sponding domain and lsi ∈ RC×1 is the label for Xs
i , where

C is the number of category. Unsupervised Domain Adap-
tation (UDA) aims to borrow knowledge from Ds to an-
notate the unlabeled target instances. Benefiting from pro-
lific semantic knowledge learned by hierarchical network
architecture, existing explorations for UDA apply DNN
to generate domain-invariant features (Zhang et al. 2019;
Tang and Jia 2020). Without loss of generality, the con-
volutional features of the k-th hidden layer are defined as
Fs/t = {Fs/t

i ∈ RL×W×H |i = 1, 2, · · · ,m} for each mini-
batch with m samples, where L, W and H mean the length,
width and channel number of feature tensor, respectively.

Domain-specific batch normalizations following convolu-
tional operation are explored to scale representations Fs and
Ft as Figure 1 (a) in green background with the estimated
mean value and co-variance of F

s/t
(j) for the j-th channel
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Figure 1: Normalization tools for UDA. (a) Batch Normalization (BN) in green background firstly estimates the mean µ
s/t
(j) and

variance σ
s/t
(j) from the j-th feature map, and then normalize F

s/t
(j) into Y

s/t
(j) . TN extended BN by exploring α(j) (dash lines)

to enhance the transferability of several channels. (b) Our CoN advances the BN with dashed lines and borrows cross-domain
knowledge derived from all feature maps F s/t

(:) to implement collaborative normalization and eliminate domain shift.

(j ∈ {1, 2, · · · , H}):

µ
s/t
(j) ←

1

mLW

m∑
i=1

L∑
a=1

W∑
b=1

F
s/t
i,a,b(j)

σ
s/t
(j) ←

1

mLW

m∑
i=1

L∑
a=1

W∑
b=1

(
F

s/t
i,a,b(j) − µ

s/t
(j)

)2

. (1)

To improve the modeling capacity of neural network, the
transformed representation F̂

s/t
(j) from F

s/t
(j) is further scaled

and shifted into the following formulation:

F̂
s/t
i(j) =

F
s/t
i(j) − µ

s/t
(j)√

σ
s/t
(j)

, Y
s/t
i(j) = γ(j)F̂

s/t
i(j) + β(j), (2)

where γ(j) and β(j) are learnable parameters. Actually, this
operation for each domain effectively scales the feature rep-
resentations across various network layers to stabilize the
model training and accelerate the convergence rate. How-
ever, such a normalization strategy using different statistics
to scale source and target samples suffers from the difficulty
of eliminating domain discrepancy. To handle this bottleneck,
TN (Wang et al. 2019a) concerns on learning transferable
features and advances typical BN with dashed lines in Figure
1 (a) by sharing information of channel across both domains
during forward propagation stage. Concretely, for each chan-
nel, TN module computes cross-domain difference d(j) and

evaluates the channel transferability via parameter α(j):

d(j) =

∣∣∣∣∣ µs
(j)√
σs
(j)

− µt
(j)√
σt
(j)

∣∣∣∣∣ ,
α(j) =

Hk(1+d(j))
−1

Hk∑
i=1

(1+d(i))−1

.
(3)

According to the above definition, α(j) with large value
indicates the j-th channels corresponding to two domains
contain similar pattern. Promoting the importance of such
channels with Ỹ

s/t
i = (1 + α) ⊙ Y

s/t
i to some extent

reduces domain shift (⊙ denotes element-wise multiplica-
tion), where α is a vector with a concatenation of the val-
ues {α(j)|j=1,2,··· ,H}. TN assumes that these enhanced fea-
tures include knowledge of our interested object. Unfortu-
nately, the current version fails to guarantee such requirement.
For example, even though we discover several similar cross-
domain channels extracting background content from visual
signals, it is still meaningless to continue reducing difference
between them for classification task.

Different from them, we focus on the manifold distribution
of features in forward propagation. For each domain, sim-
ilar feature representations with the same annotation lie in
the identical subspace. However, source and target features
from the same category distribute in different subspaces due
to considerable domain shift. Alternatively, the reduction of
domain discrepancy also means the subspace alignment. Mo-
tivated by such a consideration, we expect to estimate the
location of source (target) features in target (source) domain
and gradually align instances from its own subspace to the
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other. Therefore, this paper proposes a novel collaborative
normalization (CoN) strategy to implement our purpose.

Collaborative Normalization (CoN)
The CoN module mainly involves three operations: domain-
specific normalization, collaborative translation and excava-
tion of cross-domain structural knowledge.

Domain Specific Normalization. Domain shift means
that source and target instances come from two completely-
different distributions. Thus, the normalization of features
across both domain with the same statistic easily undermines
the original distribution information. To avoid such problem,
we follow the usual solution (Ganin et al. 2017) to scale
features with domain-specific statistics and shift them with
the identical parameters (γ(j), β(j)) into Y

s/t
i(j).

Collaborative Translation. The core of CoN is to achieve
the alignment of source and target subspaces by moving in-
stances from its own subspace to the other. Before the specific
implementation, we have to post two important questions:
where is the location of samples in another subspace and
how to move it into the position. The solution to the first
challenge is motivated by manifold theory that each sam-
ple can be represented by the linear combination of others.
Without losing generality, we take source-to-target transla-
tion as an example and consider the linear combination of
target samples as the location of the given source instance
in target subspace. For the clarity of illustration, we firstly
reshape hidden feature Y

s/t
i(j) corresponding to each sam-

ple into vector form y
s/t
i ∈ R1×d without (j), where d is

the dimension of feature. Given source sample ys
i , target

samples Zt = [(yt
1)

⊤, (yt
2)

⊤, · · · , (yt
mt

)⊤]⊤ (yt
j ∈ R1×d)

are regarded as a set of basis vectors to represent it, i.e.,
ys
i ≈ mt

iZ
t, where mt

i ∈ R1×mt denotes coefficient of
linear combination for i-th source instance and mt denotes
batch size. Specifically, suppose that ys

i and yt
j belong to the

same category, we should emphasize the contribution of yt
j

for linear representation, which means that the j-th element in
mt

i tends to be larger value than others. Similarly, when these
two domains change their roles in linear combination, the
formulation of collaborative translation will be maintained,
i.e., yt

i ≈ms
iZ

s, where ms
i has the same meaning with mt

i.
With respect to the second challenge, we are motivated

by the explanation that mt
iZ

t (ms
iZ

s) serves as projection of
ys
i (yt

i) on subspace spanned by Zt (Zs) and attempt to ad-
just source feature to the approximation to achieve subspace
alignment. However, we further concern another question
about the reliability of adjustment. Alternatively, when there
exists small difference between them, performing the corre-
sponding adjustment tends to be confident, vice versa. Thus,
we define adjustment coefficient to evaluate the difference
between ys

i and mt
iZ

t to gradually conduct adjustment:

ηsi =
1

∥ys
i −mt

iZ
t∥2

, ηti =
1

∥yt
i −ms

iZ
s∥2

, (4)

where ηsi (ηti ) with larger value means the higher
credibility of this adjustment. Therefore, the collabo-
rative translations is formulated as: Ỹs = Ys +

𝜃 𝜌 𝜔

𝜖 = 𝑦! − (𝑦!𝑦!

𝜒"

�̅�"

𝜖"+𝑦! ̂𝜖"

(𝑦!

𝜐

𝜉
𝑦! + 𝜂((𝑦! − 𝑦!)

𝜙

Figure 2: Geometric illustration for the working mechanism
of Collaborative Normalization (CoN).

ηs ⊙ (AstZt − Ys) and Ỹt = Yt + ηt ⊙
(AtsZs − Yt), where ηs/t = [η

s/t
1 , η

s/t
2 , · · · , ηs/tms/t

]⊤,
Ast = [(mt

1)
⊤, (mt

2)
⊤, · · · , (mt

ms
)⊤]⊤ and Ats =

[(ms
1)

⊤, (ms
2)

⊤, · · · , (ms
mt

)⊤]⊤. The final step is to reshape
Ỹ

s/t
i into a 2-D feature map with the same size with Y

s/t
i(j).

Structural Knowledge Excavation: The next discussion
is about the design of transfer coefficient Ast and Ats in
Figure 1 (b). Due to the accessibility of source and target
features, we learn the closed-form solution of coefficient via
the optimization of the ordinary least square between source
and the combined features. However, the strategy with op-
timization operation postpones the forward propagation of
features and hardly captures sample-to-sample relationship
without sufficient training instances in each mini-batch. To
fight off these drawbacks, we alternatively turn to the appli-
cation of cross-domain structural knowledge derived from
Fs and Ft. Concretely, when channel number of feature
H ≥ 2, the global pooling operation calculates the average
of all elements in each 2-D tensor Fs/t

i(j), and then compresses

feature of each sample F
s/t
i into G

s/t
i ∈ R1×H . Thus, we

formulate the element of Ast as Ast
ij =

Gs
i (G

t
j)

⊤

∥Gs
i∥2·∥Gt

j∥2
and

Ats = (Ast)⊤. For full-connection (FC) layers, the cross-
domain graph is computed from the cosine distance of source
and target features. To this end, we easily plug our CoN layer
into any network layers without additional parameters.

Why can CoN work for UDA?
The subspace spanned by target samples Zt is formulated
as Φ geometrically shown as a plane in Figure 2. Since any
source sample ys can be linearly represented by Zt, we for-
mulate the approximated error between them as ϵ = ys−ys,
where ys = Ast

i Zt, Ast
i ∈ R1×mt . Meanwhile, we notice

that target samples of the i-th category construct a sub-
space Φi ∈ Φ while others form other subspace Φi =
∪j=1&j ̸=iΦj ∈ Φ. In this way, the estimated vector ys can
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Method Res-Net JAN DAN MADA SAFN DRMEA BN TN CoN

I→P 74.8±0.3 76.8±0.4 74.5±0.4 75.0±0.3 79.3±0.1 80.7 77.7 78.3 80.2
P→I 83.9±0.1 88.0±0.2 82.2±0.2 87.9±0.2 93.3±0.4 92.5 90.7 90.8 93.3
I→C 91.5±0.3 94.7±0.2 92.8±0.2 96.0±0.3 96.3±0.4 97.2 97.7 96.7 97.5
C→I 78.0±0.2 89.5±0.3 86.3±0.4 88.8±0.3 91.7±0.0 90.5 91.3 92.3 94.3
C→P 65.5±0.3 74.2±0.3 69.2±0.4 75.2±0.2 77.6±0.1 77.7 74.2 78.0 80.4
P→C 91.2±0.3 91.7±0.3 89.8±0.4 92.2±0.3 95.3±0.1 96.1 94.3 94.3 96.2
Avg 80.7 85.8 82.5 85.8 88.9 89.1 87.7 88.5 90.3

Table 1: Classification Accuracy (%) on Image-CLEF dataset (ResNet-50). The best results among all methods are shown with
underline while the highest accuracy of three normalization tools is in bold type. And the existing BN, TN and the proposed CoN
are plugged into the same backbone CDAN.

be decomposed into two components: χi ∈ Φi and χi ∈ Φi.
Akin to such decomposition, one component of the approxi-
mated error is formulated as vector ϵi. In the following, we
firstly provide theoretical analysis about our CoN and then
illustrate how it does work for UDA.
Theorem 1 Given target samples divided into C categories
and arbitrary source sample ys, we assume each class has
only one sample in target domain. For i, j ∈ {1, 2, ..., C},
where i ̸= j, the following conclusion holds: ̸ ∃ϵj such that
∥ϵj∥2 ≤ ∥ϵi∥2, while ys belongs to the i-th category.

Proof. According to the design of CoN, it is straightforward
to obtain that χi = cos θ · yt

i and ∥χi∥2 = cos θ∥yt
i∥2. In

addition, we have to point out that ϵ ⊥ Φ. Due to the auxiliary
line ξ ⊥ χi, we have:

∥ν∥2 = ∥ys∥2 cos θ = ∥ys∥2 cos ρ, (5)

⇔ cos ρ =
∥ys∥2 cos θ
∥ys∥2

. (6)

From Figure 2, the formulation ∥ys∥2 · sin ρ = ∥χi∥2 ·
sinω holds under the law of sines. In terms of these discus-
sions, we further have the following formulation:

∥χi∥2 =
√
∥ys∥2 + ∥yt

i∥2 cos2 θ − 2∥ys∥2∥yt
i∥2 cos θ cos ρ

=
√
∥ys∥2 − cos2 θ. (7)

To achieve the final result, we simultaneously shrink vector
ys and yt

i into the same scale, i.e., ∥ys∥2 = ∥yt
i∥2 = 1.

Moreover, we achieve ∥ϵi∥22 = ∥ϵ∥22 + ∥χi∥22 and rewrite it:

∥ϵi∥22 = ∥ϵ∥22 + ∥ys∥22 − cos2 θ. (8)

In terms of Eq. (8), the approximated error ∥ϵi∥2 depends
on three terms ϵ, ys and cos θ. From manifold perspec-
tive, features from the same category lie in a very compact
subspace. Thus, the cosine similarity between ys and yt

i
both from the i-th category becomes higher than the dis-
tance between ys and yt

j from various classes. With the
aid of manifold theory, the conclusion ̸ ∃ϵj , ∥ϵj∥2 ≤ ∥ϵi∥2
holds. Next, we utilize Eq. (8) to illustrate why our CoN
can achieve domain alignment. According to CoN module

ỹs = ys + ηs(ys − ys), ys is transformed into ỹs and the
component of approximated error ϵi tends to be ϵ̂i, where
∥ϵ̂i∥22 = ∥ϵ − δ∥22 + ∥ys∥22 − cos2 θ and δ = η(ys − ys)
(0 < η ≤ 1). In practice, we rescale η = 1 if η ≥ 1. Thus,
we have the inequality over ϵi and ϵ̂i:

∥ϵ̂i∥22 = ∥ϵ∥22 + ∥δ∥22 − 2∥ϵ∥2∥δ∥2 + ∥ys∥22 − cos2 θ

≤ ∥ϵi∥22, ∥δ∥2 ≤ ∥ϵ∥2. (9)

The above formulation denotes the adjusted features ỹs is
closer to its corresponding target category when compared
with the original feature ys. Therefore, our method utilizes
such a reliable adjustment to gradually achieve distribution
alignment and improve the discriminative ability of features.

Experiments
To verify the effectiveness of Collaborative Normalization
(CoN), we apply the proposed method into two well-known
deep transfer learning backbones CDAN (Long et al. 2018)
and DANN (Ganin et al. 2017) and evaluate their perfor-
mance on three popular benchmark datasets.

Experimental Setting
Datasets: 1) Image-CLEF collects visual signals from three
subsets: Caltech-256 (C), ImageNet ILSVRC 2012 (I) and
Pascal VOC 2012 (P) with the same number of samples.
Concretely, arbitrary subset includes 600 images evenly dis-
tributed in 12 categories. 2) Office-31 (Saenko et al. 2010)
as a benchmark dataset of domain adaptation involves 4,652
images from 31 categories. These instances are divided into
three subsets: Amazon (A, 2,817 images), DSLR (D, 498
images) and Webcam (W, 795 images). 3) Office-Home
(Venkateswara et al. 2017) consists of four subsets: Artis-
tic images (Ar), Clip Art (Cl), Product images (Pr) and
Real-World images (Rw). Four subsets with 15,500 images
share the identical label space of 65 categories.

Empirical Analysis
Competitive baselines: We not only explore the state-of-the-
art domain adaptation methods including DAN (Long et al.
2015), JAN (Long et al. 2017), MADA (Pei et al. 2018), DSR
(Cai et al. 2019), SymNets (Zhang et al. 2019), TADA (Wang
et al. 2019b), SAFN (Xu et al. 2019), DRMEA (Luo et al.
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Method Res-Net JAN DADA SymNets TADA SAFN BN TN CoN

A→W 68.4± 0.2 85.4± 0.3 92.3± 0.1 90.8± 0.1 94.3± 0.3 90.3 94.1 95.7 96.4
D→W 96.7±0.1 97.4±0.2 99.2±0.1 98.8±0.3 98.7±0.1 98.7 98.6 98.7 98.4
W→D 99.3±0.1 99.8±0.2 100±0.0 100.0±0.0 99.8±0.2 100.0 100.0 100.0 100.0
A→D 68.9±0.2 84.7±0.3 93.9±0.2 93.9±0.5 91.6±0.3 90.7 92.9 94.0 96.0
D→A 62.5±0.3 68.6±0.3 74.4±0.1 74.6±0.6 72.9±0.2 73.4 71.0 73.4 75.3
W→A 60.7±0.3 70.0±0.4 74.2±0.1 72.5±0.5 73.0±0.3 71.2 69.3 74.2 75.7

Avg 76.1 84.3 89.0 88.4 88.4 87.6 87.7 89.3 90.3

Table 2: Classification Accuracy (%) on Office-31 dataset (ResNet-50). The best results among all methods are shown with
underline while the highest accuracy of three normalization tools is in bold type. And the existing BN, TN and the proposed CoN
are plugged into the same backbone CDAN.

Method Ar:Cl Ar:Pr Ar:Rw Cl:Ar Cl:Pr Cl:Rw Pr:Ar Pr:Cl Pr:Rw Rw:Ar Rw:Cl Rw:Pr Avg
Res-Net 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

JAN 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
DSR 53.4 71.6 77.4 57.1 66.8 69.3 56.7 49.2 75.7 68.0 54.0 79.5 64.9

SymNets 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
TADA 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
SAFN 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3

CDAN+BN 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
CDAN+TN 50.2 71.4 77.4 59.3 72.7 73.1 61.0 53.1 79.5 71.9 59.0 82.9 67.6

CDAN+CoN 51.2 72.2 77.5 63.6 74.3 72.0 61.9 56.5 79.8 75.4 55.6 84.2 68.7

Table 3: Classification Accuracy (%) on Office-Home dataset (ResNet-50). The best results among all methods are shown with
underline while the highest accuracy of three normalization tools is in bold type.

2020), DADA (Tang, Chen, and Jia 2020) but also combine
network backbones (CDAN and DANN) with multi-norm
strategies: BN (Long et al. 2018) and TN (Wang et al. 2019a)
as baselines. We follow the standard protocols operated with
CDAN and DANN to evaluate the effectiveness of our pro-
posed normalization technique. To make fair comparisons,
results of all above methods are directly copied from the
corresponding literature under the exactly same protocols.

Experimental results on Image-CLEF, Office-31 and
Office-Home datasets are summarized in Tables 1, 2, and 3,
respectively. From these results, we achieve three main con-
clusions. First, the integration of CDAN and CoN surpasses
all comparisons in most domain adaptation tasks. Specifically,
with respect to tasks D → A and W → A in Office-31, our
proposed strategy separately exceeds the second highest clas-
sification accuracy by 0.7% and 1.5%. It demonstrates that
collaborative normalization effectively promotes the model
generalization ability on target domain. Second, compared
with other normalization techniques (BN and TN), CoN suc-
cessfully scales latent features across various domains to
achieve the alignment of different distributions.

For example, due to the assistance of CoN, CDAN learns
more transferable features which dramatically eliminates do-
main shift and improves accuracy by 6% and 4.3% on tasks
(Cl → Ar and Cl → Pr) when making comparison with
BN. Finally, network backbones associated with CoN be-
come more robust for several challenging situations where

I P P I I C C I C P P C Avg
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Figure 3: Evaluations of DANN with multiple normalization
strategies (BN, TN and CoN).

there exists huge discrepancy about the number of sample
within source and target domains. Although DSLR or Webcam
domain has less samples than Amazon domain in Office-31,
the proposed method still obtains comparable performance,
which verifies that the application of collaborative transfer in
mini-batch tends to capture more cross-domain information
and learn better domain-invariant features. Moreover, CoN
layers are also plugged into DANN architecture, which still
achieves promising performances in Figure 3. That means it
is simple yet effective to deploy our proposed normalization
strategy to any frameworks used for domain adaptation.

Convergence Speed: According to the aforementioned

2782



(a) CDAN+BN (b) CDAN+TN (c) CDAN+CoN

Figure 4: Visualization of features on task C → P by using CDAN with multi-normalization tools.
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Figure 5: Visualization of convergence speed, eigen-values, A-distance and λ-value.

working mechanism, the proposed collaborative normaliza-
tion adaptively adjusts the direction of feature representations
within a mini-batch. Such operation explores cross-domain
knowledge to gradually eliminate the discrepancy between
source and target domains. Importantly, our strategy effec-
tively accelerates the convergence speed. To clearly illustrate
this point, the iterative procedures of CDAN with CoN on
tasks P → I and C → P are reported in Figure 4 (a). We
easily find that compared to BN and TransNorm, our method
with CDAN rapidly achieves the optimal solution. Concretely,
take task P → I as an example, collaborative transfer strat-
egy only costs 2,000 iterations to reach the highest classifi-
cation accuracy, while TN and BN require 3,500 and 4,500
iterations, respectively. The main reason results from the ap-
plication of cross-domain knowledge which guides features
to quickly shrink to the correct direction and makes features
more discriminative.

Feature Visualization & Singular Values: To explicitly
understand the situation of distribution in abstract semantic
space, the t-SNE technique is exploited to visualize feature
representations in 2D-panel. The comparative experiments
among BN, TN and CoN with CDAN are performed on task
C → P of Image-CLEF. Different from BN and TN, there
exists tangible boundary among various categories generated
by CoN (Figure 3 (c)). And it is difficult to distinguish source
samples from target instances. These experimental perfor-
mances demonstrate that replacing traditional BN with CoN
effectively scales feature representations and mitigates the
influence of domain shift. Moreover, we also explore SVD
tool to obtain singular values from the learned features on
task C → P . As shown in Figure 4 (b), CDAN+CoN has
smaller difference between the largest and the smallest sin-
gular values compared with CDAN+BN. According to the
theory of BSP (Chen et al. 2019), we achieve the conclusion
that CoN can learn more discriminative features, which is
consistent with our theoretical analysis.

Generalization Analysis: Under the adversarial scheme,
domain discrepancy is approximated by A-divergence (Ben-
David et al. 2010) with the formulation as:

dH△H(S, T ) = 2
(
1− 2

ns + nt

(∑
x:D(x)=0

I(x ∈ Ds)

+
∑

x:D(x)=1
I(x ∈ Dt)

))
, (10)

where D(·) means the domain classifier distinguishing source
domain from target domain (D(x ∈ Ds) = 1 and D(x ∈
Dt) = 0). This indicator reflects the alignment of distribu-
tion in the latent space. In addition, in terms of the learn-
ing bound theory in (Ben-David et al. 2010) (ϵT (h) ≤
ϵS(h)+

1
2dH△H(S, T )+λ), the expected error of hypothesis

space h on target domain ϵT (h) is also determined by the
error λ of the ideal joint hypothesis h∗ on two domains. We
apply domain classifier in CDAN with various normalization
tools on task C → P to evaluate A-divergence and λ in
Figure 4 (c) and (d), where CoN with CDAN obtains lower
values than BN and TN. It indicates that scaling features
with CoN easily learns domain-invariant features and achieve
distribution alignment.

Conclusion
Unsupervised domain adaptation (UDA) aims to learn model
with high generalization ability by achieving distribution
alignment across source and target domains. In this paper, we
rethink UDA from manifold distribution perspective and pro-
pose a novel collaborative normalization strategy (CoN). We
advance traditional BN with a novel feature adjustment mech-
anism in forward propagation and easily plug our proposed
CoN module into convolutional layers without additional
parameters. Theoretical analysis and extensive experimental
studies fully illustrate that the application of CoN in convolu-
tional layers effectively improves classification performance
and accelerates model training convergence on solving chal-
lenges of unsupervised domain adaptation.
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