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Abstract

In most video platforms, such as Youtube, Kwai, and Tik-
Tok, the played videos usually have undergone multiple video
encodings such as hardware encoding by recording devices,
software encoding by video editing apps, and single/multi-
ple video transcoding by video application servers. Previous
works in compressed video restoration typically assume the
compression artifacts are caused by one-time encoding. Thus,
the derived solution usually does not work very well in prac-
tice. In this paper, we propose a new method, temporal spa-
tial auxiliary network (TSAN), for transcoded video restora-
tion. Our method considers the unique traits between video
encoding and transcoding, and we consider the initial shal-
low encoded videos as the intermediate labels to assist the
network to conduct self-supervised attention training. In ad-
dition, we employ adjacent multi-frame information and pro-
pose the temporal deformable alignment and pyramidal spa-
tial fusion for transcoded video restoration. The experimen-
tal results demonstrate that the performance of the proposed
method is superior to that of the previous techniques. The
code is available at https://github.com/icecherylXuli/TSAN.

Introduction
Massive uncompressed video data is a substantial burden
for hardware storage and transmission. Without proper en-
coding, it is almost impossible to transmit a high resolution
video through the widespread 4G/5G network in real-time.
Over the past decades, many video coding algorithms have
been emerged to exploit video contents’ spatial and temporal
redundancy while pursuing an acceptable visual quality. The
classic video coding standards, such as H.262/MPEG-2 (Rec
1994), H.263 (Recommendation 1998), H.264/AVC (Tele-
com et al. 2003), H.265/HEVC (Sullivan et al. 2012), have
been developed rapidly. Indeed, due to the limitations of
transmission conditions and various mobile devices, almost
all the videos we encounter on the Internet were transcoded
to meet the target bitrates for efficient transmission. For ex-
ample, a video taken directly using our mobile phone needs
to be compressed at least twice (hardware encoding in mo-
bile phone before uploading, and the transcoding in video
server before re-distribution) before it can be shared on
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Figure 1: (a) Example of video transcoding processes. (b)
Workflow comparison of previous restoration methods and
our proposed TSAN. (c) Example of subjective quality com-
parison, including our TSAN, DnCNN (Zhang et al. 2017),
EDCNN (Pan et al. 2020), and STDF (Deng et al. 2020).

Youtube, Kwai or TikTok, etc., as illustrated in Fig. 1 (a).
Intuitively, transcoded videos that end users viewed usually
suffer from single/multiple transcoding degradation.

Recently, some learning-based methods have been ex-
plored to eliminate the artifacts of compressed images and
videos. However, they focused on improving the quality of
encoded videos without transcoding. The integral distortion
by video encoding and transcoding is not a simple superpo-
sition of two coding distortions, as transcoding will further
introduce different degrees of distortions in the degraded re-
gions with severe or slight artifacts. In Fig.1 (c), only the
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road texture is lost in the mobile phone encoded image, but
severe artifacts appear on the character’s lower body and its
shadow in the transcoded image. This makes the transcoded
video restoration task difficult. To the best of our knowl-
edge, there is currently no learning-based works dedicated
to improving the quality of transcoded videos. A straight-
forward solution is to retrain these previous algorithms and
reuse them to transcoded videos. Fig. 1 (b) shows the work-
flow comparison of previous methods and our TSAN for
transcoded videos. As demonstrated in Fig.1 (c), the per-
formance of previous methods is limited because they are
specifically designed for the video whose contents only suf-
fer from single compression. Considering that the distortions
of transcoded videos are a hybrid superposition of twice or
more encoding distortions, we propose a temporal spatial
auxiliary network to enhance transcoded videos.

The main contributions can be summarized as follows:

• This study is the first exploration on transcoded video
restoration with deep neural networks. We reveal most
videos suffer from transcoded deterioration and verify
these previous learning-based restoration algorithms for
video encoding are fragile for video transcoding.
• We propose a network paradigm that uses the initial en-

coding information as an auxiliary supervised label to as-
sist the network training. More specifically, we design
auxiliary supervised attention and global supervised re-
construction modules to improve the algorithm perfor-
mance in a coarse-to-fine manner.
• We design a temporal deformable module capable of off-

setting the motion in a progressive motion-learning man-
ner while extracting abundant valuable features. Further-
more, a pyramidal spatial fusion adopting four diverse
downsampling filters is developed to capture more lossy
details at multiple spatial scaling levels.
• We quantitatively and qualitatively demonstrate our pro-

posed method is superior to that of the previous methods.

Related Work
Encoded Image/Video Restoration
Inspired by the success of deep learning, a large number
of recent works (Liu et al. 2020; Dong et al. 2015; Zhang
et al. 2017; Dai, Liu, and Wu 2017; Yang et al. 2018a; He
et al. 2018; Ding et al. 2019; Xue et al. 2019; Yang et al.
2018b; Guan et al. 2019; Deng et al. 2020) have shown that
convolutional neural network (CNN) achieves excellent per-
formance in enhancing quality of compressed images and
videos. ARCNN (Dong et al. 2015) is the first work to lever-
age CNN to reduce artifacts caused by JPEG. Next, bene-
fitting from its robustness, DnCNN (Zhang et al. 2017) is
often used as an image restoration baseline, including de-
noising, artifacts reduction, and so forth. As a learning-based
post-processing method, VRCNN (Dai, Liu, and Wu 2017)
was developed to promote the HEVC intra coding frames’
quality. Later, quality enhancement convolutional network
(QECNN) was proposed to improve the quality for I frames
and P/B frames of HEVC separately. Analyzing the char-
acteristics of video coding, a partition-masked CNN (He

et al. 2018) was designed, which employed the decoded
frames’ partition information to instruct the network to im-
prove performance. Meanwhile, Pan et al. (2020) designed
an enhanced deep convolutional neural network (EDCNN)
as an efficient in-loop filter to remove annoying artifacts and
achieve a better quality of experience.

Due to the lack of effective use of adjacent information
which is capable of providing supplementary details, these
single-image encoded restoration works can improve the
quality of damaged frames, but their improvement abilities
are limited. Multi-image encoded restoration algorithms are
becoming a prevalent trend. In task-oriented flow (TOFlow)
(Xue et al. 2019), the learnable motion estimation compo-
nent is self-supervised to facilitate video restoration. Later,
MFQE (Yang et al. 2018b) and its extended version (Guan
et al. 2019) developed a PQF detector to search for the high-
est quality reference frame, thus improving the damaged
videos’ quality. Moreover, to handle motion relationships ef-
ficiently, a spatio-temporal deformable fusion scheme (Deng
et al. 2020) is proposed to aggregate temporal information so
as to eliminate undesirable distortions.

Dilated Convolution
Dilated convolutions (Yu and Koltun 2015), also called
atrous convolutions, can expand receptive fields while keep-
ing the same resolution of feature maps. It is widely used in
semantic segmentation (Chen et al. 2017a,b), image classifi-
cation (Yu, Koltun, and Funkhouser 2017), image restoration
(Yu et al. 2018; Guo et al. 2021), etc. Atrous spatial pyramid
pooling(Chen et al. 2017a,b) employed atrous convolution
in cascaded or parallel by adopting multiple atrous rates and
was used to handle the problem of semantic segmentation at
different spatial scales. In image classification, dilated resid-
ual network (Yu, Koltun, and Funkhouser 2017) was devel-
oped to improve the accuracy of downstream applications,
and it outperforms its non-dilated counterparts. In (Yu et al.
2018), a generative inpainting method utilized dilated con-
volution to rough out the missing contents. Guo et al. (2021)
proposed EfficientDeRain with a pixel-wise dilation filtering
to predict multi-scale kernels for each pixel.

Deformable Convolution
Standard convolution is innately constrained in establish-
ing geometric transformations on account of the invariable
local receptive fields. The variant, deformable convolution
(DConv) (Dai et al. 2017), was developed to obtain learnable
spatial information with the guidance of the additional off-
set. Temporally deformable alignment network (Tian et al.
2018) first applied DConv to align the neighboring frames
instead of optical flow to predict high-resolution videos. In-
spired by (Tian et al. 2018), EDVR (Wang et al. 2019) elab-
orated on a pyramid manner to estimate offset more pre-
cisely. Interlayer restoration network (He et al. 2021) for
scalable high efficiency video coding employed DConv to
compensate the compression degradation difference through
the multi-scale learnable offsets. In particular, Chan et al.
(2021) revealed the relation between deformable alignment
and flow-based alignment and proposed an offset-fidelity
loss to alleviate the training instability.

2876



HDRO

Pyramidal
Spatial
Fusion
Module
(PSFM)

Temporal
Deformable
Alignment
Module
(TDAM)

Auxiliary
Supervised
Attention
Module
(ASAM)

Hybrid 
Dilated 
Reconstruction 
Operator
(HDRO)

S

W

Element-wise 
summation

Element-wise 
multiplication

Warp

Conv

[ , , , , , , , ]
i T i i i i i T
X X X X X X

    1 1 1
 

re

i
Y

i
X re

i
H

Hybrid 
Dilated 
Reconstruciton 
Operator

Conv

S

Sigmoid

psfm
F

asam
F

ASAM

re

i
H

i
X

Global loss

i
Y

Restored output

3x3 Conv
Rate=1 

3x3 Conv
Rate=2 

3x3 Conv
Rate=4 

Conv

HDRO

Element-wise Summation

Element-wise Multiplication

Hybrid Dilated Reconstruciton 
Operator

S

Sigmoid

Auxiliary 
supervised 

init

i
Y

loss

Element-wise 
summation

HDRO

Global
Supervised
Reconstruction
Module
(GSRM)

Figure 2: Architecture of our temporal spatial auxiliary network (TSAN) and structure of auxiliary supervised attention module.

Methodology
Preliminary
Transcoded videos usually suffer from multiple encoding
degradations and are hard to be restored due to the com-
plicated unknown process. Table 1 summarizes the perfor-
mance of the classic restoration method (Deng et al. 2020)
on one-time video encoding and transcoding in three test se-
quences. Note that the DNN-based method was retrained on
the dataset which covers the same videos but suffers from
different degradation. The typical STDF was originally de-
signed for improving the quality of the distorted videos com-
pressed by the H.265/HEVC reference software HM16.5.
Here we also follow the same configuration to prepare the
training dataset. The procedure of preparing transcoding
dataset will be depicted in Sec. 4.1. In Table 1, although the
qualities (peak signal-to-noise, PSNR) of the three listed se-
quences suffering one-time encoding and transcoding fluc-
tuate, they are similar. However, the improvement of video
transcoding by STDF decreased from 1.051 dB to 0.646
dB in sequence BQMall. Likewise, when applying STDF to
video transcoding, different degrees of degradations are ob-
served in all the listed sequences. These results validate that
the previous learning-based methods for video encoding are
fragile for video transcoding.

Network Architecture Overall
As discussed above, the artifacts of compressed videos are
mostly a combination of video encoding and transcoding
distortions. Hence, we design a progressive restoration net-
work that divides the transcoded video restoration task into
two parts and restores the transcoded videos in a coarse-
to-fine manner. The first part focuses on removing the dis-
tortion introducing by transcoding at a lower bitrate. Then,
the second part is inclined to eliminate the artifacts caused

Sequences Status One-time Encoding Transcoding
∆(QP 37) (1 or 0.5 Mbps)

Basketball-
Drill

Before 31.591 31.747 -
After 32.409 32.303 -

∆PSNR 0.818 0.556 -0.262

BQMall
Before 31.297 31.949 -
After 32.340 32.595 -

∆PSNR 1.051 0.646 -0.405

BQTerrace
Before 31.247 31.565 -
After 31.894 31.954 -

∆PSNR 0.647 0.389 -0.258

Table 1: Comparison of restoration on one-time encoding
and transcoding in terms of PSNR (dB). “Before” status de-
notes the sequence has been compressed but not enhanced.
“After” denotes the sequence has been enhanced by the re-
trained STDF (Deng et al. 2020).

by the initial video encoding. For this purpose, we employ
the initial encoded video with a high bitrate as an addi-
tional auxiliary supervised label to assist network at train-
ing stage. We denote our method, temporal spatial auxiliary
network (TSAN).

Given 2T+1 consecutive low-quality framesX[i−T :t+T ],
we denote the center frameXi as the target frame need to be
restored and the other frames as the reference frames. The
input of the network is the target frameXi and the 2T neigh-
boring frames, and the output is the enhanced target frame
Y re
i . The objective function can be formulated as follows,

Y re
i = NetTSAN(X), (1)

where NetTSAN is our proposed temporal spatial auxiliary
network and X is a stack of transcoded frames which is de-
fined as

X = [Xi−T , · · · , Xi−1, Xi, Xi+1, · · · , Xt+T ], (2)
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where i denotes the frame number and T is the maximum
number of reference frames.

The architecture of TSAN is shown in Fig. 2. TSAN is
devised to estimate a high quality output with the guidance
of its consecutive transcoded frames. In the following sub-
section, we will give detailed analysis on the motivation and
rationality of each module.

Auxiliary Supervised Attention
The temporal deformable alignment and pyramidal spatial
fusion modules serve for the severe distortions where the
contents have been degraded repeatedly. However, the lossy
information is hard to be recovered due the hybrid transcod-
ing degradation. Combining the traits of video encoding and
transcoding, we proposed an auxiliary supervised attention
module (ASAM) whose structure is illustrated in the blue
part of Fig. 2. First, we use a hybrid dilation reconstruc-
tion operator (HDRO) to predict the high-frequency map.
Specifically, we apply three dilated convolutions with dif-
ferent dilation rates (r = 1, 2, 4) to reconstruct the lossy fre-
quency maps at different spatial scale. Intuitively, the 3× 3,
5× 5, and 7× 7 receptive fields of each pixel are supported
by these convolutions and the various highlighted texture,
like the red, green, and yellow rectangular boxes, are gen-
erated. Note that the 1-dilated convolution is equivalent to
the standard convolution. Following the parallel dilated con-
volutions, these frequency maps are sent into a 3 × 3 stan-
dard convolution to yield the integrated result. The process
of HDRO is given by:
FHDRO = Rec([D1(Fpsfm), D2(Fpsfm), D4(Fpsfm)]),

(3)
whereD1,D2, andD4 denote dilated convolutions with 1, 2
and 4 dilation rates, respectively.Rec(·) is the 3×3 standard
convolution.

After HDRO, the integrated frequency map is sum up to
the low-quality target frame Xi to yield the initial restored
oneHre

i . Up to now, the initial restoration stage is complete.
Next, we feed Hre

i again into the convolution for providing
excited features. The sigmoid activation function is used to
restrict these features in [0, 1] and generate supervised at-
tention maps. Then, these earliest input feature through a
3 × 3 transitional convolution and are refined by the super-
vised attention maps. Ultimately, these self-refined features
are added to the excited features by Hre

i as the output of
module.

In summary, ASAM plays an essential role in guiding the
first part of our network to approach the intermediate lossy
representation and establishing a connection between the
transcoding degradation and initial encoding degradation. In
the second part, we design a global supervised reconstruc-
tion module (GSRM) which consists of 10 residual blocks
and the HDRO with a short-cut connection of target frame
Xi. With the help of GSRM, the final restored output Y re

i is
reconstructed.

Temporal Deformable Alignment
Adjacent frames are essential for target frame restoration
but they are not equally informative due to view angle, mo-
tion blocking, and video compression problems. Hence, we
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Figure 3: Structure of temporal deformable alignment.

leverage the neighboring forward and backward frames to
exploit more advantageous information. In Fig. 3, we em-
ploy optical flow estimation (OFE), i.e. SPyNet (Ranjan and
Black 2017), to compute the forward and backward optical
flows among the adjacent frames. Then, these estimated op-
tical flows are regarded as the plain motion information and
are warped with the input frames to yield the plain aligned
frames. Here we describe the forward frame alignment in
detail, and the backward frame alignment can be inferred
similarly. The forward alignment at i−t−1 timestep is done,

XA
i-t-1→i-t = warp(OFE(Xi−t−1, Xi−t), Xi−t−1), (4)

where t∈ [0, T ) and OFE(·) is optical flow estimation. We
use bilinear interpolation to implement warp(·) function.

Later, these initial aligned framesXA and the target frame
Xi are concatenated together to send into feature excitation
(FE) and generate the motion refinements on the basis of
plain motion estimation. Three stacked plain 3× 3 convolu-
tion layers are adopted to feature excitation. Integrating the
plain motion transformed by a convolutional filter and the
motion refinements, the more progressive refined motion in-
formation is generated, and it is regarded as the learnt pre-
dicted offset 4P to help the explicit temporal deformable
alignment. The mathematical equation is

Ftdam(p0) =
∑
pk∈R

ωk ·X(p0 + pk +4pk), (5)

the deformable convolution will be operated on the de-
formed sampling locations pk +4pk, where ωk and pk
denote the weight and predicted offset for k-th location
in R = {(−1,−1), (−1, 0), · · · , (0, 0), · · · , (0, 1), (1, 1)}.
Note that the 4pk ∈ 4P . Finally, a stack of temporal de-
formable alignment features Ftdam are acquired by compen-
sating the motion in a progressive motion-learning manner.

Pyramidal Spatial Fusion
After obtaining the temporal deformable aligned features
Ftdam, we design a pyramidal spatial fusion module (PSFM)
based on an UNet (Ronneberger, Fischer, and Brox 2015)
structure to learn the contextual information at multiple spa-
tial levels. The notable differences between our PSFM and
UNet are two-fold.
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First, four diverse downsampling filters, including the bi-
linear operator, average pooling, max pooling, and strided
convolutional filters, are adopted instead of single downsam-
pling method. Following this pyramidal downsampling man-
ner, we enlarge the aligned features’ receptive filed to merge
the neighboring information from the temporal dimension to
spatial dimension and capture more lossy details at multiple
scaling levels. Second, residual learning with a single short-
cut connection is introduced to replace the plain 3×3 convo-
lutions. This variant is conducive to propagate the proceed-
ing learnt valuable information from the shallower layers to
the deeper ones, and ameliorate gradient vanishing and ex-
plosion. After that, we employ 5 residual blocks to generate
enhanced features.

Loss Function
We develop a loss function which consists of auxiliary su-
pervised loss function and global supervised loss function.
The initial shallow encoded video Y init

i with a high bitrate
is regarded as the auxiliary supervised label, and the partial
loss function is calculated as:

Lossa = 1/N
N∑
i=1

∥∥Y init
i −Hre

i

∥∥2, (6)

where N is the batch size and MSE loss is adopted for opti-
mization. Meanwhile, the global supervised loss function is
calculated as:

Lossg = 1/N
N∑
i=1

‖Yi − Y re
i ‖

2
, (7)

where Yi denotes the raw target frame without any compres-
sion and Y re

i denotes the enhanced one.
Our network is an end-to-end method and the two loss

functions are combined together as the final loss of the entire
network for back propagation process. It is defined as:

Loss = α · Lossa + β · Lossg, (8)

where α and β are the weight factors. Validating by the re-
lated experiment, we set α = 0.2 and β = 0.8.

Experiments and Analyses
Experimental Settings
Training and Testing Dataset. To establish a training
dataset for video transcoding restoration, we employed

Settings Initial Encoding One-time Transcoding

Bitrate HR1 10 Mbps 1000 kbps
LR2 10 Mbps 500 kbps

Coding Software X265 X265
Preset Medium Medium

Rate Control Mode Average Bitrate Average Bitrate
Loop Filters Deblock and SAO Deblock and SAO

Group of Pictures 250 250
Max References 3 3

1HR denotes high resolution videos higher than 720p.
2LR denotes low resolution videos lower than or equal to 720p.

Table 2: Detailed settings of video initial encoding and one-
time transcoding. The bitrate is set according to the resolu-
tion of videos and the other settings are same.

108 sequences from Xiph.org (Xiph.org), VQEG (VQEG),
and Joint Collaborative Team on Video Coding (JCT-VC)
(Bossen et al. 2013). The resolutions of these sequences
cover SIF, CIF, 4CIF, 360p, 480p,1080p, and 2k. We adopt
all 18 standard test sequences from JCT-VC for testing.

Encoding and Transcoding Settings. All videos in the
training and testing dataset have been processed by initial
encoding and one-time transcoding. The detailed settings
have been listed in Table 2. The video resolutions have been
kept the same and the same encoding tool x265 (x265 De-
velopers) has been adopted in both the initial encoding and
one-time transcoding. Both x265 presets have been set as
“medium” and others settings including rate control strat-
egy, group of pictures (GOP) size, loop filters, etc. are all
the same default ones except the bitrates for them. The ini-
tial encoding bitrate is set as the high bitrate 10 Mbps. This is
because we calculated that the average bitrate of 100 videos
taken by iPhone12 is close to 10 Mbps. Meanwhile, the
transcoding bitrate is set as 500/1000 kbps according to dif-
ferent resolutions to simulate the cases of real practical ap-
plications such as TikTok. We have randomly downloaded
about 200 hundred videos of TikTok and do the statistical
bitrate data for them.

Implementation Details. We implement our TSAN with
Pytorch 1.6.0 framework on a NVIDIA GeForce 2080Ti
GPU and update it with Adam optimizer. The batch size is
set to 16 and the learning rate is initialized as 1e-4. The net-
work training stops after 300k iterations.

Transcoding Restoration Performance
Table 3 shows the performance of our method in transcoded
videos, compared with DNN-based methods (Zhang et al.
2017; Yang et al. 2018a; Pan et al. 2020; Deng et al. 2020).
The delta peak signal-to-noise ratio (4PSNR) and delta
structural similarity index metric (4SSIM) are calculated.

The average PSNR gain is 0.782 dB when the resolutions
of videos vary from 416×240 to 2560×1600, and the high-
est PSNR gain is 1.264 dB in BQSquare. It demonstrates that
the proposed network can substantially improve the quality
of transcoded videos. To further validate the effectiveness
of our TSAN, we reimplement the four representative video
restoration DNN-based methods (Zhang et al. 2017; Yang
et al. 2018a; Pan et al. 2020; Deng et al. 2020). Note that the
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Classes Sequences DnCNN QECNN EDCNN STDF Proposed
(Zhang et al., TIP’ 17) (Yang et al., TCSVT’ 18) (Pan et al., TIP’ 20) (Deng et al., AAAI’ 20) TSAN

A Traffic 0.309/0.005 0.238/0.004 0.292/0.005 0.392/0.009 0.554/0.008
PeopleOnStreet 0.423/0.027 0.302/0.019 0.490/0.030 0.950/0.046 1.260/0.054

B

BasketballDrive 0.375/0.012 0.275/0.010 0.429/0.013 0.600/0.016 0.863/0.020
BQTerrace 0.299/0.007 0.280/0.005 0.332/0.007 0.389/0.008 0.545/0.010

Cactus 0.320/0.010 0.240/0.008 0.342/0.010 0.480/0.012 0.743/0.017
Kimono 0.263/0.010 0.196/0.008 0.280/0.011 0.368/0.012 0.632/0.017

ParkScene 0.171/0.008 0.132/0.006 0.177/0.007 0.254/0.010 0.447/0.015

C

BasketballDrill 0.448/0.011 0.339/0.008 0.484/0.011 0.556/0.013 0.796/0.017
BQMall 0.462/0.011 0.360/0.009 0.468/0.011 0.646/0.014 0.985/0.019

PartyScene 0.241/0.012 0.174/0.009 0.264/0.012 0.360/0.016 0.539/0.022
RaceHorses 0.274/0.014 0.189/0.011 0.299/0.015 0.417/0.018 0.707/0.026

D

BQSquare 0.443/0.004 0.357/0.002 0.564/0.004 0.613/0.004 1.264/0.011
BasketballPass 0.366/0.007 0.373/0.004 0.457/0.005 0.675/0.009 0.948/0.013

BlowingBubbles 0.329/0.007 0.253/0.005 0.338/0.007 0.506/0.010 0.804/0.014
RacesHorses 0.474/0.007 0.385/0.005 0.442/0.006 0.501/0.008 0.826/0.013

E
FourPeople 0.484/0.004 0.408/0.003 0.390/0.004 0.708/0.005 0.933/0.006

Johnny 0.256/0.003 0.129/0.002 0.099/0.002 0.291/0.003 0.480/0.004
KristenAndSara 0.358/0.003 0.293/0.003 0.155/0.003 0.521/0.004 0.756/0.005

Average 0.350/0.009 0.274/0.007 0.350/0.009 0.513/0.012 0.782/0.016

Table 3: Improvement (∆PSNR/∆SSIM) of our TSAN and previous DNN-based methods in video transcoding.

Components V1 V2 Proposed
Temporal Deformable Alignment X X X

Pyramidal Spatial Fusion × X X
Auxiliary Supervised Attention × × X

Table 4: Compositions of different proposed networks.

presented results are generated by the networks trained with
the transcoded dataset. As can be observed, with the help
of these methods, the averages of4PSNR are 0.274∼0.513
dB on the 18 test videos suffered from video encoding and
transcoding. It should be noted that these previous methods
have an essential effect on the video restoration of single en-
coding. However, when applied to transcoded video restora-
tion, their utilities are decreased. Comparing with these
previous methods for one-time compression scenarios, our
TSAN can improve the average 4PSNR by 0.269∼0.508
dB. We deem that this is due to the different application sce-
narios and well-designed network. In terms of SSIM, the
average gain of proposed TSAN is 0.016, which is about
0.004∼0.009 more than previous methods. The results ver-
ify that our proposal can generate a delightful perceptual
quality improvement in comparison to previous DNN-based
methods. The parameter of our method is 5.75M, while the
parameter of the previous method is 0.56∼3.84M. Despite
achieving higher quality performance, the efficiency of our
algorithm should be optimized.

Ablation Study
To validate the contribution of each component, a baseline
combining components gradually is presented in Table 4.
We develop three variants of TSAN: the first version (V1)
only consists of a temporal deformable alignment module;
the second version (V2) is extended by pyramidal spatial fu-
sion module; the final version (Proposed) includes not only
the proceeding parts and but also the auxiliary supervised

Sequences V1 V2 Proposed
Traffic 0.434/0.012 0.462/0.007 0.554/0.008

PeopleOnStreet 0.913/0.042 1.084/0.048 1.260/0.054
BasketballDrive 0.633/0.016 0.687/0.017 0.863/0.020

BQTerrace 0.415/0.008 0.474/0.009 0.545/0.010
Cactus 0.533/0.012 0.605/0.014 0.743/0.017

Kimono 0.468/0.014 0.528/0.015 0.632/0.017
ParkScene 0.329/0.011 0.356/0.013 0.447/0.015

BasketballDrill 0.566/0.013 0.607/0.014 0.796/0.017
BQMall 0.689/0.014 0.783/0.016 0.985/0.019

PartyScene 0.353/0.016 0.401/0.018 0.539/0.022
RaceHorses 0.537/0.021 0.551/0.023 0.707/0.026
BQSquare 0.732/0.005 1.023/0.009 1.264/0.011

BasketballPass 0.608/0.007 0.861/0.012 0.948/0.013
BlowingBubbles 0.531/0.010 0.634/0.012 0.804/0.014

RacesHorses 0.487/0.007 0.760/0.012 0.826/0.013
FourPeople 0.703/0.005 0.825/0.006 0.933/0.006

Johnny 0.352/0.003 0.520/0.004 0.480/0.004
KristenAndSara 0.589/0.004 0.747/0.005 0.756/0.005

Average 0.548/0.012 0.662/0.014 0.782/0.016

Table 5: Ablation study in terms of improvement
(∆PSNR/∆SSIM).

attention and global supervised reconstruction modules.
In practice, we listed the corresponding improvement in

terms of ∆PSNR and ∆SSIM in Table 5. As shown in it, the
performance gains of the three versions increase gradually
and steadily, and the highest performance is obtained by our
final version which is well-designed for transcoding videos.
Notably, the average PSNR gain of V1 is 0.548 dB, and
it outperforms those of the previous DNN-based methods
(0.274∼0.513 dB). Compared with previous methods men-
tioned above, the baseline of our proposal is more capable
of eliminating the artifacts under the circumstance that the
neighboring information is leveraged fully and more precise
motion alignment is performed. Since the pyramidal spatial
fusion scheme further explores the lossy contextual details,
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Figure 5: Subjective quality performance of our method and previous methods.

(α, β) (0, 1) (0.2, 0.8) (0.5, 0.5)
∆PSNR (dB) 0.586 0.757 0.703

Table 6: Comparison of different weight factors in TSAN
loss function, Class C.

it brings a 20.8% increment compared with V1. It is appar-
ent that the effectiveness of PSFM has been demonstrated.
Furthermore, we verify the significant advantages of intro-
ducing auxiliary supervised attention. As mentioned above
in Sec. , α and β are the weight factors that can control the
proportion of auxiliary supervised loss function and global
supervised loss function in the whole one. When α = 0 and
β = 1, the network removed ASAM, i.e., V2. From Table
6, we can observe that utilizing the initial encoded video
with high bitrate is conducive to learning more lossy infor-
mation and reduce annoying distortions. More specifically,
a 1:4 combination of the auxiliary supervised loss function
and global supervised one can achieve a higher result. Note
that the weight factors are not optimal, because we deem that
further optimization of the weight factors will bring limited
benefits, and we do not conduct too many experiments to
optimize it.

Subjective Performance
Fig. 5 shows the subjective quality performance of our
TSAN and previous method (Zhang et al. 2017; Yang et al.
2018a; Pan et al. 2020; Deng et al. 2020) for transcoding

restoration. Comparing the highlighted area of PeopleOn-
Street, we can find that the severely distorted zebra cross-
ing is restored and the artifacts of the shadow are removed
by our method. Likewise, the texture and graininess includ-
ing the basketball and basketball player’s face in sequence
BasketballDrive and the glasses frame and metal rod in se-
quence BQMall are restored to a great extent. According to
the favorable subjective quality performance, we can con-
clude that our method can acquire not only substantial ob-
jective achievements but also pleasuring perceptual results.

Conclusion
In this paper, we first explore the connection and difference
between one-time video encoding and transcoding. Then, we
demonstrate that these previous learning-based restoration
methods are not robust for video transcoding. Based on this,
we proposed a network paradigm that take advantage of ini-
tial encoding information as a forepart label to instruct the
network optimization. Specifically, we proposed a tempo-
ral spatial auxiliary network (TSAN) which including tem-
poral deformable alignment, pyramidal spatial fusion, and
auxiliary supervised attention mainly to improve transcoded
videos. This work is the first time dedicated to transcoded
video restoration and we believe that this work can arouse
broad interest in video restoration community.

Acknowledgements
This work was supported by Key Laboratory of MIIT for In-
telligent Products Testing and Reliability 2021 Key Labora-

2881



tory Open Project Fund (No. CEPREI2022-01). The authors
would like to thank constructive and valuable suggestions
for this paper from the experienced reviewers and editors.

References
Bossen, F.; et al. 2013. Common test conditions and soft-
ware reference configurations. JCTVC-L1100, 12(7).
Chan, K. C.; Wang, X.; Yu, K.; Dong, C.; and Loy, C. C.
2021. Understanding Deformable Alignment in Video
Super-Resolution. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, 973–981.
Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; and
Yuille, A. L. 2017a. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully
connected crfs. IEEE transactions on pattern analysis and
machine intelligence, 40(4): 834–848.
Chen, L.-C.; Papandreou, G.; Schroff, F.; and Adam, H.
2017b. Rethinking atrous convolution for semantic image
segmentation. arXiv preprint arXiv:1706.05587.
Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; and
Wei, Y. 2017. Deformable convolutional networks. In Pro-
ceedings of the IEEE international conference on computer
vision, 764–773.
Dai, Y.; Liu, D.; and Wu, F. 2017. A convolutional neural
network approach for post-processing in HEVC intra cod-
ing. In International Conference on Multimedia Modeling,
28–39. Springer.
Deng, J.; Wang, L.; Pu, S.; and Zhuo, C. 2020. Spatio-
temporal deformable convolution for compressed video
quality enhancement. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 34, 10696–10703.
Ding, D.; Kong, L.; Chen, G.; Liu, Z.; and Fang, Y. 2019. A
Switchable Deep Learning Approach for In-loop Filtering in
Video Coding. IEEE Transactions on Circuits and Systems
for Video Technology.
Dong, C.; Deng, Y.; Change Loy, C.; and Tang, X. 2015.
Compression artifacts reduction by a deep convolutional net-
work. In Proceedings of the IEEE International Conference
on Computer Vision, 576–584.
Guan, Z.; Xing, Q.; Xu, M.; Yang, R.; Liu, T.; and Wang, Z.
2019. MFQE 2.0: A new approach for multi-frame quality
enhancement on compressed video. IEEE Transactions on
Pattern Analysis and Machine Intelligence.
Guo, Q.; Sun, J.; Juefei-Xu, F.; Ma, L.; Xie, X.; Feng, W.;
Liu, Y.; and Zhao, J. 2021. EfficientDeRain: Learning Pixel-
wise Dilation Filtering for High-Efficiency Single-Image
Deraining. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 35, 1487–1495.
He, G.; Xu, L.; Lei, J.; Xie, W.; Li, Y.; Fan, Y.; and Zhou,
J. 2021. Interlayer Restoration Deep Neural Network for
Scalable High Efficiency Video Coding. IEEE Transactions
on Circuits and Systems for Video Technology.
He, X.; Hu, Q.; Zhang, X.; Zhang, C.; Lin, W.; and Han, X.
2018. Enhancing HEVC compressed videos with a partition-
masked convolutional neural network. In 2018 25th IEEE
International Conference on Image Processing (ICIP), 216–
220. IEEE.

Liu, D.; Li, Y.; Lin, J.; Li, H.; and Wu, F. 2020. Deep
learning-based video coding: A review and a case study.
ACM Computing Surveys (CSUR), 53(1): 1–35.
Pan, Z.; Yi, X.; Zhang, Y.; Jeon, B.; and Kwong, S. 2020.
Efficient In-Loop Filtering Based on Enhanced Deep Con-
volutional Neural Networks for HEVC. IEEE Transactions
on Image Processing, 29: 5352–5366.
Ranjan, A.; and Black, M. J. 2017. Optical flow estima-
tion using a spatial pyramid network. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 4161–4170.
Rec, I. 1994. H. 262 and ISO/IEC 13818-2 (MPEG-2
Video), Generic Coding of Moving Pictures and Associated
Audio Information Part 2: Video. ed: ITU, ISO Std., Rev.
Recommendation, H. 1998. 263: Video coding for low bit
rate communication. ITU-T, February.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-net: Con-
volutional networks for biomedical image segmentation. In
International Conference on Medical image computing and
computer-assisted intervention, 234–241. Springer.
Sullivan, G. J.; Ohm, J.-R.; Han, W.-J.; and Wiegand, T.
2012. Overview of the high efficiency video coding (HEVC)
standard. IEEE Transactions on circuits and systems for
video technology, 22(12): 1649–1668.
Telecom, I.; et al. 2003. Advanced video coding for generic
audiovisual services. ITU-T Recommendation H. 264.
Tian, Y.; Zhang, Y.; Fu, Y.; and Xu, C. 2018. Tdan:
Temporally deformable alignment network for video super-
resolution. arXiv preprint arXiv:1812.02898.
VQEG. https://www.its.bldrdoc.gov/vqeg/video-datasets-
and-organizations.aspx. Accessed: July 21, 2021.
Wang, X.; Chan, K. C.; Yu, K.; Dong, C.; and Change Loy,
C. 2019. Edvr: Video restoration with enhanced deformable
convolutional networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops, 0–0.
x265 Developers. https://www.x265.org. Accessed: July 24,
2021.
Xiph.org. https://media.xiph.org/video/derf/. Accessed: July
21, 2021.
Xue, T.; Chen, B.; Wu, J.; Wei, D.; and Freeman, W. T. 2019.
Video enhancement with task-oriented flow. International
Journal of Computer Vision, 127(8): 1106–1125.
Yang, R.; Xu, M.; Liu, T.; Wang, Z.; and Guan, Z. 2018a.
Enhancing quality for HEVC compressed videos. IEEE
Transactions on Circuits and Systems for Video Technology,
29(7): 2039–2054.
Yang, R.; Xu, M.; Wang, Z.; and Li, T. 2018b. Multi-frame
quality enhancement for compressed video. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 6664–6673.
Yu, F.; and Koltun, V. 2015. Multi-scale context aggregation
by dilated convolutions. arXiv preprint arXiv:1511.07122.
Yu, F.; Koltun, V.; and Funkhouser, T. 2017. Dilated residual
networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 472–480.

2882



Yu, J.; Lin, Z.; Yang, J.; Shen, X.; Lu, X.; and Huang, T. S.
2018. Generative image inpainting with contextual atten-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 5505–5514.
Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; and Zhang, L.
2017. Beyond a gaussian denoiser: Residual learning of
deep cnn for image denoising. IEEE Transactions on Im-
age Processing, 26(7): 3142–3155.

2883


