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Abstract

Knowledge transfer from synthetic to real data has been
widely studied to mitigate data annotation constraints in var-
ious computer vision tasks such as semantic segmentation.
However, the study focused on 2D images and its counter-
part in 3D point clouds segmentation lags far behind due
to the lack of large-scale synthetic datasets and effective
transfer methods. We address this issue by collecting Syn-
LiDAR, a large-scale synthetic LiDAR dataset that con-
tains point-wise annotated point clouds with accurate geo-
metric shapes and comprehensive semantic classes. SynLi-
DAR was collected from multiple virtual environments with
rich scenes and layouts which consists of over 19 billion
points of 32 semantic classes. In addition, we design PCT,
a novel point cloud translator that effectively mitigates the
gap between synthetic and real point clouds. Specifically,
we decompose the synthetic-to-real gap into an appearance
component and a sparsity component and handle them sepa-
rately which improves the point cloud translation greatly. We
conducted extensive experiments over three transfer learn-
ing setups including data augmentation, semi-supervised do-
main adaptation and unsupervised domain adaptation. Ex-
tensive experiments show that SynLiDAR provides a high-
quality data source for studying 3D transfer and the pro-
posed PCT achieves superior point cloud translation con-
sistently across the three setups. The dataset is available at
https://github.com/xiaoaoran/SynLiDAR.

Introduction

Semantic segmentation of LiDAR sequential point cloud
is critical in various scene perception tasks and it has at-
tracted increasing attention from both industry and academia
(Behley et al. 2019; Milioto et al. 2019; Pan et al. 2020;
Hu et al. 2020; Tang et al. 2020) in recent years. How-
ever, training effective segmentation models requires large
amounts of annotated point cloud, which are prohibitively
time-consuming to collect due to the view change of 3D data
and visual inconsistency between LiDAR point cloud and
physical world. This can be observed by the small size of
existing real LiDAR sequential datasets as listed in Table 1.

Inspired by the great success of transfer learning from
synthetic to real data in two-dimensional (2D) field (Ros
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et al. 2016; Armeni et al. 2016; Gaidon et al. 2016), one
possible way to mitigate the data annotation constraint is to
leverage synthetic point cloud data that can be collected and
annotated automatically by computer engines. However, col-
lecting large-scale synthetic LiDAR sequential point cloud
is a nontrivial task which involves a large number of virtual
scenes and objects as well as complicated point generation
processes. In addition, most existing transfer learning meth-
ods (Sun et al. 2019; Saito et al. 2019a; Guan et al. 2021;
Huang et al. 2021a,b,c) focus on 2D images which do not
work for 3D point cloud. To the best of our knowledge, few
researches tackle the challenge of synthetic-to-real transfer
of point cloud of nature scenes, largely due to the lack of
large-scale synthetic data with accurate geometries and rich
semantic annotations.

We address the said issues by creating SynLiDAR, a
large-scale LiDAR sequential point cloud dataset for facil-
itating the research of synthetic-to-real transfer of 3D point
cloud data. We collected SynLiDAR from multiple virtual
environments that were constructed by professional 3D gen-
eralists with advanced graphic tools. Each virtual environ-
ment contains configurable object models that are similar to
real-world data in both geometry and layout. The dataset is
ideal for the study of synthetic-to-real transfer as it consists
of comprehensive and diverse point semantics (32 semantic
classes with over 19 billion point-wise annotated points) and
its collected points are also highly accurate in geometry.

In addition, we designed PCT, a point-cloud translator for
mitigating domain gaps between synthetic and real point
cloud as illustrated in Fig. 1. The design of PCT is in-
spired by the observations that point clouds can be viewed
as discrete samplings of continuous 3D geometric environ-
ments where the domain gaps between synthetic and real
point clouds come from either appearance differences (due
to environments variations) or sparsity differences (due to
sampling variation by sensors). We hence disentangle the
domain gap into an appearance component and a sparsity
component, and design an appearance translation module
(ATM) and a sparsity translation module (STM) to handle
the two gap components separately. Specifically, ATM first
up-samples synthetic point cloud and translates it to have
similar appearance as real point cloud. STM then extracts
sparsity features from real point cloud and fuses it with the
ATM output to translate synthetic point cloud to have real



(a) A sjlﬁthetic scene of SyﬁLiDAR.

(¢) Real point cloud of SemanticKITTI.

(d) Cars

(e) Synthetic-to-real translation of point cloud in (b).

Figure 1: We create SynLiDAR, a large-scale multiple-class synthetic LIDAR point cloud dataset as illustrated in (b). SynL-
iDAR contains over 19 billion annotated points of 32 semantic classes which was collected by constructing multiple virtual
environments and 3D object models as shown in (a). To make synthetic point cloud more useful for handling real-world LiDAR
point cloud as shown in (c), we design a point cloud translator (PCT) that translates synthetic point cloud by decomposing the
domain gap into an appearance component and a sparsity component. The translated data in (e) has a closer distribution as real
point cloud and is more effective in processing real point cloud. The close-up views in (d) show the translation effects.

sparsity. To the best of our knowledge, PCT is the first trans-
lation method for LiDAR point clouds in natural scenes.

The contribution of this work can be summarized in three
aspects as listed:

* We create SynLiDAR, a large-scale synthetic LiDAR se-
quential point cloud dataset that has rich semantic classes
and a large number of points with accurate point-wise an-
notations. SynLiDAR will lay a strong foundation for the
study of the under-explored synthetic-to-real transfer in
LiDAR point cloud segmentation.

* We examine the major underlying factors of the domain
gap between synthetic and real point clouds, and design
PCT, a pioneer LiDAR point cloud translator that can
transform synthetic point clouds to have similar features
and distributions as real point clouds and accordingly
mitigate the domain gap effectively.

* We design three experimental setups for the study of
synthetic-to-real point cloud transfer: data augmenta-
tion (DA), semi-supervised domain adaptation (SSDA)
and unsupervised domain adaptations (UDA). We con-
ducted extensive experiments under the three setups
which will form valuable bases for the future investiga-
tion of synthetic-to-real point cloud transfer.

Related Works
Semantic Segmentation of Point Cloud

3D deep learning has attracted increasing attention, which
is important for different LIDAR perception tasks including
semantic segmentation. Different approaches have been pro-
posed to segment LiDAR point clouds, including projection-
based methods (Wu et al. 2018; Milioto et al. 2019; Xiao
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et al. 2021), point-based methods (Qi et al. 2017a,b; Hu
et al. 2020), sparse convolutional methods (Graham, Engel-
cke, and Van Der Maaten 2018; Choy, Gwak, and Savarese
2019a), customized 3D convolutional methods (Thomas
et al. 2019; Zhu et al. 2020), etc.

LiDAR Sequential Point Cloud Datasets

LiDAR sequential point clouds provide point cloud scans,
each containing sparse and incomplete points collected in
a sweep by LiDAR sensors. Several real world datasets,
including SemanticKITTI (Behley et al. 2019), Seman-
ticPOSS (Pan et al. 2020) and nuScenes-Lidarse (Caesar
et al. 2020), have been proposed recently and promote
the developments of LiDAR point cloud segmentation re-
searches. However, labeling point-wise semantic annota-
tions is prohibitively time-consuming for LiDAR sequential
point clouds. Therefore, existing real point cloud datasets
have very limited data sizes as listed in Table 1.

Inspired by the success of 2D synthetic image datasets
(Richter et al. 2016), a few pioneer studies (Wu et al. 2018;
Hurl, Czarnecki, and Waslander 2019) have explored to col-
lect synthetic point cloud data from GTA-V games. How-
ever, 3D meshes in GTA-V games are not accurate and GTA-
V games provide only two object classes Car and Pedes-
trian (Wu et al. 2018). Its collected synthetic data are thus in-
sufficient for studying fine-grained LiDAR point cloud seg-
mentation. We instead construct a wide range of realistic vir-
tual environments and object models by leveraging graphic
tools and professionals. The synthetic point clouds within
the SynLiDAR thus capture much more accurate geometries
and the rich diversity of semantic labels as in natural scenes.



dataset format #scans #points  #classes  annotation type
SemanticKITTI (Behley et al. 2019) point 43,552 4,549M 25 point-wise real
SemanticPOSS (Pan et al. 2020) point 2,988 216M 14 point-wise real
nuScenes-Lidarseg (Caesar et al. 2020) point 40,000 1,400M 32 point-wise real
GTA-LiDAR (Wu et al. 2018) image 121,087 - 2 pixel-wise  synthetic
PreSIL (Hurl, Czarnecki, and Waslander 2019) point 51,074 3,135M 2 point-wise  synthetic
SynLiDAR (ours) point 198,396  19,482M 32 point-wise  synthetic

Table 1: Overview of outdoor LiDAR sequential point cloud datasets with semantic annotations: #scans: Number of scans for
the datasets; #points: Number of points in millions (M); #classes: Number of semantic classes.

Transfer Learning of Point Cloud

Transfer learning aims to transfer the knowledge from the
source domain to the target domain. It is an important tool to
solve the inefficient training data problem (Tan et al. 2018).
This paper discusses three important transfer learning tasks
of point cloud: DA combines multiple labeled datasets for
training to reach better performances than training on each
single one (Li et al. 2020; Chen et al. 2020); SSDA exploits
the knowledge from the source data with annotations and use
a certain number of unlabeled examples and a few labeled
ones from the target domain to learn a target model; UDA
instead uses annotated source data and target data without
annotations to learn the target model (Qin et al. 2019; Saleh
et al. 2019; Yang et al. 2021). Several pioneer works (Wu
et al. 2019; Zhao et al. 2020; Yi, Gong, and Funkhouser
2021) have been proposed for the research of UDA prob-
lem in the LiDAR segmentation task. Instead, PCT mitigates
domain gap problem in the input space and is effective for
different kinds of transfer learning setups.

Domain Translation of Point Cloud

Domain Translation aims to learn meaningful mapping
across domains. It is well developed for 2D images between
paired domains (Isola et al. 2017), unpaired domains (Zhu
et al. 2017a), multiple modalities (Zhu et al. 2017b), etc.
For 3D data, some attempt has been reported for transla-
tion from images to depth (Liu, Shen, and Lin 2015), from
point cloud to depth (Roveri et al. 2018), from point cloud to
images (Dai et al. 2020), etc. However, existing generative
methods (Li et al. 2019; Xie et al. 2021) mainly focus on 3D
objects while the translation between LiDAR point clouds
in scenes is largely neglected. We address this challenge for
mitigating the gap between synthetic and real point clouds.

The SynLiDAR Dataset

SynLiDAR is collected from multiple realistic virtual scenes
constructed by professional 3D generalists using the Un-
real Engine 4 platform (UE4 2014) (as shown in Fig. 1 a).
These virtual scenes include different types of outdoor envi-
ronments such as cities, towns, harbour, etc, covering large
area of virtual areas. They are constituted by a large number
of physically accurate object models that are produced by
expert modelers with 3D-Max software, to ensure the high
quality of synthetic data. Specifically, accurate coordinates
and precise point-wise annotations of point cloud are col-
lected automatically from these virtual environments. Note
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Figure 2: The numbers of annotated points (x-axis) per class
(y-axis) for SemanticKITTI and SynLiDAR. Left: Thing
classes; Right:Stuff classes.

that SynLiDAR can be easily expanded by including new
virtual scenes, 3D objects of new classes, etc.

Another important attribute of LiDAR point cloud is in-
tensity, which is challenging to simulate due to the com-
plicated signal transmission, propagation and reception pro-
cesses in real environments (Wu et al. 2019). In SynLiDAR,
we address this issue by training a rendering model that
learns from real LiDAR point cloud and predicts intensity
values for SynLiDAR. Specifically, we train an intensity pre-
diction model by using MinkowskiNet (Choy, Gwak, and
Savarese 2019b), where coordinates and semantic labels of
cloud points in SemanticKITTI (Behley et al. 2019) are used
as inputs and the point intensity (SemanticKITTI provided)
is used as references.

SynLiDAR has 13 LiDAR point cloud sequences with
point-wise annotations. It has 198,396 scans of point cloud
with 19 billion points in total, where each scan has around
98,000 points on average. Precise point-wise annotations of
32 semantic classes are provided for fine-grained scene un-
derstanding. Tab. 1 shows that SynLiDAR outweighs the
existing LiDAR point cloud dataset of semantic segmenta-
tion in both point numbers and semantic classes and Fig.
2 compares point numbers for categories of thing (count-
able foreground classes) and stuff (uncountable background
classes) in SynLiDAR and SemanticKITTTI (the largest real
point cloud dataset to the best of our knowledge), indicat-
ing that SynLiDAR is a truly large-scale point cloud dataset
and an ideal data source for transfer learning researches on
synthetic-to-real point cloud.
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Figure 3: The proposed PCT disentangles point-cloud translation into appearance translation and sparsity translation tasks.
Given synthetic point cloud, the appearance translation first learns to reconstruct dense point cloud that have similar appearance
as real point cloud. The sparsity translation then learns real sparsity distribution in 2D space and fuses it with the reconstructed
point cloud in 3D space. The final translation has similar appearance and sparsity as real point cloud as illustrated.

Point Cloud Translation

Similar to most synthetic data, point clouds in SynLiDAR
have a clear domain gap with real LiDAR data, and the
model trained using SynLiDAR usually experiences clear
performance drops while applied to real point clouds. This
paper proposes PCT, the first translator of LiDAR data to
mitigate the domain gap for the challenging scene semantic
segmentation task, as illustrated in this section.

An intuitive idea to mitigate the domain gap is to employ
existing 3D generative models (Achlioptas et al. 2018; Li
et al. 2019; Huang et al. 2020) to translate synthetic data to
have real data distributions. However, these models are de-
signed for 3D objects with uniformly distributed points, and
standard supervisions like Chamfer loss or Earth Mover’s
Distance (EMD) (Fan, Su, and Guibas 2017) fail to regu-
larize LiDAR data distribution of 3D scenes directly. As a
result, few studies have attempted to address the problem of
LiDAR point cloud translation.

We observed that point clouds are discrete samplings of
the continuous geometric world, hence the synthetic-to-real
gaps could be disentangled into two components: The ap-
pearance component reflects the differences between syn-
thetic and real continuous environments, and the sparsity
component shows differences in sampling patterns intro-
duced by different LiDAR sensors. The proposed PCT mit-
igates these two components separately and its translated
synthetic point clouds have both similar appearance and
sparsity as targeting real-world data.

The pipeline of PCT: Given synthetic point clouds X, €
RY=*3 and real point clouds X, € RV*3, we aim to trans-
late X, into X sy € RNs%3 that have similar appearance
and sparsity as X,.. Firstly, the ATM up-samples X into
U(Xs), and translates it to have certain real appearance by a
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generator G 4 as X! = G4(U(Xy)). Then the STM projects
(T') point cloud into images and extracts sparsity features
of real point cloud into synthetic data by another generator
Gg,i.e. X! = Gs(T(Xs)). Finally, translated point cloud
is generated by fusing X and X as X,_,, = F(X/, X”).
More details of the two translation modules are provided in
the ensuing two subsections.

ATM aims to translate synthetic point cloud to have real
appearance and we realize it through a 3D generative adver-
sarial network that consists of a generator G4 and a discrim-
inator D 4, and train them in an adversarial manner. In this
stage, we first up-sample both synthetic and real point cloud
so as to eliminate the effect of domain-specific sparsity fea-
tures. The generator aims to produce intermediate represen-
tation X/ (from the up-sampled synthetic data) to have real
appearance to fool the discriminator, while the discrimina-
tor learns to distinguish X/ from U (X, ). Specifically, The
adversarial learning loss can be formulated as follows:

LY =log(Da(~Ga(U(X,)) log(Ga(U(X,)))))+
log(1 = Da(U(X;)log(U(X,))))

We introduce EMD for generator to keep geometries of X

and X!
= > lle— o

reX,

(D

L(X,, X)) )

z)||2

where ¢ : X; — X/ is a bijection. The objective function
of the ATM can be formulated as:
L4(Ga,D4) = arg min max(A\4 LYY+
Ga Da (3)
)\amszmd)
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baseline 95.7 25.0 57.0 62.1 46.4 63.4 77.3 0.0 93.0 47.9 80.5 2.2 89.7 58.6 89.5 66.5 78.0 64.6 50.1| 60.3

Jittering (Qi et al. 2017a) 95.7 27.8 56.2 66.0 45.8 65.3 82.8 0.0 93.0 48.2 79.9 2.5 89.7 62.9 88.9 64.0 77.0 64.8 51.0| 61.2
Dropout (Srivastava et al. 2014)(96.0 28.5 57.1 65.1 46.4 64.1 83.6 0.1 93.5 47.6 80.1 2.3 89.3 61.9 90.1 66.9 78.8 65.8 49.1| 61.4
PointAug (Li et al. 2020) 95.9 29.2 70.0 76.3 50.0 67.0 84.4 2.4 93.8 48.1 81.2 4.6 89.8 58.4 87.5 65.4 72.7 62.4 50.5| 62.6
+SynLiDAR 95.9 33.0 62.8 78.9 50.2 71.4 83.5 0.7 92.3 52.8 79.9 0.1 89.8 59.5 86.3 65.4 72.8 63.6 48.9| 62.5

PCT 96.3 38.7 73.4 82.9 56.1 71.1 85.3 1.6 94.1 54.3 81.6 1.3 89.5 59.6 87.8 66.9 73.6 65.4 50.5| 64.7

Table 2: Data Augmentation experiments on SemanticKITTI: Combining the training data of SynLiDAR and SemanticKITTI
trains more accurate semantic segmentation models. PCT mitigates the domain gap effectively and combining the PCT-
translated SynLiDAR with SemanticKITTTI further improves the segmentation.

method \ pers. rider car trunk plants traf. pole garb. buil. cone. fence bike grou. \ mloU

baseline 55.6 451 669 444 739 454 416 145 761 79 57.0 541 753 | 50.6

Jittering (Qi et al. 2017a) 552 487 65.1 455 752 459 409 181 764 151 57.1 564 750 | 519
Dropout (Srivastava et al. 2014) | 56.9 56.7 67.8 433 75.6 403 30.7 268 757 17.7 573 556 786 | 525
PointAug (Li et al. 2020) 623 60.7 69.6 393 760 414 338 241 780 137 622 565 792 | 53.6
+SynLiDAR 57.6 593 61.1 371 76.1 327 409 347 727 377 57.6 433 812 | 532

PCT 573 614 658 362 774 425 4211 492 745 324 558 489 81.8 | 558

Table 3: Data Augmentation experiments on SemanticPOSS: Combining the training data of SynLiDAR and SemanticPOSS
trains more accurate semantic segmentation models. PCT mitigates the domain gap effectively and combining the PCT-
translated SynLiDAR with SemanticPOSS further improves the segmentation.

STM aims to transfer sparsity information from real point
cloud to synthetic point cloud. However, existing supervi-
sions (Fan, Su, and Guibas 2017) such as Chamfer loss
and EMD loss cannot capture sparsity information well as
they lack sparsity regulation. To address this problem, we
propose to first learn sparsity information in 2D space and
then fuse it back into 3D space. Specifically, we first project
X; and X, into depth images (as T(X;) and T(X,.) re-
spectively), and then employ an image-to-image translation
model to translate 7'(X ) to have similar sparsity as T'(X.).
The translation network is also GAN-based with a generator
G and a discriminator Dg. The adversarial learning loss
can be formulated as follows

LE" = log(Ds(~Gs(T(X,))log(Gs(T(X,)))))

T log(1 - Ds(T(X,)log(T(X,)))) @

To preserve the geometry information during the translation,
we further include a geometry consistency loss to ensure that
the translated depth image preserves similar geometry as the
original image:

LE° = |IT(X,) — Gs(T(Xs))ll2

Q)
+IT(X;) = Gs(T(X,))ll2

where A — B means that the distance is computed for pixels
existing in both A and B only. The overall objective of the
sparsity translation module can be formulated by:
Ls(Gg, Ds) = arg min max (A% L& 4
Gs Ds ©)

)\%EOL%EEO)
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Finally, the translated image Gs(T (X)) with real spar-
sity information are projected back into 3D space for fusion.
Specifically, Gs(T'(X)) are used for guidance to drop out
points in X. The semantic labels of the translated point
cloud are assigned according to labels of neighboring points
in the original point cloud.

Experiments

We evaluate how SynLiDAR benefits semantic segmenta-
tion over multiple real point cloud datasets and how PCT
mitigates domain gaps between SynLiDAR and real point
cloud data. We conducted experiments on three transfer se-
tups including DA, SSDA, and UDA as introduced in sec-
tion 2.3. All experiments were conducted by using state-of-
the-art 3D semantic segmentation network MinkowskiNet
(Choy, Gwak, and Savarese 2019b).

Datasets and Implementation Details

We conduct experiments over two real-world point cloud
datasets. The first is SemanticKITTI (Behley et al. 2019)
that consists of 43,552 scans of annotated sequential LIDAR
point cloud with 19 semantic classes. It is the largest real-
world sequential LiDAR point cloud dataset for semantic
segmentation to the best of our knowledge. We follow the
commonly-used protocol that splits sequences 00-07, 09-10
for training and sequence 08 for validation. The second is
SemanticPOSS (Pan et al. 2020) which is collected in a uni-
versity campus. It consists of 2,988 annotated point cloud
scans of 14 semantic classes. We follow the benchmark set-
ting by using sequence 03 for validation and the rest for
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S+T 56.2 3.0 15.1 1.0 5.0 20.2 42.1 2.8 52.1 0.7 19.8 0.0 41.3 5.8 62.1 34.0 42.0 24.6 14| 22.6
MMD (Tzeng et al. 2014) [56.4 3.3 13.3 1.5 6.1 21.4 34.6 1.6 543 04 214 0.0 50.2 5.8 61.2 37.0 449 31.6 2.2| 23.5
MME (Saito et al. 2019b) |51.0 5.6 13.1 1.3 7.3 15.1 544 4.4 43.1 0.2 28.3 0.0 60.7 13.3 66.1 30.1 39.9 24.8 6.6| 24.5
APE (Kim and Kim 2020) [58.6 6.2 16.6 3.1 11.3 14.2 35.8 3.7 61.5 1.7 30.3 0.0 54.7 154 64.6 20.0 45.5 23.9 9.1| 25.1
PCT 56.0 7.0 17.1 2.8 99 23.7 437 5.6 553 0.8 229 0.0 50.1 84 65.3 23.1 43.5 28.8 7.5| 24.8
APE + PCT 58.1 7.3 17.8 2.6 139 247 46.5 5.1 60.5 1.9 31.3 0.0 56.8 14.6 679 23.7 443 26.1 9.3| 27.0

Table 4: Experiments on semi-supervised domain adaptation with SynLiDAR (as source) and SemanticKITTTI (as target): PCT
translates SynLiDAR and mitigates domain gaps in the input space effectively. It is complementary to APE and combining
them outperforms the baseline SynLiDAR + SemanticKITTI (i.e., S+T) by large margins.

Method \ pers. rider car trunk plants traf. pole garb. buil. cone. fence bike grou. \ mloU

S+T 252 361 182 128 586 1.7 305 56 257 3.0 120 10.6 756 | 243

MMD (Tzeng et al. 2014) | 25.5 357 289 6.7 643 1.7 232 56 533 33 302 139 704 | 279
MME (Saito et al. 2019b) | 33.2 402 250 110 619 04 312 73 561 57 371 67 712 | 298
APE (Kim and Kim 2020) | 343 40.1 215 163 626 09 31.1 23 559 133 343 9.6 716 | 303
PCT 258 368 278 113 622 19 312 52 587 26 343 85 687 | 288

APE + PCT 347 363 272 158 629 08 316 87 623 98 351 93 709 | 312

Table 5: Experiments on semi-supervised domain adaptation with SynLiDAR (as source) and SemanticPOSS (as target): PCT
translates SynLiDAR and mitigates domain gaps in the input space effectively. It is complementary to APE and combining
them outperforms the baseline SynLiDAR + SemanticPOSS (i.e., S+T) by large margins.

training. We ignore extra classes of SynLiDAR by mapping
them as ’unlabeled’ for each real dataset. Mean Intersection
of Union (mloU) is used as the evaluation metric.

For point cloud translation, parameters )\Z\d”, )\Zmd, )\gd”,
A% are set at 0.01, 1, 5, 1, respectively. For semantic seg-
mentation by MinkowskiNet, the maximum point number of
each scan is 80,000 for SemanticKITTI and 50,000 for Se-
manticPOSS; The voxel size is 0.05 and we use coordinates

and intensity of point cloud as input features.

Experiments on Data Augmentation

We first evaluate how SynLiDAR augments real point cloud
data as compared with state-of-the-art data augmentation
methods as shown in Tables 2 and 3. We can observe that
incorporating SynLiDAR helps train better models for both
SemanticKITTI (+2.2%) and SemanticPOSS (+2.6%). It
also shows that SynLiDAR shares good similarity with real-
world dataset and provides a high-quality data source for
transfer learning of LiDAR point cloud.

We also evaluate how PCT mitigates the domain gap
and improves data augmentation. Experiments show that
including PCT-translated SynLiDAR in training improves
the mloU by 2.2% and 2.6%, respectively, for Se-
manticKITTI and SemanticPOSS. The mIoU improvements
clearly demonstrate the effectiveness of PCT in mitigating
domain gap between SynLiDAR and the two real datasets.

We further evaluate by combining SynLiDAR and PCT-
translated SynLiDAR with different portions of Semantic-
POSS, aiming to examine how SynLiDAR could alleviate
data collection and annotation efforts. Fig. 4 shows experi-
ment results. We can see that incorporating SynLiDAR con-
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Figure 4: SynLiDAR can effectively augment real-world Li-
DAR point cloud (SemanticPOSS) in a point cloud segmen-
tation task. The PCT translated SynLiDAR further improves
the augmentation consistently by large margins.

sistently improves the segmentation under different portions
of SemanticPOSS, and it can save up to 40% SemanticPOSS
without sacrificing segmentation performance. In addition,
including the PCT-translated SynLiDAR further improves
the segmentation consistently under similar setups.

Experiments on SSDA

In this subsection we evaluate the effectiveness of PCT in
another setup of semi-supervised domain adaptation (SSDA)
with SynLiDAR (as source) and real datasets (as target). We
follow the setting of (Saito et al. 2019a) with three parts
of training data, i.e. labeled source samples, unlabeled tar-
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Method 5§ £ E E € & £ 8 ¢ & 8 8 B & ¢ E 2 2 E|mou
Source-Only 420 50 48 04 25 124 43.3 1.8 48.7 4.5 31.0 0.0 18.6 11.5 60.2 30.0 48.3 19.3 3.0 | 204
ADDA (Tzeng et al. 2017) | 525 45 119 03 3.9 9.4 27.9 0.5 52.8 49 27.4 0.0 61.0 17.0 57.4 34.5 42.9 232 4.5 | 22.8
Ent-Min (Vu et al. 2019) |58.3 5.1 143 0.6 1.8 14.3 44.5 0.5 50.4 4.3 34.8 0.0 48.3 19.7 67.5 34.8 52.0 33.0 6.1 | 25.5
ST (Zouetal. 2019)  [62.0 5.0 12.4 1.3 92 16.7 442 0.4 53.0 2.5 28.4 0.0 57.1 18.7 69.8 35.0 48.7 32.5 6.9 | 26.5
PCT 534 54 74 0.8 109 12.0 43.2 0.3 50.8 3.7 29.4 0.0 48.0 10.4 68.2 33.1 40.0 29.5 6.9 | 239
ST+PCT 708 7.3 13.1 1.9 84 12.6 44.0 0.6 56.4 4.5 31.8 0.0 66.7 23.7 73.3 34.6 48.4 39.4 11.7| 28.9

Table 6: Experiments on unsupervised domain adaptation with SynLiDAR (as source) and SemanticKITTI (as target): PCT
translates SynLiDAR and mitigates domain gaps in the input space effectively. It complements ST and combining them outper-
forms the baseline (i.e., source-only) by large margins.

Method \ pers. rider car trunk plants traf. pole garb. buil. cone. fence bike grou. \ mloU
Source-Only 37 251 120 108 534 0.0 194 129 491 3.1 203 0.0 59.6 | 20.1
ADDA (Tzengetal. 2017) | 27.5 35.1 188 124 534 28 270 122 647 13 6.3 6.8 553 | 249
Ent-Min (Vuetal. 2019) | 242 322 214 189 61.0 25 363 83 567 3.1 53 48 571 | 255
ST (Zou et al. 2019) 235 31.8 220 189 632 19 416 135 582 1.0 9.1 6.8 603 | 27.1
PCT 130 354 137 102 531 14 238 127 529 08 137 1.1 662 | 229
ST + PCT 289 348 278 18,6 637 49 410 166 641 1.6 121 6.6 639 | 29.6

Table 7: Experiments on unsupervised domain adaptation with SynLiDAR (as source) and SemanticPOSS (as target): PCT
translates SynLiDAR and mitigates domain gaps in the input space effectively. It complements ST and combining them outper-

forms the baseline (i.e., source-only) by large margins.

get samples and 1 labeled target sample that are randomly
selected for 1-shot SSDA-based semantic segmentation.

Tables 4 and 5 show experimental results of PCT and
other state-of-the-art SSDA methods. As we can see, train-
ing labeled SynLiDAR and one-shot real sample with super-
vised loss (S+T) does not perform well for both two real
datasets due to the domain gap. Including PCT-translated
SynLiDAR in training improved the mloU by 2.2% and
4.5% for SemanticKITTI and SemanticPOSS, respectively.
Since PCT mitigates the domain gap in the input space while
the state-of-the-art method APE (Kim and Kim 2020) does
in the feature space, these two methods are complemen-
tary and combining them reached new state-of-the-art per-
formances at 27.0% and 31.2%, respectively.

Experiments on UDA

In this subsection, we focus on unsupervised domain adap-
tation (UDA) for point cloud segmentation. Different from
SSDA, in this setup we only use labeled source data (SynL-
iDAR) and unlabeled target data (real datasets) for training.

As we can see from Tables 6 and 7, training on labeled
source data as source-only failed to learn satisfactory seg-
mentation models due to presence of the domain gap. State-
of-the-art UDA methods mitigate the domain gap in either
feature space (ADDA) or output space (Ent-Min, ST) and
improved the segmentation performance effectively. On the
other hand, PCT mitigates the domain gap in input space
and including its translated SynLiDAR improved mloU by
3.5% and 2.8% for SemanticKITTI and SemanticPOSS, re-
spectively. It also complements ST and their combination
achieved new state-of-the-art performances at 28.9% and
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29.6%, respectively. The experiment results further indicate
that PCT effectively reduced the domain gap between Syn-
LiDAR and two real datasets.

Conclusion

This paper presents SynLiDAR and a point cloud translation
method PCT for synthetic-to-real transfer learning. SynLi-
DAR is a large-scale synthetic LIDAR sequential point cloud
dataset that contains 19 billion points with point-wise an-
notations of 32 semantic classes. PCT translates synthetic
point clouds to have similar appearance and sparsity as real
point clouds. Extensive experiments showed that SynLiDAR
shares high geometrical similarities with real-world data,
which effectively boosts semantic segmentation while com-
bining with different proportions of real data. PCT mitigates
synthetic-to-real gaps effectively and its translated data fur-
ther improves point cloud segmentation consistently in three
transfer learning setups.
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