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Abstract
Video question answering requires the models to understand
and reason about both the complex video and language data
to correctly derive the answers. Existing efforts have been fo-
cused on designing sophisticated cross-modal interactions to
fuse the information from two modalities, while encoding the
video and question holistically as frame and word sequences.
Despite their success, these methods are essentially revolving
around the sequential nature of video- and question-contents,
providing little insight to the problem of question-answering
and lacking interpretability as well. In this work, we argue
that while video is presented in frame sequence, the visual
elements (e.g., objects, actions, activities and events) are not
sequential but rather hierarchical in semantic space. To align
with the multi-granular essence of linguistic concepts in lan-
guage queries, we propose to model video as a conditional
graph hierarchy which weaves together visual facts of differ-
ent granularity in a level-wise manner, with the guidance of
corresponding textual cues. Despite the simplicity, our exten-
sive experiments demonstrate the superiority of such condi-
tional hierarchical graph architecture, with clear performance
improvements over prior methods and also better generaliza-
tion across different type of questions. Further analyses also
demonstrate the model’s reliability as it shows meaningful
visual-textual evidences for the predicted answers.

Introduction
The past few years have witnessed a flourish of research in
video-language tasks. Video question answering (VideoQA)
is one of the most prominent, given its promise to develop
interactive AI and communicate with the dynamic visual
world via natural language. Despite its popularity, the chal-
lenge in VideoQA remains significant; it demands a wide
spectrum of recognitive (Ren et al. 2015; He et al. 2016;
Carreira and Zisserman 2017), reasoning (Hu et al. 2018) as
well as grounding (Hu et al. 2017; Xiao et al. 2020) capabil-
ities to comprehend the questions (Mao et al. 2016) and de-
duce the correct answers. Existing efforts (Jang et al. 2017;
Gao et al. 2018; Yu, Kim, and Kim 2018; Fan et al. 2019;
Li et al. 2019b; Jiang et al. 2020) concentrate on capturing
the sequential nature of video frames and question words.
As the hierarchical, compositional structure of video con-
tents and the multi-granular essence of linguistic concepts
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are unaccounted, current models are limited in insight and
interpretability, and also their results can be sub-optimal.

In this work, we delve into the problem of video question
answering based on a bottom-up and top-down insight1. As
demonstrated in Figure 1, from a bottom-up view, video con-
tents are hierarchical in semantic space. Each atomic action
(e.g., pick up) involves a visual subject (e.g., lady) and
optionally an object (e.g., lemon). Besides, the atomic ac-
tions (e.g., pick up, squeeze, pour) composition-
ally form a super-action or activity (e.g., cook), while activ-
ities (e.g., cook and play) further constitute a global event
(e.g., camping). From a top-down view, questions are di-
verse and answering them demands visual information from
different granularity levels. Generally, questions concerning
objects and their attributes rely on specific visual entities
for answers; questions regarding spatial relations and con-
tact actions (e.g., hug, kiss, hold, carry) are bet-
ter answered based on object interactions at certain frames;
while questions about dynamic actions (e.g., pick up,
put down), temporal interactions and global event may re-
quire aggregating information from multiple video frames
or clips. In addition, a single question may also invoke mul-
tiple levels of visual elements, which further demands the
awareness of the multi-granularity of both video elements
and linguistic concepts.

To capture such insight, we propose to model video as a
graph hierarchy with the condition of language query in a
level-wise fashion. Concretely, the model weaves together
visual facts from low-level entities to higher level video ele-
ments through graph aggregation and pooling, during which
the local and global textual query are incorporated into dif-
ferent levels to match and pinpoint the relevant video ele-
ments at the corresponding granularity levels (e.g., objects,
actions, activities and events). In this way, our model can
not only identify the query-specific visual objects and ac-
tions, but also capture their local interactions as well as infer
the constituted activities and events. Such versatility is the
first of its kind in VideoQA and is of crucial importance in
handling diverse questions concerning different video ele-
ments. To validate the effectiveness, we test the model on
four VideoQA datasets that challenge the various aspects of

1Bottom-up is from low-level visual contents (video) to high-
level semantics (language query), and vice versa for top down.
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atomic action:

action/activity:

activity/event: -What event could this be? Camping.

-What are the people doing? Camping.

-Why does the lady with white towel put on a glove 

in the middle? Squeeze lemon.

-What does the cooking person do after picking up 

a lemon? Squeeze and pour on food.

-What is the man in black sitting besides the lady in 

black doing? Hold and look at camera.

-Where are the people hanging out? Park.

-What color blanket that covers the baby? Yellow.

-Who is carrying the baby? Lady in black.

frame-level:

clip-level:

video-level:

entity-level:entity/attribute: lady baby lady lemon food

(a) bottom-up view (b) top-down view

pick up squeeze

Figure 1: The bottom-up and top-down insights for video question answering. (a) From a bottom-up view, the video contents
are hierarchical from low-level visual entities, their local interactions, to high-level activities and global event. (b) From a top-
down view, different questions demand video elements at different granularity (e.g., objects, actions, activities and events) for
answers, and a single question might also invoke multi-level visual resources to comprehend.

video understanding and achieve consistently strong results.
To summarize our main contributions: 1) We provide a

bottom-up and top-down insight to advance video question
answering in a multi-granular fashion. 2) We propose a hier-
archical conditional graph model, which serves as an initial
prompt, to capture such insight for VideoQA. 3) Extensive
experiments evince that our model is effective and is of en-
hanced generalizability and interpretability; it achieves the
state-of-the-art (SOTA) results across different datasets with
various type of questions and finds introspective evidences
for the predicted answers as well.

Related Work
Canonical approaches use techniques such as cross-model
attention (Jang et al. 2017; Zeng et al. 2017; Li et al. 2019b;
Jin et al. 2019; Gao et al. 2019; Jiang et al. 2020) and
motion-appearance memory (Xu et al. 2017; Gao et al. 2018;
Fan et al. 2019) to fuse information from the video and ques-
tion for answer prediction. These methods focus on design-
ing sophisticated cross-modal interactions, whereas treating
video and question as a holistic sequence of frames and
words respectively. Sequential modelling neither capture the
topological (e.g., hierarchical or compositional) structure of
the visual elements nor multi-granularity of linguistic con-
cepts. Consequently, the derived QA models are weak in re-
lation reasoning and handling question diversity.

Graph-structured models (Kipf and Welling 2017;
Veličković et al. 2018) are recently more favoured, either
for their superior performance in relation reasoning (Li et al.
2019a; Hu et al. 2019), or for the improved interpretabil-
ity (Norcliffe-Brown, Vafeias, and Parisot 2018). L-GCN
(Huang et al. 2020) constructs a fully-connected graph over
all the detected regions in space-time and demonstrates the
benefits of utilizing object locations. However, the mono-
lithic graph is cumbersome to extend to long videos with
multiple objects. More recently, GMIN (Gu et al. 2021)
builds a spatio-temporal graph over object trajectories and
shows improvements over its attention version (Jin et al.

2019). While L-GCN and GMIN construct query-blind
graphs, HGA (Jiang and Han 2020), DualVGR (Wang, Bao,
and Xu 2021) and B2A (Park, Lee, and Sohn 2021) de-
sign query-specific graphs for better performance. Yet, their
graphs are built over coarse video segments in a flat way. On
the one hand, these models cannot reason fine-grained ob-
ject interactions in space-time. On the other hand, they are
unable to reflect the hierarchical nature of video contents.

Hierarchical architectures. HCRN (Le et al. 2020) de-
signs and stacks conditional relation blocks to capture tem-
poral relations. Nonetheless, it focuses on temporal reason-
ing of single object actions and models relations with a sim-
ple mean-pooling. As a result, it fails to generalize well to
the scenarios with multiple object interacted in space-time
(Xiao et al. 2021). A very recent work HOSTR (Dang et al.
2021) follows a similar design philosophy to learn a hier-
archical video representation, but introduces a nested graph
for spatio-temporal reasoning over object trajectories, and
achieves better performance. Yet, both HCRN and HOSTR
target at general-purpose visual reasoning. They lack the in-
sights that 1) some video elements (e.g., object, places, spa-
tial relations and contact actions) are easier to identify at
frame-level (Gkioxari et al. 2018; Xiao et al. 2020), and 2)
different parts of a question may invoke visual information
at different granularity levels (Chen et al. 2020). In addition,
HOSTR’s good performance relies on accurate object tra-
jectories which are hard to obtain in practice, especially for
long video sequences with complex object interactions. In
this work, we design and emphasize the hierarchical archi-
tecture to realize the bottom-up and top-down insights which
enables vision-text matching at multi-granularity levels.

Method
Overview Given a video V and a question q, VideoQA
aims to predict the correct answer a∗ that is relevant to the
visual content. Currently, the two typical QA formats are
multi-choice QA and open-ended QA. In multi-choice QA,
each question is presented with several candidate answers
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Figure 2: A conditional graph hierarchy built over 4 video clips. GO, GF and GC are graphs defined over objects, their
interactions across frames and across clips respectively. The graphs are stacked hierarchically to abstract low-level, locally-
related visual components into a high-level global representation. The language query Q is conditioned at each level to guide
the graph construction. The final aggregated video representation is fused with global query feature fQ for answer prediction.

Amc, and the problem is to pick the correct one:

a∗ = arg max
a∈Amc

Fθ(a|q,V,Amc). (1)

In open-ended QA, no answer choices are provided. The task
is popularly set as a classification problem to classify the
video-question pairs into a globally defined answer set Aoe.

a∗ = arg max
a∈Aoe

Fθ(a|q,V). (2)

To address the problem, we realize the introduced bottom-
up and top-down insights by modelling video as a condi-
tional graph hierarchy. As illustrated in Figure 2, we accom-
plish this by designing a Query-conditioned Graph Atten-
tion unit (i.e., QGA, see Figure 3) and further applying it to
reason and aggregate video elements of different granularity
levels into a global representation for question answering.

We next elaborate on our model design by first introduc-
ing the data representation, then the QGA unit, and finally
the hierarchical architecture and answer decoder.

Data Representation
Video. We extract a video at p frames per second and then
partition it into K clips of length L. For each clip, we main-
tain a dense stream of L frames to obtain the clip-level mo-
tion feature and a sparse stream of γL frames (γ ∈ (0, 1))
to obtain the region and frame appearance features. In our
implementation, the motion features Fm = {fmk

}Kk=1 and
frame appearance features Fa = {fat}Tt=1 (T = γLK) are
extracted from pre-trained CNNs, specifically 3D version
ResNeXt-101 (Hara, Kataoka, and Satoh 2018) for motion
and ResNet-101 (He et al. 2016) for frame appearance. Im-
portantly, we also extract N RoIs’ (region of interest) ap-
pearance features Fr = {frn}Nn=1 along with their bound-
ing boxes from each frame in the sparse stream, using a pre-
trained object detector (Anderson et al. 2018).

After the extraction, all three types of features are pro-
jected into a d-dimension space. Specifically, for motion and
frame appearance features, the projections are achieved by
applying two respective 1-D convolution operations along

the time dimension, in which the window sizes are set to
3 to consider the previous and next neighbors as contexts.
For clarity, we denote the projected features as FK×dm =
{fdmk

}Kk=1 for motion and FT×da = {fdat}
T
t=1 for frame ap-

pearance. For each object, to retain both semantic and ge-
ometric information, we jointly represent its RoI appear-
ance fr, bounding box location fs, and temporal position
ft similar to (Huang et al. 2020). The final object feature
comes from concatenating the three components and pro-
jecting them into d-dimensions with a linear transformation
followed by an ELU activation: fo = ELU(Wo[fr; fs; ft]),
in which [; ] denotes concatenation and Wo are the parame-
ters of the linear projection. Again, for clarity, we denote the
projected object features in a frame as FN×do = {fdon}

N
n=1.

Question. To obtain a well-contextualized word repre-
sentation, we extract the token-wise sentence embeddings
from the penultimate layer of a fine-tuned BERT model (De-
vlin et al. 2018) (refer to Appendix B for details). Simi-
lar to (Xiao et al. 2021), we further apply a Bi-GRU (Cho
et al. 2014) to project the word representations into the d-
dimension space as the visual part for convenience of cross-
model interaction. Consequently, a language query of length
M is represented by QM×d = {qdm|qm = [−→qi ;←−qi ]}Mm=1,

where −→qi
d
2 and←−qi

d
2 denoted the forward and backward hid-

den states respectively. Particularly, the last hidden state qdM
is treated as the global query representation fQ.

Conditional Graph Reasoning and Pooling
In this section, we introduce QGA - the key component in
our model architecture. As illustrated in Figure 3, QGA first
contextualizes a set of input visual nodes Xin in relation to
their neighbors in both the semantic and geometric (realized
by the geometric embeddings of the nodes) space, under the
condition of a language query QM×d, and then aggregates
the contextualized output nodes Xout into a single global de-
scriptor xp. The input nodes X∗×din = {xini}∗i=1 depend on
the hierarchy level; at the bottom, Xin are the object features
Fo, while at higher levels, the inputs are the outputs of QGAs
at the preceding level. The dimension varies accordingly and
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Figure 3: Illustration of QGA unit. Color nodes in Q denote
the words referring to video elements at different levels.

we use * as a placeholder for the number of input nodes.
Query Condition. By condition, we pay attention to the

video elements that are invoked in the questions, which is
achieved by augmenting the corresponding nodes’ represen-
tations with Q:

x̂ = xin +
∑M

j=1
αmqm, where α = σ(xinQ

′
), (3)

where σ(·) is the softmax normalization function and ′ in-
dicates matrix transpose. The indices of x are omitted for
brevity. We expect that, through the cross-attention aggre-
gation of the word representations with respect to the vi-
sual node xin, the visual node’s textual correspondence will
have a stronger response in the aggregation if the represented
video element is mentioned in the question. As a result, the
corresponding video element (represented by xin) will be
highlighted and contribute more to subsequent operations.

Graph Attention. After obtaining the augmented node
representations X̂∗×d = {x̂}∗i=1, the edges (including self-
loops) represented by the values of the adjacency matrix
A∗×∗ are dynamically computed as the similarities between
the node pairs:

A = σ(φWa
(X̂)φWa

(X̂)
′
), (4)

in which the function φWa denotes linear transformation
with learnable parameter Wa ∈ Rd× d

2 . The softmax oper-
ation normalizes each row, so that the ith row Ai denotes
the attention values (i.e., values of normalized dot-product)
of node i with regard to all the other nodes. We then apply a
H-layer graph attention aggregation with skip-connections
to refine the nodes in relation to their neighbors based on the
adjacency matrix A:

X̂(h) = ReLU((A+ I)X̂(h−1)W (h)), h ∈ [1, H], (5)

where W (h) ∈ Rd×d and X̂(h) are the parameters and out-
puts of the hth-layer graph attention respectively. X̂(0) is
initialized with the query-attended node X̂ . I is the identity
matrix for skip connections. The final output is obtained by
a last skip-connection: Xout = X̂ + X̂(H).

Node Aggregation. To get an aggregated representation
xp for a QGA unit, we apply self-attention pooling (Lee,
Lee, and Kang 2019) over the set of output nodes:

xp =
∑∗

i=1
βixouti , where β = σ(φWp

(Xout)), (6)

whereWp ∈ Rd×1 are the learnable linear mapping weights.

Hierarchical Architecture
In this section, we explain how to apply the QGA units to
achieve the hierarchical architecture to reflect the bottom-up
and top-down insights for question answering. As shown in
Figure 2, the QGA units at the bottom level (GO) take as
inputs a set of object features frame-wisely and capture a
static picture of object interactions:

FGO
= GO(FO) = QGA(FO), (7)

The output features FT×dGO
= {fGOt

}Tt=1 are then combined
with the frame appearance features FT×da (serve as global
context) by concatenation:

f̄GOt
= ELU(Wao[fat ; fGOt

]), t ∈ [1, T ], (8)

where Wao ∈ R2d×d are linear parameters. Then, the QGA
units at the second level (GF ) are applied to F̄T×dGO

=

{f̄GOt
}Tt=1 clip-wisely to model a short-term interaction dy-

namics, as well as to reason and aggregate the low-level vi-
sual components to a higher granularity level (e.g., from ac-
tions to activities):

FGF
= GF (F̄GO

) = QGA(F̄GO
). (9)

The outputs features FGF
∈ RK×d are then combined with

the global motion feature FK×dm to obtain F̄GF
in a way

analogous to Equ. 8. Furthermore, the QGA unit at the top
level (GC) operates over F̄GF

to reason about the local,
short-term interactions, and aggregate them into a single
global representation fV over the entire video:

fV = GC(F̄GF
) = QGA(F̄GF

). (10)

Overall, the hierarchical architecture is achieved by nest-
ing the conditional graph operations that can be conceptually
represented as

fV = GC(GF (Fa, GO(Fo)), Fm). (11)

Finally, fV ∈ Rd is passed to the answer-decoder, along
with the global query representation fQ, to jointly determine
the correct answers.

By the hierarchical graph structure, the video elements of
different granularity can be level-wisely inferred. Besides,
by the multi-level token-level query conditions, the model is
capable of pinpointing the referred video elements at differ-
ent granularity, and it is also flexible in handling different
textual queries. In addition, by introducing the context fea-
tures (i.e., Fa and Fm), the model can make up the downside
of lacking the respective global information at each level.
Importantly, the model is of enhanced flexibility and inter-
pretability, from a perspective of query-instantiated neural
modular networks (Hu et al. 2018) and from a introspective
analysis of the learned attention weights as our model are
purely attention-based, respectively.

Answer Decoder
For multi-choice QA, we concatenate each candidate answer
with the corresponding question to form a holistic query.
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The resulting global query feature fQ is fused with the fi-
nal video feature fV via Hadamard product (a.k.a., element-
wise product) �. Then, a full-connected layer with softmax
is applied as classifier:

s = σ(W
′

c(fQ � fV ) + b), (12)

where Wc ∈ Rd×1 and b are learnable parameters. s is the
prediction score. During training, we maximize the margin
between the positive and negative QA-pairs (i.e., sp and sn

respectively) with the hinge loss: L =
∑|Amc|
i=1 max(0, 1 +

sni −sp), where |Amc| is the number of choices in a question.
For open-ended QA, as the number of categories (an-

swers) are large, we empirically find that it is better to con-
catenate the global question feature fQ with the video fea-
ture fV before the classifier.

s = σ(W
′

c(ELU(Wqv[fQ; fV ])) + b), (13)

in which Wqv ∈ R2d×d, Wc ∈ Rd×|Aoe|, and b|Aoe|

are learnable parameters. Besides, |Aoe| is the size of the
predefined answer set. During training, the optimization
is achieved by minimizing the cross-entropy loss: L =

−
∑|Aoe|
i=1 yi log si, where si is the prediction score for the

ith sample. yi = 1 if the answer index corresponds to the
ith sample’s ground-truth answer and 0 otherwise.

Experiments
Datasets
We experiment on four VideoQA datasets that challenge the
various aspects of video understanding: TGIF-QA (Jang
et al. 2019) features questions about action repetition, state
transition and frame QA. Action repetition includes the sub-
tasks of repetition counting and repeating action recognition.
In this work, we experiment on the latter since the prediction
of numbers are hard to explain. MSRVTT-QA and MSVD-
QA mainly challenge a recognition of video elements. Their
question-answer pairs are automatically generated from the
respective video descriptions by (Xu et al. 2017). NExT-QA
(Xiao et al. 2021) is a challenging benchmark that goes be-
yond superficial video description to emphasize causal and
temporal multi-object interactions. It is rich in object rela-
tions in space-time (Shang et al. 2019). The dataset has both
multi-choice QA and generation-based QA. In this work, we
focus on the former and leave the generation-based QA for
future exploration. For all datasets, we report accuracy (per-
centage of correctly answered questions) as the evaluation
metric. Other statistical details are given in Appendix A.

Implementation Details
We extract each video in NExT-QA, MSVD-QA and
MSRVTT-QA at p = {6, 15, 15} frames per second re-
spectively. For TGIF-QA, all the frames are used. Based
on the average video lengths, we uniformly sample K =
{16, 8, 8, 4} clips for each video in the four datasets respec-
tively, while fixing the clip lengthL = 16. The sparse stream
is obtained by evenly sampling with γ = 0.25. For each
frame in the sparse stream, we detect N = 20 regions for

NExT-QA and 10 for the others. The dimension of the mod-
els’ hidden states is d = 512 and the default number of
graph layers in QGA is H = 2. For training, we adopt a
two-stage scheme by firstly training the model with learning
rate lr = 10−4 and then fine-tune the best model obtained
in the 1st stage with a smaller lr, e.g., 5 × 10−5. For both
stages, we train the models by using Adam optimizer with
batch size of 64 and maximum epoch of 25. Other details are
presented in Appendix B.

The State of the Art Comparison
In Table 1 and Table 2, we compare our model with some es-
tablished VideoQA techniques covering 4 major categories:
1) cross-attention (e.g., ST-VQA (Jang et al. 2017), PSAC
(Li et al. 2019b), STA (Gao et al. 2019), MIN (Jin et al.
2019) and QueST (Jiang et al. 2020)), 2) motion-appearance
memory (e.g., AMU (Xu et al. 2017), Co-Mem (Gao et al.
2018) and HME (Fan et al. 2019)), 3) graph-structured mod-
els (e.g., L-GCN2 (Huang et al. 2020), HGA(Jiang and Han
2020), DualVGR (Wang, Bao, and Xu 2021), GMIN (Gu
et al. 2021) and B2A (Park, Lee, and Sohn 2021)) and 4) hi-
erarchical models (e.g., HCRN (Le et al. 2020) and HOSTR
(Dang et al. 2021)). The results show that our Hierarchical
QGA (HQGA) model performs consistently better than the
others on all the experimented datasets.

Particularly, both L-GCN and GMIN are graph-based
methods that focus on leveraging object-level information
(similar to us) for question-answering. However, they model
the object either in a monolithic way in space-time or in tra-
jectories. This neither reflect the hierarchical nor the com-
positional nature of the video elements. Furthermore, their
graphs are constructed without the guidance of language
queries. By filling such gaps, our model shows clear superi-
ority to both methods on the experimented datasets.

HCRN and HOSTR are similar to us in designing hierar-
chical conditional architectures. Nonetheless, HCRN is lim-
ited to hierarchical temporal relations between frames, in
which the relations are modeled by simple average pooling.
It is helpful for identifying repeated actions and state tran-
sition of single object (see results on TGIF-QA), but it is
insufficient to understand more complicated object interac-
tions in space-time. As a result, it performs even worse than
L-GCN on NExT-QA. HOSTR advances HCRN by building
the hierarchy over object trajectories and adopting graph op-
eration for relation reasoning. Yet still, it focuses merely on
designing general-purpose neural building blocks and lacks
the bottom-up and top-down insight (Figure 1) for VideoQA,
which results in its sub-optimal model design and results.

While HCRN and HOSTR use global query representa-
tions, QueST breaks down the question into spatial and tem-
poral components, and designs separated attention modules
to aggregate information from video for question answering.
It obtains good results on TGIF-QA but does not generalize
well to MSRVTT-QA and MSVD-QA where the questions
do not have such spatial and temporal syntactic structure. Fi-
nally, the methods HGA, DualVGR and B2A, like us, try to

2L-GCN’s results on NExT-QA and MSRVTT-QA are repro-
duced by us with the official code.
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Models NExT-QA Val NExT-QA Test
Causal Temporal Descriptive Overall Causal Temporal Descriptive Overall

ST-VQA 44.76 49.26 55.86 47.94 45.51 47.57 54.59 47.64
Co-Mem 45.22 49.07 55.34 48.04 45.85 50.02 54.38 48.54
HME 46.18 48.20 58.30 48.72 46.76 48.89 57.37 49.16
L-GCN 45.15 50.37 55.98 48.52 47.85 48.74 56.51 49.54
HGA 46.26 50.74 59.33 49.74 48.13 49.08 57.79 50.01
HCRN 45.91 49.26 53.67 48.20 47.07 49.27 54.02 48.89
HQGA (Ours) 48.48 51.24 61.65 51.42 49.04 52.28 59.43 51.75

Table 1: Comparison of accuracy. The best and second-best results are highlighted in bold and underline respectively.

Models TGIF-QA MSRV MSVD
Action Transition FrameQA TT-QA -QA

ST-VQA 62.9 69.4 49.50 30.9 31.3
PSAC 70.4 76.9 55.7 - -
STA 72.3 79.0 56.6 - -
MIN 72.7 80.9 57.1 35.4 35.0
QueST 75.9 81.0 59.7 34.6 36.1
AMU - - - 32.5 32.0
Co-Mem 68.2 74.3 51.5 31.9 31.7
HME 73.9 77.8 53.8 33.0 33.7
L-GCN 74.3 81.1 56.3 33.7 34.3
HGA 75.4 81.0 55.1 35.5 34.7
DualVGR - - - 35.5 39.0
GMIN 73.0 81.7 57.5 36.1 35.4
B2A 75.9 82.6 57.5 36.9 37.2
HCRN 75.0 81.4 55.9 35.6 36.1
HOSTR 75.0 83.0 58.0 35.9 39.4
HQGA 76.9 85.6 61.3 38.6 41.2

Table 2: Comparison of accuracy.

align words in the language query with their visual corre-
spondences in the video. However, all of them adopt a flat
way of alignment at segment level and lack the hierarchical
structure, which most likely accounts for their inferiority.

Model Analysis
We analyze our model on the validation sets of NExT-QA
and MSRVTT-QA. We first conduct an ablation study on the
number of graph attention layers H , sampled video clips K
and regionsN to find the optimal settings on the two datasets
(refer to Appendix C for more details). Then, we fix the op-
timal settings for subsequent experiments.

Hierarchy. The top section of Table 3 shows that accu-
racy drops by 0.9% on both datasets when removing the
QGA units at the bottom (w/o GO) (Fa and Fm are used
as respective inputs for GF and GC .). The results demon-
strate the importance of modeling the static picture of object
interactions. Taking away the 2nd level graph units (w/o
GF ) by directly applyingGC overGO’s outputs correspond-
ing to the respective middle frames of the clips, we can
observe even more drastic accuracy drops (over 1.2%) on
both datasets. This results demonstrate the critical role of
GF in modeling the short-term dynamics of object interac-
tions. Finally, when we remove both GO and GF and apply
a monolithic graph over the clips (directly using Fm as in-
puts for GC), the accuracy drops sharply by 1.5% and 2.6%
on NExT-QA and MSRVTT-QA respectively. This clearly
shows that only modeling clip-level information is unsatis-
factory. The comparisons confirm the significance of hierar-
chically weaving together video elements of different levels.

Graph. The middle section of Table 3 shows that sub-
stituting the top QGA (GC) with a sum-pooling over the
corresponding input nodes (w/o GC(s)), leads to accuracy
drops from HQGA of 0.68% and 0.54% on NExT-QA and
MSRVTT-QA respectively. The result validates the impor-
tance of GC in reasoning over local, short-term dynamic
interactions. Replacing the middle QGAs (GF ) with sum-
poolings ((ss)) further degrades the performance on both
datasets. The result indicates that a sum-pooling is neither
sufficient in capturing the short-term dynamics of object in-
teractions nor capable of relation reasoning over them. Thus,
it evinces the strengths of both GC and GF . Finally, by re-
placing the last (bottom) QGAs (GO) with sum-poolings
((sss)), we can observe a further exacerbation of perfor-
mances on the basis of the previous two ablations. The re-
sults demonstrate GO’s superiority in capturing object re-
lations in static frames. This experiment demonstrates the
advantage of graph attention over a simple sum-pooling.

Multi-level Condition. As shown in Table 3 (bottom
part), the results in the first three rows show that remov-
ing the language condition at any single level jeopardize
the overall performance, indicating the necessity of inject-
ing the query cues at multiple levels. Specially, we investi-
gate replacing the token-wise query representations Q with
a global one fQ, i.e., by concatenating fQ with the respec-
tive graph nodes at all levels. From the results shown in the
row w/fQ, we find that a global condition can slightly boost
the performance on MSRVTT-QA compared with the model
variant without any conditioning (e.g., 37.52% vs. 37.03%).
However, such benefit disappears when the model is extrap-
olated to the scenario where the videos and questions are
much more complex (e.g., NExT-QA). Finally, we conduct
additional ablation studies on Fa and Fm that serve as global
contexts to enhance the representations of graph nodes at
the corresponding levels. The results show that both features
help a bit to the overall performance.

Discussion. By jointly considering the ablation results of
graph hierarchy and multi-level condition in Table 3, we can
see that, compared with the graph hierarchy, the multi-level
query condition has relatively smaller influence on the per-
formance. We speculate that some questions are too simple
to provide meaningful referring clues to the video contents
(e.g., ‘what is happening’). Such questions purely
rely the model to reason the video contents for answers.

Another finding is that, both the graph hierarchy and
multi-level condition have relatively smaller performance
gains on NExT-QA than on MSRVTT-QA. A possible rea-
son could be that NExT-QA emphasizes causal and tem-
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GC GF GO

What does the female skater do after 

the male skater puts her back down 

on the ice? 

1. Put hand in mouth.

2. Continue skating.

3. Jump.

4. Move her arms up and down.

5. laugh and run forward.C6-F2

√

Figure 4: A correct prediction case from NExT-QA (Xiao et al. 2021). GC , GF , GO show the learned graph and conditional at-
tention weights at different levels. The nodes and edges that response relatively stronger to the aggregated nodes are highlighted.
(Blue: weights of self-attention pooling β. Orange: weights of adjacency matrix A and query condition α.)

Model Variants NExT-QA MSRVTT-QA
HQGA 51.42 38.23
w/o GO 50.50 37.26
w/o GF 50.00 37.05
w/o GO & GF 49.96 35.66
w/o GC (s) 50.74 37.69
w/o GC & GF (ss) 50.44 36.94
w/o GC & GF & GO(sss) 50.32 35.88
w/o QC 51.30 38.17
w/o QC & QF 51.08 37.62
w/o QC & QF & QO 50.62 37.03
w/ fQ 50.16 37.52
w/o Fm 50.90 37.94
w/o Fa & Fm 50.34 37.86

Table 3: Model ablation results on the validation sets.

poral action relations; it requires high-quality action recog-
nition. Yet recognizing actions in such complex multiple-
object scenarios remains a significant challenge in video un-
derstanding (Gu et al. 2018; Feichtenhofer et al. 2019). Our
model can reason on the relations between video elements at
multi-granularity levels. However, such capability seriously
relies on object appearance features in its current version;
the absence of region-level motion is a limitation. Our fur-
ther analyses of model performances per question type on
MSRVTT-QA and MSVD-QA (see Table 4) show that there
are still clear gaps between action/activity recognition and
object/attribute recognition in videos; the gaps remain 4.6%
on MSRVTT-QA and 7.5% on MSVD-QA for ’what’ ques-
tions. A promising solution would be to jointly model both
the appearance and motion for each object. As it is not the
focus of this work, we leave it for future exploration.

Intriguingly, the results of our simplest model variant
(w/o GO&GF ) are still on par with some previous SOTAs.
Such strong results can be attributed to our better data repre-
sentation. Here to verify BERT, we additionally explore sub-
stituting BERT with GloVe (Pennington, Socher, and Man-
ning 2014) and achieve 37.2% on MSRVTT-QA test set.
This result confirms the advantages of BERT (38.6% vs.
37.2%) as a good contextualized representation to fulfill the
multi-granular condition, e.g., the disambiguation between
the male and female skaters denoted as O1 and O2 respec-
tively in Figure 4 (GO). Also, the result prompts future ex-
ploration of finetuning pre-trained vision-text architectures
(Lei et al. 2021) for potential improvement of performance.

Datasets whata whato what who how when where all
MSRVTT 30.1 34.7 32.5 48.9 81.5 78.3 38.4 38.6
MSVD 25.4 32.9 30.4 57.2 76.2 75.9 32.1 41.2

Table 4: Test accuracy per question type. Roughly 1
2 ( 13 ) of

the ‘what’ questions in MSRVTT-QA (MSVD-QA) ask ac-
tions/activities; others are about objects/attributes. We dis-
tinguish them via the pattern ‘what ... doing’ in questions.

Qualitative Analysis. We show a prediction case in Fig-
ure 4 (find more examples in Appendix C). Firstly, by trac-
ing down the self-attention pooling weights β, our model
precisely finds the video contents that are relevant to the
textual query, e.g., from the 6th video clip C6 to its 2nd
frame F2, and further to the male and female skaters (de-
noted as O1 and O2 respectively in F2). Secondly, accord-
ing to the query-conditional weights α, our model success-
fully differentiates the information of different granularity
levels for both the video and question contents, and discrim-
inatingly match them at the corresponding levels. For exam-
ple, the nodes at high level GC show stronger responses to
the action-related words (‘do’ and ‘back down’), whereas
those nodes at the lower levels (GF and GO) respond
strongly to the visual objects (‘skater’). Finally, accord-
ing to the learned adjacency matrices, while we construct
fully-connected graphs in QGA, the learned connections are
quite sparse, suggesting that our model can learn to filter out
meaningless relations with respect to the query.

Conclusion
This work delves into video question answering and un-
covers the insights of bottom-up and top-down for video-
language alignment. To capture the insight, we propose to
build video as a conditional graph hierarchy which level
wisely reasons and aggregates low level visual resources into
high level video elements, in which the language queries are
injected into different levels to match and pinpoint the video
elements at multi-granularity. To accomplish this, we design
a reusable query-conditioned graph attention unit and stack
it to achieve the hierarchical architecture. Our extensive ex-
periments and analyses have validated the effectiveness of
the proposed method. Future attempts can be made on in-
corporating object-level motion information, or exploiting
pretraining techniques to boost the performance.
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