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Abstract

While deep neural network-based video denoising methods
have achieved promising results, it is still hard to deploy
them on mobile devices due to their high computational
cost and memory demands. This paper aims to develop a
lightweight deep video denoising method that is friendly to
resource-constrained mobile devices. Inspired by the facts
that 1) consecutive video frames usually contain redun-
dant temporal coherency, and 2) neural networks are usually
over-parameterized, we propose a multi-input multi-output
(MIMO) paradigm to process consecutive video frames
within one-forward-pass. The basic idea is concretized to a
novel architecture termed Recurrent Multi-output Network
(ReMoNet), which consists of recurrent temporal fusion and
temporal aggregation blocks and is further reinforced by
similarity-based mutual distillation. We conduct extensive ex-
periments on NVIDIA GPU and Qualcomm Snapdragon 888
mobile platform with Gaussian noise and simulated Image-
Signal-Processor (ISP) noise. The experimental results show
that ReMoNet is both effective and efficient on video denois-
ing. Moreover, we show that ReMoNet is more robust under
higher noise level scenarios.

Introduction
In recent years, a plethora of deep learning-based ap-
proaches have achieved remarkable progress on video de-
noising (Davy et al. 2018; Xue et al. 2019; Claus and van
Gemert 2019; Tassano, Delon, and Veit 2020). Most of
them focus on how to fully exploit the temporal coherency
and inter-frame relationships, so that better denoising per-
formance can be achieved. Existing video denoising meth-
ods can be broadly categorized into two types according to
their temporal modeling strategies: explicit and implicit tem-
poral modeling. The former can usually be formulated as
yi = f(wi(xi−T ), ..., xi, ..., wi(xi+T )), where wi(xj) de-
notes warping from frame j to frame i using explicit motion
estimation such as optical flow, and f denotes the denois-
ing function parameterized by deep neural networks (Xue
et al. 2019; Tassano, Delon, and Veit 2019). The latter can
be formulated as yi = f(xi−T , ..., xi+T ), where no ex-
plicit flow estimation is used and temporal information is
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Figure 1: Comparison of PSNR and computational cost on
Set8 with noise level σ = 30. The radius represents #param-
eters. Compared to existing video denoising methods, the
proposed ReMoNet achieves state-of-the-art performance
with much lower MACs.

implicitly extracted and fused by the deep network f (Zhang
et al. 2018; Tassano, Delon, and Veit 2020). Since there is
no extra computation for flow estimation, implicit tempo-
ral modeling methods usually have less computational cost
compared to explicit ones. While various temporal modeling
methods have been proposed, few efforts have been made to
develop lightweight models for demanding mobile video ap-
plications. Even the most lightweight existing SOTA method
FastDVDNet (Tassano, Delon, and Veit 2020) still has 331G
MACs (Multi-Adds) per 540P (960*540) frame, and is far
from practical video applications on edge.

In this paper, we take a step forward and reduce the MACs
per frame from 331G to 26G with comparable or even su-
perior performance (See Figure. 1). Our method is inspired
by two key observations. Firstly, consecutive video frames
usually share similar content and contain visual redundancy
(Xiao et al. 2015; Buckler et al. 2018). Secondly, neural net-
works are usually over-parameterized (Arora, Cohen, and
Hazan 2018; Frankle and Carbin 2018; Chen et al. 2019;
Allen-Zhu, Li, and Song 2019), as evidenced by the findings
that neural networks can maintain their performance even
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Method Temp. Blind High perf. High efficiency ISP exp. Mobile exp.

DnCNN (Zhang et al. 2017) % ! ! % % %

PrUNet (Wang et al. 2020) % ! % ! ! !

ToFlow (Xue et al. 2019) ! ! ! % % %

ViDeNN (Claus and van Gemert 2019) ! ! ! % % %

DVDNet (Tassano, Delon, and Veit 2019) ! % ! % % %

FastDVD (Tassano, Delon, and Veit 2020) ! % ! % % %

ReMoNet (Ours) ! ! ! ! ! !

Table 1: Comparison of ReMoNet and existing denoising methods.

when over 70% parameters are pruned (Liu et al. 2017; Zhu
and Gupta 2017; Frankle and Carbin 2018).

Based on these observations, we propose a simple yet ef-
fective Multi-input Multi-output (MIMO) formulation:

[yi−T , ..., yi+T ] = f(xi−T , ..., xi+T )

We assume that the neural network has enough capacity
to process video sequences with shared visual redundancy
within one forward pass. We further show that with proper
design, the MIMO-style denoising network can achieve
competitive performance as well as high computational effi-
ciency.

To be more specific, we propose Recurrent Multi-output
Network (ReMoNet). It has two major components: the Re-
current Temporal Fusion (RTF) block and Multi-output Ag-
gregation (MOA) block. The RTF block has the structure
of a lightweight U-Net. It recurrently extracts and fuses
the temporal information from the video sequences with
a MIMO strategy. Then the MOA block also works in a
MIMO manner where the hidden features of multiple frames
are processed simultaneously within a single forward pass.
Finally, we reinforce the multi-output process by similarity-
based mutual distillation that further improves the denois-
ing performance. Since the whole ReMoNet takes multiple
frames as inputs and produces multiple frames in parallel, it
significantly reduces the computational cost per frame and
accelerates the denoising speed.

We carry out extensive experiments on two video denois-
ing benchmark datasets: Set8 and DAVIS, with two types of
noises: Gaussian noise and simulated ISP noise, on two pop-
ular platforms: NVIDIA GPU and Qualcomm Snapdragon
mobile platform, to validate the effectiveness of the pro-
posed method. We show that ReMoNet is able to achieve
competitive performance under Gaussian noise and outper-
forms all baselines under realistic noise. More importantly,
it has only 7.9% MACs and 32.4% parameters, com-
pared to the previous most lightweight SOTA FastDVDNet
(Tassano, Delon, and Veit 2020). The experimental results
also show that the ReMoNet performs even better when the
noise level becomes higher. A brief comparison of ReMoNet
and existing methods is shown in Table. 1. We compare on
the following indicators: 1) whether has temporal model-
ing for consecutive frames, 2) whether is blind denoising
(i.e. unknown of noise level), 3) whether has high perfor-
mance (comparable to SOTA methods like FastDVDNet),
4) whether has high efficiency, 5) whether conducts exper-

iments on ISP noise, 6) whether conducts experiments on
mobile platforms. Table. 1 shows the significant superiority
of ReMoNet over existing methods.

Related Work
Image Denoising Methods
Image denoising has long been investigated in the literature
(Motwani et al. 2004; Fan et al. 2019). Traditional methods
can be roughly categorized into two types: spatial domain
and transform domain. The former (Buades, Coll, and Morel
2005; Beck and Teboulle 2009) exploits the correlations be-
tween similar pixels or patches, among which Non-local
Means (NLM) (Buades, Coll, and Morel 2005) is the rep-
resentative. The latter (Mihcak et al. 1999; Starck, Candès,
and Donoho 2002; Dabov et al. 2007) usually denoise in
the Fourier or wavelet domain among which BM3D (Dabov
et al. 2007) is the representative.

With the development of deep learning, CNN-based
methods gradually become prevalent due to their out-
standing performance. DnCNN (Zhang et al. 2017) learns
the residual mapping from input to noise signal. FFDNet
(Zhang, Zuo, and Zhang 2018) further introduces a control-
lable noise map to cope with various noise levels. There are
also attempts for real-world noise removal. Various realistic
noisy datasets with ground-truth, such as DND (Plotz and
Roth 2017) and SIDD (Abdelhamed, Lin, and Brown 2018),
are collected to facilitate practical applications. A practical
raw image denoising network is also introduced (Wang et al.
2020), which can be deployed on mobile devices.

Video Denoising Methods
Traditional video denoising methods usually generalize im-
age denoising methods to their video processing counter-
part. One representative is VBM4D (Maggioni et al. 2012),
which generalizes BM3D to 4D dimension and results in
better temporal consistency. Deep learning methods tackle
this issue either with explicit or implicit temporal modeling.
Among these methods, Non-Local Net (Davy et al. 2018)
extends the idea of NLM (Buades, Coll, and Morel 2005)
and searches similar adjacent image patches for training.
ToFlow (Xue et al. 2019), DVDNet (Tassano, Delon, and
Veit 2019) and JointLearn (Yu et al. 2020) all use various
optical flow computation (Horn and Schunck 1981; Wein-
zaepfel et al. 2013) for motion estimation, so that adja-
cent frames are warped to provide temporal similarities. Vi-
DeNN (Claus and van Gemert 2019) and FastDVDNet (Tas-
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(a) Single-frame (b) Explicit temporal modeling (c) Implicit temporal modeling (d) Multi-input Multi-output

Figure 2: Comparison of different temporal modeling types. The proposed Multi-input Multi-output modeling enables both
effective temporal modeling and computational efficiency.

sano, Delon, and Veit 2020), on the other hand, use two-
stage spatial-temporal architecture without explicit motion
estimation. There are also methods that directly denoise on
RAW video inputs. RViDeNet (Yue et al. 2020) introduces a
dynamic raw video denoising dataset with groundtruth and
proposes a novel denoising architecture. EMVD (Maggioni
et al. 2021) further proposes an efficient and effective video
denoising method. In this paper, we mainly focus on video
denoising in the sRGB space.

Although progress has been made in video denoising,
most methods require a large computational cost. In this
sense, great gaps still exist between current algorithms and
practical mobile-friendly applications.

Preliminary and Motivation
Given a noisy video, we usually have three solutions for de-
noising: 1) apply single-frame image denoising algorithms
without using any temporal information (Figure. 2 (a) yi =
f(xi)). 2) Use explicit temporal modeling. (Figure. 2 (b)
yi = f(wi(xi−T ), ..., xi, ..., wi(xi+T ))) 3) Use implicit
temporal modeling (Figure. 2 (c) yi = f(xi−T , ..., xi+T )).

We notice that while the temporal coherency in videos
provides visual similarities and boosts the performance, it
also requires the network to process large amounts of re-
dundant content. In other video applications such as video
coding, redundancy reduction is usually taken in the in-
put space, where consecutive similar frames are compressed
to (or predicted by) one representative frame (Sousa 2000;
Wiegand et al. 2003). However, this is not applicable in our
pixel-to-pixel denoising task. In this work, we propose to
reduce the redundant computation in the output space by
the Multi-input Multi-output strategy. If we take the advan-
tage of over-parameterization in neural networks and pro-
cess consecutive frames during one forward pass, the com-
putation on those redundant visual content can be largely re-
duced. Taken a denoising network with 2T + 1 temporal in-
put for instance, when converting to its MIMO version, only
slight changes are needed (i.e. change the number of chan-
nels in the last convolutional layer) which will bring almost
negligible extra parameters (usually less than 1%). Mean-
while, since the MIMO-network denoises 2T+1 frames dur-
ing one forward pass, theoretically it could be almost 2T +1
times faster. This leaves us one question to answer, do neural

networks have enough capacity to process multiple frames
concurrently, or in other words, can MIMO-network main-
tain competitive performance? We will elaborate in the next
section that, with proper design, the proposed ReMoNet is
able to achieve both efficiency and effectiveness.

Proposed Method
Overview
We consider 2T + 1 consecutive frames as inputs follow-
ing the standard video denoising paradigm and denote them
as [xi−T , ..., xi+T ] where xi ∈ RC×H×W and C usually
equals to 3 when x is in the sRGB space. As shown in Fig-
ure. 3, the proposed ReMoNet consists of two blocks: the
RTF block fRTF recurrently fuses the temporal informa-
tion from consecutive frames and extracts the latent feature
frames zt ∈ RCz×H×W . Then the MOA block fMOA works
in a multi-input multi-output style to further aggregate adja-
cent temporal information and yield the processed frames.

Recurrent Temporal Fusion Block
To fully extract the temporal relationships in adjacent video
frames, various spatial-temporal implicit fusion methods
have been proposed. According to the categorization in (Ca-
ballero et al. 2017), there are usually two types of tempo-
ral fusion shown in Figure. 4 (a-b). The fast temporal fu-
sion usually concatenates all input frames together along the
channel dimension, and thus temporal information collapses
at the first layer. The slow temporal fusion usually merges
2K + 1 frames in groups smaller than the input number of
frames 2T + 1, and gradually fuses along the temporal axis.
This is in some way, equivalent to 3D convolution with a
temporal kernel size 2K+1. As demonstrated by FastDVD-
Net (Tassano, Delon, and Veit 2020) that slow fusion usually
performs superior to fast fusion, we take one step further,
and propose a recurrent temporal fusion. Apart from grad-
ually fusing temporal information with sliding window size
2K+1, we also use a simple recurrent structure to keep track
of the temporal visual relationships. To be more specific, the
RTF Block has a structure of a lightweight tiny UNet (Ron-
neberger, Fischer, and Brox 2015) with two downsampling
and two upsampling stages, whose structure will be elabo-
rated in the supplementary material. For sliding window at
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Figure 3: Illustration of ReMoNet. It mainly consists of two blocks: the Recurrent Temporal Fusion (RTF) block recurrently
fuses temporal information while the Multi-output Aggregation block (MOA) aggregates them in a multi-output manner.

...

(a) Fast temporal fusion (c) Recurrent temporal fusion

...

(b) Slow temporal fusion

Figure 4: Different types of temporal fusion (Caballero et al.
2017) (a-b) and the proposed Recurrent Temporal Fusion
with Multi-ouput (c).

position t, we have:

[zt, ht] = fRTF (concat([xt−K , ..., xt+K , zt−1, ht−1])

where hi ∈ RL×H×W is the recurrent hidden state.
Note that zt contains essential information for restoration

and usually has the same shape of input frame RC×H×W ,
this is also, to some extent, collapsing temporal information
(like fast temporal fusion do), and can be improved. Thus we
propose to extend the vanilla RTF block into its MIMO ver-
sion and let Cz = (2K + 1)C, so that the RTF block takes
2K+1 frames as inputs, and outputs 2K+1 ‘hidden frames’
zt ∈ R(2K+1)C×H×W at each timestep t. We show by ex-
periments that this MIMO-style recurrent temporal fusion
will be beneficial for the restoration. Furthermore, we visu-
alize these hidden frames zt in the supplementary material
and observe that RTF-MIMO implicitly learns more diverse
information compared to the non-MIMO RTF block.

Multi-output Aggregation Block
Once we have the hidden frames zt, we notice that each zt is
produced with temporal kernel size 2K+1 which is less than
the whole sequence length 2T + 1, and we wish to enlarge
the ‘temporal receptive field’ to further refine the temporal
knowledge in zt. Here we again follow the MIMO paradigm
for such temporal aggregation.

To be specific, we use another lightweight UNet-like net-
work and convert it to its MIMO version.

[yt−T , ..., yt+T ] = fMOA(zt−T , ..., zt+T )

where yi ∈ RC×H×W . It takes multiple zi ∈
R(2K+1)×H×W , i ∈ [t − T, t + T ] as inputs, and out-
puts [yt−T , ..., yt+T ]. The MIMO conversion only requires
changing the output channel size and will bring almost ne-
glectable extra parameters. The benefits of such multi-output
aggregation are two-folded: first, it largely accelerates the
processing speed since multiple frames are processed during
one forward pass. Meanwhile, it also improves the denoising
performance since the locally fused temporal information in
each zt is aggregated and refined.

Similarity-based Mutual Distillation
To further improve the performance, we propose to use
similarity-based mutual distillation to reinforce the tempo-
ral aggregation in the MOA block. Inspired by the success
of deep mutual learning (Zhang et al. 2018), where sev-
eral peer networks are trained to teach each other, we pro-
pose to train two identical ReMoNets and supervise the out-
puts of MOA block mutually via Similarity-Preserving dis-
tillation (Tung and Mori 2019). Since both RTF and MOA
block work in a MIMO manner, we wish to make full use
of the network capacity and let them absorb more informa-
tion. Then the similarity-based mutual distillation provides
an extra supervision signal to force the network to learn
not only from ground-truth, but also from their peers. Con-
cretely, if we have two randomly initialized ReMoNets, and
y1, y2 ∈ RB×C×H×W to be their corresponding outputs and
B be the batch size, the similarity-based mutual distillation
forces y1 and y2 to have a close similarity map within the
mini-batch:

LMutual(y1, y2) =
1

B2
||g1 − g2||2F

gi = norm(ai · aTi ) ai = Reshape(yi) ∈ RB×CHW

where || · ||F is the Frobenius norm, norm denotes row-
wise L2 normalization and gi represents the visual similar-
ity map between frames within each mini-batch. Intuitively,
since the training trajectory of neural networks is stochastic,
each student network may learn different information and be
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Method Comp. Cost σ = 10 σ = 20 σ = 30 σ = 40 σ = 50
MACs #Param PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

VBM4D - - 35.59 0.9295 32.02 0.8798 29.90 0.8340 28.50 0.8018 27.33 0.7672
DnCNN 290G 559K 36.27 0.9485 32.91 0.9045 30.99 0.8662 29.66 0.8325 28.65 0.8027
PrUNet 14G 1.89M 33.24 0.8763 32.40 0.8919 30.79 0.8644 23.84 0.5290 21.03 0.3672
ToFlow 1.05T 1.44M 34.34 0.9241 31.44 0.8675 29.63 0.8153 28.33 0.7664 27.26 0.7183
ViDeNN 1.47T 1.42M 34.91 0.9387 32.34 0.8981 30.66 0.8589 29.46 0.8249 28.52 0.7938
EMVD 26G 360K 35.41 0.9425 32.50 0.8999 30.71 0.8614 29.46 0.8273 28.53 0.7976
DVD 616G 1.33M 35.91 0.9470 32.94 0.9094 31.12 0.8740 29.85 0.8412 28.87 0.8111
F.DVD 331G 2.48M 36.48 0.9531 33.34 0.9169 31.51 0.8840 30.25 0.8541 29.28 0.8268
F.D-B 330G 2.48M 36.44 0.9530 33.32 0.9166 31.50 0.8836 30.23 0.8535 29.27 0.8260
ReMoNet 26G 804K 36.29 0.9528 33.34 0.9179 31.59 0.8859 30.37 0.8570 29.44 0.8308

Table 2: Results on Set8 with Gaussian noise

(b) VBM4D(a) Noisy

(h) Clean(g) ReMoNet(f) FastDVDNet(e) DVDNet

(c) ToFlow (d) ViDeNN

Figure 5: Results on snowboard in GOPRO with Gaussian noise, noise level σ = 40. The results show that ReMoNet yields
cleaner and more natural results than baselines. Zoom in for a better view.

complementary to one another. Finally, the total loss func-
tion is:

L = LMSE(y1, gt) + LMSE(y2, gt) + LMutual(y1, y2)

where LMSE denotes the Mean-Square-Error between the
ReMoNet’s output yi and the ground-truth frames gt. During
testing time, we randomly choose one of the ReMoNets for
inference, which will bring no extra computational cost.

Experiments
Datasets and metrics We use two benchmark datasets
for evaluation: Set8 and DAVIS-test. Set8 consists of 4
sequences captured by GOPRO camera and 4 sequences
from the Derf’s Test Media collection, with a resolution of
960×540. The DAVIS-test contains 30 sequences of reso-
lution 854×480. We use DAVIS-train for training. We test
with two types of noise: Additive White Gaussian Noise
(AWGN) with controlled σ and simulated ISP noise. PSNR
and SSIM are used as performance metrics where Multiply-
Add operations (MACs) per frame and number of parame-
ters (#Param) are used as efficiency metrics.

Baseline methods We compare our method with state-of-
the-art video denoising methods including: VBM4D (Mag-
gioni et al. 2012) which is a representative traditional
method, DnCNN (Zhang et al. 2018) and Practical UNet
(Wang et al. 2020) (PrUNet) which are image denoising
methods, ToFlow (Xue et al. 2019), ViDeNN (Claus and
van Gemert 2019), EMVD (Maggioni et al. 2021), DVD-
Net (DVD) (Tassano, Delon, and Veit 2019), FastDVDNet
(F.DVD) (Tassano, Delon, and Veit 2020) are all SOTA
video denoising methods. Since FastDVDNet requires noise
level map as inputs, we also compare with its blind version
FastDVDNet-B (F.D-B). All baselines are reproduced using
public available codes from authors and hyperparameters are
tuned on target datasets.

Implementation Details In practice, we choose the input
number of frames 2T + 1 = 5 and temporal fusion size
2K + 1 = 3, the RTF hidden dimension L = 32. More
details can be found in the supplementary material.

Quantitative results with Gaussian noise We compare
ReMoNet with SOTAs in terms of both denoising perfor-
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Method σ = 10 σ = 20 σ = 30 σ = 40 σ = 50
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

VBM4D 37.49 0.9420 34.00 0.9040 31.86 0.8690 30.18 0.8395 28.90 0.8093
DnCNN 38.63 0.9639 35.10 0.9277 33.09 0.8945 31.69 0.8648 30.62 0.8380
PrUNet 34.27 0.8827 34.46 0.9159 32.90 0.8940 24.22 0.5245 21.12 0.3466
ToFlow 36.75 0.9452 33.38 0.8934 31.30 0.8425 29.77 0.7929 28.49 0.7422
ViDeNN 37.57 0.9579 34.77 0.9235 32.99 0.8907 31.70 0.8615 30.63 0.8333
DVDNet 38.58 0.9629 35.37 0.9308 33.49 0.9017 32.16 0.8753 31.14 0.8511

FastDVDNet 38.99 0.9664 35.78 0.9372 33.90 0.9099 32.58 0.8851 31.58 0.8623
FastDVDNet-B 39.04 0.9670 35.77 0.9371 33.90 0.9096 32.59 0.8845 31.58 0.8613

ReMoNet 38.97 0.9672 35.77 0.9380 33.93 0.9114 32.64 0.8872 31.65 0.8651
Table 3: Results on DAVIS-test with Gaussian noise.

Method σ = 0.01 σ = 0.02 σ = 0.03 σ = 0.04 σ = 0.05
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DnCNN 32.48 0.8994 30.39 0.8489 29.05 0.8087 28.07 0.7751 27.30 0.7470
ViDeNN 31.88 0.8958 30.24 0.8551 29.10 0.8199 28.24 0.7899 27.56 0.7641
DVDNet 31.45 0.8943 29.93 0.8544 28.85 0.8220 28.02 0.7941 27.35 0.7694

FastDVDNet 32.45 0.8997 30.57 0.8653 28.77 0.8096 27.00 0.7298 25.28 0.6437
ReMoNet 32.57 0.9083 30.67 0.8692 29.48 0.8376 28.62 0.8108 27.96 0.7875

Table 4: Results on Set8 with simulated ISP noise. (Pixel value ranging from 0 to 1.)

(a) Noisy

(f) Clean(e) ReMoNet(d) FastDVDNet

(b) ViDeNN (c) DVDNet

Figure 6: Results on tractor in Derf with simulated ISP noise, noise level σ = 0.05. We observe that ReMoNet recovers clearer
details than baseline methods under realistic noise distribution (See the yellow bounding boxes). Zoom in for a better view.

mance and computational cost (calculated on 960*540 res-
olution) on two benchmark datasets: Set8 and DAVIS-test
and the results are shown in Table 2 and 3. It can be ob-
served that, in terms of computational efficiency, ReMoNet
is significantly superior to most video denoising methods. Its
MACs (26G) is two orders of magnitude lower than some
video denoising methods such as ToFlow (1.05T) and Vi-
DeNN (1.47T). Moreover, it is only 7.9% compared to pre-
vious SOTA FastDVDNet (331G). Meanwhile, when com-
pared with single-frame methods PrUnet and DnCNN, Re-
MoNet has comparable MACs or #Param with much higher
PSNR and SSIM. Meanwhile, in terms of denoising perfor-
mance, the results show that ReMoNet outperforms all base-

line methods under all noise levels except FastDVDNet. The
ReMoNet performs comparably with FastDVDNet when the
noise level is low (σ = 10, 20) and is superior to all base-
lines when the noise level is high (σ = 30, 40, 50). We also
observe that the higher the noise level, the larger improve-
ments ReMoNet will get, demonstrating ReMoNet’s robust-
ness under severe noise corruption.

Quantitative results with simulated ISP noise To further
verify the generalizability of the proposed method, we com-
pare ReMoNet with four baselines under the simulated ISP
noise. The results in Table. 4 show that ReMoNet outper-
forms all baselines in this scenarios. More importantly, we
again observe that the gap between ReMoNet and the sec-
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Method σ = 10 σ = 20 σ = 30 σ = 40 σ = 50
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

w/o Recur 36.13 0.9503 33.10 0.9130 31.30 0.8792 30.04 0.8485 29.09 0.8212
w/o MO 36.18 0.9515 33.20 0.9156 31.45 0.8835 30.23 0.8545 29.30 0.8282

w/o MOA 36.10 0.9505 33.08 0.9134 31.29 0.8798 30.04 0.8493 29.09 0.8220
w/o MuD 36.20 0.9521 33.25 0.9164 31.49 0.8836 30.26 0.8538 29.33 0.8268

All 36.29 0.9528 33.34 0.9179 31.59 0.8859 30.37 0.8570 29.44 0.8308
Table 5: Ablation Study on Set8. The results show that all components make indispensable contributions.

(a) 

(b) 

Figure 7: Perturbation analysis on MOA with (b) and with-
out (a) mutual distillation. Horizontal and vertical axis de-
note index of zj and yi respectively. It shows that mutual
distillation enlarges the temporal range of each zj’s contri-
bution to the output yi.

ond best performance becomes larger as the noise level in-
creases. The results not only verifies that ReMoNet general-
izes well to sophisticated real-world noise distribution, but
is also much more robust under high-level noise corruption.

Quantitative results on mobile platform In order to ver-
ify the efficiency on mobile devices, we compare the Re-
MoNet with the previous most lightweight SOTA FastD-
VDnet (Tassano, Delon, and Veit 2020). The experiments
are conducted on the Qualcomm Snapdragon 888 mobile
platform, where its GPU is used for inference. The input
resolution is 360× 640. The result shows that FastDVDNet
requires 927ms to process one frame. Meanwhile, ReMoNet
only requires 446ms to process five frames, that is, 89.2ms
per frame, which is 11 times faster than FastDVDNet. The
inference speed on the mobile platform further verifies the
efficiency of ReMoNet in practical applications.

Qualitative results We first compare the qualitative re-
sults of Gaussian denoising on GOPRO dataset shown in
Figure. 5. From the results, we observe that most previous
methods still result in incoherent sky, some of which are
filled with severe noise (ToFlow, ViDeNN). In contrast, Re-
MoNet is able to restore a clear and coherent sky which is
much more natural. We also provide the visual comparison
under the simulated ISP noise shown in Figure. 6. From the
tractor results, we observe that only ReMoNet clearly recov-
ers the two black components in the blue mechanical device

(the yellow bounding box on the right). Also note that all
baseline methods fail to recover the complicated texture of
the tyre, where ReMoNet restores the texture closer to the
original ground-truth (the yellow bounding box on the left).

Ablation study We further conduct an ablation study to
verify the effectiveness of each component. We compare Re-
MoNet with the following variants: 1) w/o Recur, where re-
current temporal fusion is replaced by slow fusion. 2) w/o
MO, where MIMO recurrent temporal fusion is replaced by
non-MIMO version. 3) w/o MOA, where MOA block is dis-
carded and non-MIMO recurrent temporal fusion’s output is
used as final output. 4) w/o MuD, where mutual distillation
is discarded. The results in Table 5 illustrate that all compo-
nents are indispensable for the overall performance. More-
over, the results show that RTF and MOA blocks contribute
around 0.16dB for σ = 10 and 0.35dB for σ = 50, both of
which are critical to the high noise-level robustness.

Further analysis on MOA We further investigate how
MIMO and mutual distillation work in the MOA block
via perturbation analysis. The MOA block takes 5 hidden
frames [z−2, ..., z2] as inputs and yields 5 processed frames
[y−2, ..., y2]. We define the perturbation of yi with respect
to zj as: s(yi, zj), that is, how each yi would react when zj
changes. In practice, we replace each zj with zk, k ̸= j and
see the resulting yjki , then s(yi, zj) =

∑
k MSE(yi, y

jk
i ).

We plot the results of s(yi, zj) with and without mutual
distillation on GOPRO shown in Figure. 7. First, the re-
sults show that the network automatically learns to absorb
information from adjacent positions. Furthermore, we find
that without mutual distillation, zj mostly contributes to its
neighborhood yi while the mutual learning guides the zj to
make impacts on a broader range of yi.

Conclusion
In this paper, we first analyze the current temporal model-
ing methods and propose a novel Multi-input Multi-output
(MIMO) strategy which is both efficient and effective. Fol-
lowing the MIMO spirit, we design the ReMoNet which
consists of two components: the RTF block recurrently fuses
the temporal information and the MOA block further refines
in a multi-output manner. Then we train the ReMoNet with
similarity-based mutual distillation so that the network can
capture a broader range of temporal relationships. Extensive
experiments on both GPU and mobile platforms demonstrate
that the ReMoNet achieves superior performance over SO-
TAs with significantly less computational cost. We also carry
out visualizations and ablation studies to verify the effective-
ness of each component.
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