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Abstract

Advances in LiDAR sensors provide rich 3D data that sup-
ports 3D scene understanding. However, due to occlusion and
signal miss, LiDAR point clouds are in practice 2.5D as they
cover only partial underlying shapes, which poses a funda-
mental challenge to 3D perception. To tackle the challenge,
we present a novel LiDAR-based 3D object detection model,
dubbed Behind the Curtain Detector (BtcDet), which learns
the object shape priors and estimates the complete object
shapes that are partially occluded (curtained) in point clouds.
BtcDet first identifies the regions that are affected by occlu-
sion and signal miss. In these regions, our model predicts the
probability of occupancy that indicates if a region contains
object shapes. Integrated with this probability map, BtcDet
can generate high-quality 3D proposals. Finally, the proba-
bility of occupancy is also integrated into a proposal refine-
ment module to generate the final bounding boxes. Exten-
sive experiments on the KITTI Dataset and the Waymo Open
Dataset demonstrate the effectiveness of BtcDet. Particularly,
for the 3D detection of both cars and cyclists on the KITTI
benchmark, BtcDet surpasses all of the published state-of-
the-art methods by remarkable margins. Code is released.

Introduction

With high-fidelity, the point clouds acquired by LiDAR sen-
sors significantly improved autonomous agents’s ability to
understand 3D scenes. LIDAR-based models achieved state-
of-the-art performance on 3D object classification (Xu et al.
2020), visual odometry (Pan et al. 2021), and 3D object de-
tection (Shi et al. 2020). Despite being widely used in these
3D applications, LiDAR frames are technically 2.5D. After
hitting the first object, a laser beam will return and leave the
shapes behind the occluder missing from the point cloud.

To locate a severely occluded object (e.g., the car in Fig-
ure 1(b)), a detector has to recognize the underlying object
shapes even when most of its parts are missing. Since shape
miss inevitably affects object perception, it is important to
answer two questions:

o What are the causes of shape miss in point clouds?

o What is the impact of shape miss on 3D object detection?

Copyright (©) 2022, Association for the Advancement of Artificial
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Causes of Shape Miss

To answer the first question, we study the objects in KITTI
(Geiger et al. 2013) and discover three causes of shape miss.
External-occlusion. As visualized in Figure 1(c), occluders
block the laser beams from reaching the red frustums be-
hind them. In this situation, the external-occlusion is formed,
which causes the shape miss located at the red voxels.

Signal miss. As Figure 1(c) illustrates, certain materials and
reflection angles prevent laser beams from returning to the
sensor after hitting some regions of the car (blue voxels).
After projected to range view, the affected blue frustums in
Figure 1(c) appear as the empty pixels in Figure 1(a).
Self-occlusion. LiDAR data is 2.5D by nature. As shown in
Figure 1(d), for a same object, its parts on the far side (the
green voxels) are occluded by the parts on the near side. The
shape miss resulting from self-occlusion inevitably happens
to every object in LiDAR scans.

Impact of Shape Miss

To analyze the impact of shape miss on 3D object detec-
tion, we evaluate the car detection results of the scenarios
where we recover certain types of shape miss on each object
by borrowing points from similar objects (see the details of
finding similar objects and filling points in Sec. 3.1).

In each scenario, after resolving certain shape miss in both
the train and val split of KITTT (Geiger et al. 2013), we train
and evaluate a popular detector PV-RCNN (Shi et al. 2020).
The four scenarios are:

e NR: Using the original data without shape miss recovery.

e EO: Recovering the shape miss caused by external-
occlusion (adding the red points in Figure 2(a)).

e EO+SM: Recovering the shape miss caused by external-
occlusion and signal miss (adding the red and blue points
in Figure 2(a)).

e EO+SM+S0: Recovering all the shape miss (adding the
red, blue and green points in Figure 2(a)).

We report detection results on cars with three occlusion lev-
els (level labels are provided by the dataset). As shown in
Figure 2(b), without recovery (NR), it is more difficult to de-
tect objects with higher occlusion levels. Recovering shapes
miss will reduce the performance gaps between objects with
different levels of occlusion . If all shape miss are resolved



(a) LIDAR Range View with the

Regions of Signal Miss (blue)

(b) LIDAR Scan 3D View witha
Ground Truth Bounding Box
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(c) External-occlusion (red)
and Signal Miss (blue)

(e) Expected Shape Occupancy
(orange) and a BBox Prediction.

Figure 1: In a LiDAR scan (a) and (b), locating an object is difficult when its shape is largely missing. We discover three causes
of shape miss: external-occlusion (red regions in (c)), signal miss (blue regions in (c)), and self-occlusion (green regions in (d)).
BtcDet learns the occupancy probability of complete object shapes (e) and achieves the state-of-the-art detection performance.
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(a) The points to recover different shape miss regions.
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(b) The 3D Average Precisions with shape miss recovery.

Figure 2: The impact of the three types of shape miss. (b) shows PV-RCNN’s (Shi et al. 2020) car 3D detection APs with
different occlusion levels on the KITTI (Geiger et al. 2013) val split. NR means no shape miss recovery. EO, SM, and SO
indicate adding car points in the regions of external-occlusion, signal miss and self-occlusion, respectively, as visualized in (a).

(EO+SM+S0), the performance gaps are eliminated and al-
most all objects can be effectively detected (APs > 99%).

The Proposed Method

The above experiment manually resolves the shape miss
by filling points into the labeled bounding boxes and sig-
nificantly improve the detection results. However, during
test time, how do we resolve shape miss without knowing
bounding box labels?

In this paper, we propose Behind the Curtain Detector
(BtcDet). To the best of our knowledge, BtcDet is the first
3D object detector that targets the object shapes affected by
occlusion. With the knowledge of shape priors, BtcDet esti-
mates the probability of shape occupancy, the region occu-
pancy of complete objects as if there is no occlusion and sig-
nal miss. After being integrated into the detection pipeline,
the occupancy estimation benefits both region proposal gen-
eration and proposal refinement. Eventually, BtcDet sur-
passes all of the state-of-the-art methods published to date
by remarkable margins.
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Related Work

LiDAR-based 3D object detectors. Voxel-based meth-
ods divide point clouds by voxel grids to extract fea-
tures (Zhou and Tuzel 2018). Some of them also use
sparse convolution to improve model efficiency, e.g., SEC-
OND(Yan et al. 2018). Point-based methods such as PointR-
CNN (Shi et al. 2019) generate proposals directly from
points. STD (Yang et al. 2019) applies sparse to dense re-
finement and VoteNet (Qi et al. 2019a) votes the proposal
centers from point clusters. These models are supervised on
the ground truth bounding boxes without explicit considera-
tion for the object shapes.

Learning shapes for 3D object detection. Bounding box
prediction requires models to understand object shapes.
Some detectors learn the shape related statistics as an aux-
iliary task. PartA? (Shi et al. 2020) learns object part loca-
tions. SA-SSD and AssociateDet (He et al. 2020; Du et al.
2020) use auxiliary networks to preserve structural informa-
tion. Studies (Li et al. 2021; Yan et al. 2020; Najibi et al.
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Figure 3: The detection pipeline. BtcDet first identifies the regions of occlusion and signal miss Roc U RsaqIn these regions,
BtcDet estimates the shape occupancy probability P(Os) (the orangex voxels have P(Og) > 0.3). When the backbone network
U extracts detection features from the point cloud, P(Ogs) is concatenated with ¥’s intermediate feature maps. Then, a RPN
network takes the output and generates 3D proposals. For each proposal (e.g., the green box), BtcDet pools the local geometric
features fye, to the nearby grids and finally generate the final bounding box prediction (the red box) and the confidence score.

2020; Xu et al. 2021) such as SPG conduct point cloud com-
pletion to improve object detection. These models are shape-
aware but overlook the impact of occlusion.

Occlusion handling in computer vision. The negative im-
pact of occlusion on various computer vision tasks, includ-
ing tracking (Liu et al. 2018), image-based pedestrian detec-
tion (Zhang et al. 2018), image-based car detection (Reddy
et al. 2019) and semantic part detection (Saleh et al. 2021),
is acknowledged. Efforts addressing occlusion include the
amodal instance segmentation (Follmann et al. 2019), the
Multi-Level Coding that predicts the presence of occlusion
(Qi et al. 2019b). These studies, although focus on 2D im-
ages, demonstrate the benefits of modeling occlusion to
solving visual tasks. Point cloud visibility is addressed in
(Hu et al. 2020) and is used in multi-frame detection and
data augmentation. This method, however, does not learn
and explore the visibility’s influence on object shapes. Our
proposed BtcDet is the first 3D object detector that learns
occluded shapes in point cloud data. We compare (Hu et al.
2020)’s approach with ours in Sec. .

Behind the Curtain Detector

Let © denote the parameters of a detector, {p1, p2, ..., PN }
denote the LiDAR point cloud, X', D, S, S, denote the es-
timated box center, the box dimension, the observed objects
shapes and the occluded object shapes, respectively. Most
LiDAR-based 3D object detectors (Yi et al. 2020; Chen et al.
2020; Shi and Rajkumar 2020) only supervise the bounding
box prediction. These models have

pN}EO), (D

while structure-aware models (Shi et al. 2020; He et al.
2020; Du et al. 2020) also supervise S,;’s statistics so that

7pN}a 6) (2)

None of the above studies explicitly model the complete
object shapes S = S, U Sy, while the experiments in Sec.
show the improvements if S is obtained. BtcDet estimates S

OMLE = argglaxP(X,D | {p1,p2, .-

ONMLE = arg(gnaxP(X,D,Sob | {p1,p2, .-
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by predicting the shape occupancy Og for regions of inter-
est. After that, BtcDet conducts object detection conditioned
on the estimated probability of occupancy P(QOs). The op-
timization objectives can be described as follows:

apN};RSM,R(’)Cvg)v
apN}aP(OS)7@)

3)
4)

argglax P(Os | {p1.p2, -

argmax P(X, D | {p1,p2, ...
©

Model overview. As illustrated in Figure 3, BtcDet first
identifies the regions of occlusion Rpc and signal miss
Rsa. and then, let a shape occupancy network (2 estimate
the probability of object shape occupancy P(Ogs). The train-
ing process is described in Sec. .

Next, BtcDet extracts the point cloud 3D features by a
backbone network W. The features are sent to a Region Pro-
posal Network (RPN) to generate 3D proposals. To leverage
the occupancy estimation, the sparse tensor P(Og) is con-
catenated with the feature maps of . (See Sec. .)

Finally, BtcDet applies the proposal refinement. The lo-
cal geometric features f,., are composed of P(Ogs) and
the multi-scale features from W. For each region proposal,
we construct local grids covering the proposal box. BtcDet
pools the local geometric features fg., onto the local grids,
aggregates the grid features, and generates the final bound-
ing box predictions. (See Sec. .)

Learning Shapes in Occlusion

Approximate the complete object shapes for ground
truth labels. Occlusion and preclude the knowledge of the
complete object shapes S. However, we can assemble the ap-
proximated complete shapes S, based on two assumptions:

e Most foreground objects resemble a limited number of
shape prototypes, e.g., pedestrians share a few body types.

e Foreground objects, especially vehicles and cyclists, are
roughly symmetric.

We use the labeled bounding boxes to query points belong-
ing to the objects. For cars and cyclists, we mirror the object
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Figure 4: Learning Occluded Shapes. (a) The regions of occlusion or signal miss Rpoc U Rsa can be identified after the
spherical voxelization for the point cloud. (b) To label the occupancy Oz (1 or 0), We place the approximated complete object
shapes S (red points) in the corresponding boxes. (c) A shape occupancy network €2 predicts the shape occupancy probability
P(Ogs) for voxels in Roc U Rsa » supervised by Os. (d) Voxels are colored orange if it has a prediction P(Os) > 0.3.

points against the middle section plane of the bounding box.

A heuristic H (A, B) is created to evaluate if a source ob-
ject B covers most parts of a target object A and provides
points that can fill A’s shape miss. To approximate A’s com-
plete shape, we select the top 3 source objects By, Bo, B3
with the best scores. The final approximation S consists of
A’s original points and the points of By, By, B3 that fill A’s
shape miss. The target objects are object in the current train-
ing frame, while the source objects come from other frames
of the training set. Please find details of H (A, B) in Ap-
pendix B and visualization of assembling S in Appendix G.

Approximated

Target Object
Complete Shape

Source Object ——> Mirrored

> Top match <«

Figure 5: Assemble the approximated complete shape S for
an object (blue) by using points from top match objects.

Identify R o U Rsq in the spherical coordinate system.
According to our analysis in Sec. , “shape miss” only ex-
ists in the occluded regions R ¢ and the regions with signal
miss Rsaq (see Figure 1(c) and (d)). Therefore, we need to
identify Roc U Rsa before learning to estimate shapes.
In real-world scenarios, there exists at most one point in
the tetrahedron frustum of a range image pixel. When the
laser is stopped at a point, the entire frustum behind the point
is occluded. We propose to voxelize the point cloud using
an evenly spaced spherical grid so that the occluded regions
can be accurately formed by the spherical voxels behind any
LiDAR point. As shown in Figure 4(a), each point (x,y, 2)
is transformed to the spherical coordinate system as (r, ¢, 0):

r=+ (22 +y%+22), ¢=arctan2(y,z), (5)
0 = arctan2(z,\/x2? + y?).

Roc includes nonempty spherical voxels and the empty
voxels behind these voxels. In Figure 1(a), the dashed lines
mark the potential areas of signal miss. In range view, we
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can find pixels on the borders between the areas having Li-
DAR signals and the areas of no signal. Rsaq is formed by
the spherical voxels that project to these pixels.

Create training targets. In Roc U Rsaq , we predict the
probability P(Ogs) for voxels if they contain points of S. As
illustrated in 4(b), S are placed at the locations of the cor-
responding objects. We set O5 = 1 for the spherical voxels

that contain S, and Oz = 0 for the others. Oz is used as
the ground truth label to approximate the occupancy Og of
the complete object shape. Estimating occupancy has two
advantages over generating points:

e S is assembled by multiple objects. The shape details ap-
proximated by the borrowed points are inaccurate and the
point density of different objects is inconsistent. The oc-
cupancy O avoids these issues after rasterization.

e The plausibility issue of point generation can be avoided.

Estimate the shape occupancy. In R oc UR s ¢, We encode
each nonempty spherical voxel with the average properties
of the points inside (X,y,z,feats), then, send them to a shape
occupancy network (2. The network consists of two down-
sampling sparse-conv layers and two up-sampling inverse-
convolution layers. Each layer also includes several sub-
manifold sparse-convs (Graham and van der Maaten 2017)
(see Appendix D). The spherical sparse 3D convolutions are
similar to the ones in the Cartesian coordinate, except that
the voxels are indexed along (r, ¢, 8). The output P(Os)
is supervised by the sigmoid cross-entropy Focal Loss (Lin
et al. 2017):

Lfocat(Pv) = —(1 = py)log(py), (6)
P(Os) if O= =1 at voxel v
h v p— S ]
e {1 —P(Os) otherwise,
‘Csha .= ZUE'ROCURSM Wy - ﬁfocal(pv) (7)
’ [Roc URsl )

where w, = 0 ifve r.eglons of shape miss

1 otherwise.

Since S borrows points from other objects in the shape miss
regions, we assign them a weighting factor §, where § < 1.



Shape Occupancy Probability Integration

Trained with the customized supervision, €2 learns the shape
priors of partially observed objects and generates P(Ogs).
To benefit detection, P(Ogs) is transformed from the spher-
ical coordinate to the Cartesian coordinate and fused with
W, a sparse 3D convolutional network that extracts detection
features in the Cartesian coordinate..

For example, a spherical voxel has a center (r, ¢, §) which
is transformed as x = rcosfcos¢, y = rcosfsing, z =
rsinf. Assume z,y,z is inside a Cartesian voxel v*7-F.
Since several spherical voxels can be mapped to v®7%, y#3:F
takes the max value of these voxels SV (v"7F):

P(Os)yise = maz({P(Os)sy : sv € SV (0HF)}). (8)
The occupancy probability of these Cartesian voxels forms
a sparse tensor map P(Os)1 = {P(Os),}, which is, then,
down-sampled by max-poolings into multiple scales and
concatenated with U’s intermediate feature maps:

maxpoolxlgl(’P(OS)J_)}, 9)
where fi, fo** and mazxpool /5 *(-) denote the input fea-
tures of U’s ¢th layer, the output features of U’s ¢ — 1th layer,
and applying stride-2 maxpooling 7 — 1 times, respectively.

The Region Proposal Network (RPN) takes the output fea-
tures of U and generates 3D proposals. Each proposal in-
cludes (zp, Yp, 2p); (Lp, Wp, hp), 0p, Dp, namely, center loca-
tion, proposal box size, heading and proposal confidence.

out
W12

5|

Occlusion-Aware Proposal Refinement

Local geometry features. BtcDet’s refinement module fur-
ther exploits the benefit of the shape occupancy. To obtain
accurate final bounding boxes, BtcDet needs to look at the
local geometries around the proposals. Therefore, we con-
struct a local feature map fye, by fusing multiple levels of
U’s features. In addition, we also fuse P(Og) 1 into fgeo
to bring awareness to the shape miss in the local regions.
P(Os) 1 provides two benefits for proposal refinement:

e P(Og), only has values in Roc U Rsa so that it can
help the box regression avoid the regions outside Rpc U
Rsm, e.g., the regions with cross marks in Figure 3.

e The estimated occupancy indicates the existence of unob-
served object shapes, especially for empty regions with
high P(Os) , e.g., some orange regions in Figure 3.

fgeo is a sparse 3D tensor map with spatial resolution of

400 x 352 x 5. The process for producing fge, is described

in Appendix D.

Rol pooling. On each proposal, we construct local grids
which have the same heading of the proposal. To expand
the receptive field, we set a size factor u so that:

Wgyrid = K Wp, lgrid = M- lpa hgrid = - hp- (10)
The grid has a dimension of 12 x 4 x 2. We pool the
nearby features fg., onto the nearby grids through trilinear-
interpolation (see Figure 3) and aggregates them by sparse
3D convolutions. After that, the refinement module predicts
an IoU-related class confidence score and the residues be-

tween the 3D proposal boxes and the ground truth bounding
boxes, following (Yan et al. 2018; Shi et al. 2020).
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Total Loss

The RPN loss L,,, and the proposal refinement loss Ly,
follow the most popular design among detectors (Shi et al.
2020; Yan et al. 2018). The total loss is:

(1)

More details of the losses and the network architectures can
be found in Appendix C and D.

Etotal = 0-3£shape + Erpn + Epr-

Experiments

In this section, we describe the implementation details of
BtcDet and compare BtcDet with state-of-the-art detectors
on two datasets: the KITTI Dataset (Geiger et al. 2013) and
the Waymo Open Dataset (Sun et al. 2019). We also con-
duct ablation studies to demonstrate the effectiveness of the
shape occupancy and the feature integration strategies. More
detection results can be found in the Appendix F. The quan-
titative and qualitative evaluations of the occupancy estima-
tion can be found in the Appendix E and H.

Datasets. The KITTI Dataset includes 7481 LiDAR frames
for training and 7518 LiDAR frames for testing. We fol-
low (Chen et al. 2017) to divide the training data into a
train split of 3712 frames and a val split of 3769 frames.
The Waymo Open Dataset (WOD) consists of 798 segments
of 158361 LiDAR frames for training and 202 segments
of 40077 LiDAR frames for validation. The KITTI Dataset
only provides LiDAR point clouds in 3D, while the WOD
also provides LiDAR range images.

Implementation and training details. BtcDet transforms
the point locations (x,y,2) to (r,¢,0) for the KITTI
Dataset, while directly extracting (7, ¢, 6) from the range
images for the WOD. On the KITTI Dataset, we use a
spherical voxel size of (0.32m,0.52°,0.42°) within the
range [2.24m,70.72m] for r, [—40.69°,40.69°] for ¢
and [—16.60°,4.00°] for . On the WOD, we use a
spherical voxel size of (0.32m,0.81°,0.31°) within the
range [2.94m,74.00m] for r, [—180°,180°] for ¢ and
[—33.80°,6.00°] for 6. Determined by grid search, we set
v =2in Eq.6,§ = 0.2 in Eq.7 and x = 1.05 in Eq.10.

In all of our experiments, we train our models with a
batch size of 8 on 4 GTX 1080 Ti GPUs. On the KITTI
Dataset, we train BtcDet for 40 epochs, while on the WOD,
we train BtcDet for 30 epochs. The BtcDet is end-to-end
optimized by the ADAM optimizer (Kingma and Ba 2014)
from scratch. We applies the widely adopted data augmen-
tations (Shi et al. 2020; Deng et al. 2020; Lang et al. 2019;
Yang et al. 2020; Ye et al. 2020), which includes flipping,
scaling, rotation and the ground-truth augmentation.

Evaluation on the KITTI Dataset

We evaluate BtcDet on the KITTI val split after training it
on the train split. To evaluate the model on the KITTI test
set, we train BtcDet on 80% of all train+val data and hold
out the remaining 20% data for validation. Following the
protocol in (Geiger et al. 2013), results are evaluated by the
Average Precision (AP) with an IoU threshold of 0.7 for cars
and 0.5 for pedestrians and cyclists.



Method Car 3D APR40 Ped. 3D APR40 CyC. 3D APR40 3D APRH
Easy Mod. Hard | Easy Mod. Hard | Easy Mod. Hard | Car Mod.
PointPillars (Lang et al. 2019) 87.75 7839 7518 | 5730 5141 46.87 | 81.57 6294 58098 77.28
SECOND (Yan et al. 2018) 90.97 7994 77.09 | 58.01 51.88 47.05 | 7850 56.74 52.83 76.48
SA-SSD (He et al. 2020) 9223 8430 81.36 - - - - - - 79.91
PV-RCNN (Shi et al. 2020) 92.57 84.83 82.69 | 6426 56.67 5191 | 88.88 7195 66.78 83.90
Voxel R-CNN (Deng et al. 2020) | 92.38 85.29 82.86 - - - - - - 84.52
BtcDet (Ours) 93.15 86.28 83.86 | 69.39 61.19 5586 | 9145 74.70 70.08 86.57

Table 1: Comparison on the KITTI val set, evaluated by the 3D Average Precision (AP) under 40 recall thresholds (R40). The
3D APs on under 11 recall thresholds are also reported for the moderate car objects.

. Car 3D APgryo Cyc. 3D APRyo
Method Reference Modality Easy Mod. Hard mAP | Easy Mod. Hard mAP
EPNet (Huang et al. 2020) ECCV 2020 LiDAR+RGB | 89.81 79.28 74.59 81.23 - - - -
3D-CVF (Yoo et al. 2020) ECCV 2020 LiDAR+RGB | 89.20 80.05 73.11 80.79 - - - -
PointPillars (Lang et al. 2019) CVPR 2019 LiDAR 82.58 7431 6899 7529 | 77.10 58.65 51.92 62.56
STD (Yang et al. 2019) ICCV 2019 LiDAR 8795 79.71 75.09 80.92 | 78.69 61.59 5530 65.19
HotSpotNet (Chen et al. 2020) ECCV 2020 LiDAR 87.60 7831 7334 79.75 | 8259 6595 59.00 69.18
PartA? (Shi et al. 2020) TPAMI 2020 LiDAR 87.81 7849 7351 7994 | 79.17 6352 5693 66.54
3DSSD (Yang et al. 2020) CVPR 2020 LiDAR 88.36  79.57 7455 80.83 | 82.48 64.10 5690 67.83
SA-SSD (He et al. 2020) CVPR 2020 LiDAR 88.75 79.79 7416 80.90 - - - -
Asso-3Ddet (Du et al. 2020) CVPR 2020 LiDAR 8599 77.40 7053 77.97 - - - -
PV-RCNN (Shi et al. 2020) CVPR 2020 LiDAR 90.25 8143 76.82 82.83 | 78.60 63.71 57.65 66.65
Voxel R-CNN (Deng et al. 2020) | AAAI 2021 LiDAR 90.90 81.62 77.06 83.19 - - - -
CIA-SSD (Zheng et al. 2021) AAAI 2021 LiDAR 89.59 80.28 72.87 80.91 - - - -
TANet (Liu et al. 2020) AAAI 2021 LiDAR 83.81 7538 67.66 7562 | 73.84 59.86 5346 62.39
BtcDet (Ours) - LiDAR 90.64 82.86 78.09 83.80 | 82.81 68.68 61.81 71.10
Improvement - - -0.26 +1.24 +0.94 +0.67 | +0.33 +2.73 +2.81 +1.92

Table 2: Comparison on the KITTI zest set, evaluated by the 3D Average Precision (AP) of 40 recall thresholds (R40) on the
KITTI server. BtcDet surpasses all the leader board front runners that are associated with publications released before our
submission. The mAPs are averaged over the APs of easy, moderate, and hard objects. Please find more results in Appendix F.

KITTI validation set. As summarized in Table 1, we com-
pare BtcDet with the state-of-the-art LiDAR-based 3D ob-
ject detectors on cars, pedestrians and cyclists using the AP
under 40 recall thresholds (R40). We reference the R40 APs
of SA-SSD, PV-RCNN and Voxel R-CNN to their papers,
the R40 APs of SECOND to (Pang et al. 2020) and the
R40 APs of PointRCNN and PointPillars to the results of
the officially released code. We also report the published
3D APs under 11 recall thresholds (R11) for the moder-
ate car objects. On all object classes and difficulty lev-
els, BtcDet outperforms models that only supervise bound-
ing boxes (Eq.1) as well as structure-aware models (Eq.2).
Specifically, BtcDet outperforms other models by 2.05% 3D
R11 AP on the moderate car objects, which makes it the first
detector that reaches above 86% on this primary metric.

KITTI test set. As shown in Table 2, we compare BtcDet
with the front runners on the KITTI test leader board. Be-
sides the official metrics, we also report the mAPs that av-
erage over the APs of easy, moderate, and hard objects. As
of May. 4th, 2021, compared with all the models associated
with publications, BtcDet surpasses them on car and cyclist
detection by big margins. Those methods include the mod-
els that take inputs of both LIDAR and RGB images and the
ones taking LiDAR input only. We also list more compar-
isons and the results in Appendix F.
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Evaluation on the Waymo Open Dataset

We also compare BtcDet with other models on the Waymo
Open Dataset (WOD). We report both 3D mean Aver-
age Precision (mAP) and 3D mAP weighted by Heading
(mAPH) for vehicle detection. The official metrics also
include separate mAPs for objects belonging to different
distance ranges. Two difficulty levels are also introduced,
where the LEVEL_1 mAP calculates for objects that have
more than 5 points and the LEVEL_2 mAP calculates for
objects that have more than 1 point.

As shown in Table 3, BtcDet outperforms these state-of-
the-art detectors on all distance ranges and all difficulty lev-
els by big margins. BtcDet outperforms other detectors on
the LEVEL_1 3D mAP by 2.99% and the LEVEL 2 3D
mAP by 3.51%. In general, BtcDet brings more improve-
ment on the LEVEL_2 objects, since objects with fewer
points usually suffer more from occlusion and signal miss.
These strong results on WOD, one of the largest published
LiDAR datasets, manifest BtcDet’s ability to generalize.

Ablation Studies

We conduct ablation studies to demonstrate the effectiveness
of the shape occupancy and the feature integration strategies.
All model variants are trained on the KITTI train split and
evaluated on the val split.



LEVEL_1 3D mAP mAPH LEVEL_2 3D mAP mAPH
Method Overall 0-30m 30-50m 50m-Inf Overall | Overall 0-30m 30-50m 50m-Inf Overall
PointPillar (Lang et al. 2019) 56.62  81.01 51.75 27.94 - - - - - -
MVF (Zhou et al. 2020) 6293 86.30 60.02 36.02 - - - - - -
SECOND (Yan et al. 2018) 72.27 - - - 71.69 63.85 - - - 63.33
Pillar-OD (Wang et al. 2020) 69.80 88.53  66.50 42.93 - - - - - -
AFDet (Ge et al. 2020) 63.69 87.38 62.19 29.27 - - - - - -
PV-RCNN (Shi et al. 2020) 70.30  91.92 69.21 42.17 69.69 65.36 91.58 65.13 36.46 64.79
Voxel R-CNN (Deng et al. 2020) | 75.59 9249  74.09 53.15 - 66.59 91.74 67.89 40.80 -
BtcDet (ours) 78.58 96.11 77.64 54.45 78.06 70.10 95.99  70.56 43.87 69.61

Table 3: Comparison for vehicle detection on the Waymo Open Dataset validation set.
Model Learned Integrated 3D APri1 Model Integrate  Integrate Proposal bbox Final 3D
Variant Features Features Car Mod. Variant Layersof ¥ fgeo 3D APri1 APru
BtcDet; (base) — — 83.71 BtcDet; (base) — — 77.75 83.71
BtcDeto - Roc U Rsm 84.01 BtcDets — v 77.73 84.50
BicDets P(Os) 1 P(Os) 1 86.03 BtcDetg 1.2 - 78.97 85.72
BtcDety P(Os)e 1(P(Os)1 > 0.5) 85.59 BtcDetr 1 v 78.54 85.73
BtcDet (main) P(Os)o P(Os)L 86.57 BtcDetg 1,2,3 v 78.76 86.11
BtcDet (main) 1,2 v 78.93 86.57

Table 4: Ablation studies on the learned features (Sec. ) and
the features fused into ¥ and fye, (Sec. ). BtcDet; directly
use a binary map that labels Rpoc URsar. @ and L indicate
the spherical and the Cartesian coordinate. The “1” operator
converts float values to binary codes with a threshold of 0.5.

All variants share the same architecture.

Shape Features. As shown in Table 4, we conduct ablation
studies by controlling the shape features learned by €2 and
the features used in the integration. All the model variants
share the same architecture and integration strategies.
Similarly to (Hu et al. 2020), BtcDet, directly fuses the
binary map of. Roc U Rsa into the detection pipeline. Al-
though the binary map provides the information of occlu-
sion, the improvement is limited since that the regions with
code 1 are mostly background regions and less informative.
BtcDet; learns P(Og) | directly. The network €2 predicts
probability for Cartesian voxels. One Cartesian voxel will
cover multiple spherical voxels when being close to the sen-
sor, and will cover a small portion of a spherical voxel when
being located at a remote distance. Therefore, the occlusion
regions are misrepresented in the Cartesian coordinate.
BtcDet, convert the probability to hard occupancy, which
cannot inform the downstream branch if a region is less
likely or more likely to contain object shapes.
These experiments demonstrate the effectiveness of our
choices for shape features, which help the main model im-
prove 2.86 AP over the baseline BtcDet; .

Integration strategies. We conduct ablation studies by
choosing different layers of ¥ to concatenate with P(Og) |
and whether to use P(Os), to form fye,. The former
mostly affects the proposal generation, while the latter af-
fects proposal refinement.

In Table 5, the experiment on BtcDets shows that we can
improve the final prediction AP by 0.8 if we only integrate
P(Os) . for proposal refinement. On the other hand, the ex-
periment on BtcDetg shows the integration with ¥ alone can
improve the AP by 1.2 for proposal box and final bounding
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Table 5: Ablation studies on which layers of ¥ are fused
with P(Os)1 (Eq. 9) and whether to fuse P(Ogs) into
fgeo- We evaluate on the KITTI’s moderate car objects and
show the 3D APy of the proposal and final bounding box.

box prediction AP by 2.0 over the baseline.

The comparisons of BtcDet;, BtcDetg and BtcDet (main)
demonstrates integrating P(Og) with U’s first two layers
is the best choice. Since P(Os) is a low level feature while
the third layer of ¥ would contain high level features, we ob-
serve a regression when BtcDetg also concatenates P(Ogs) |
with U’s third layer.

These experiments demonstrate both the integration with
V¥ and the integration to form f,., can bring improvement
independently. When working together, two integrations fi-
nally help BtcDet surpass all the state-of-the-art models.

Conclusion and Future Work

In this paper, we analyze shape miss on 3D object detec-
tion, which is attributed to occlusion and signal miss in point
cloud data. To solve this problem, we propose Behind the
Curtain Detector (BtcDet), the first 3D object detector that
targets this fundamental challenge. A training method is de-
signed to learn the underlying shape priors. BtcDet can faith-
fully estimate the complete object shape occupancy for re-
gions affected by occlusion and signal miss. After the in-
tegration with the probability estimation, both the proposal
generation and refinement are significantly improved. In the
experiments on the KITTI Dataset and the Waymo Open
Dataset, BtcDet surpasses all the published state-of-the-art
methods by remarkable margins. Ablation studies further
manifest the effectiveness of the shape features and the inte-
gration strategies. Although our work successfully demon-
strates the benefits of learning occluded shapes, there is still
room to improve the model efficiency. Designing models
that expedite occlusion identification and shape learning can
be a promising future direction.
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