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Abstract

Multi-label few-shot image classification (ML-FSIC) is the
task of assigning descriptive labels to previously unseen im-
ages, based on a small number of training examples. A key
feature of the multi-label setting is that images often have
multiple labels, which typically refer to different regions of
the image. When estimating prototypes, in a metric-based set-
ting, it is thus important to determine which regions are rele-
vant for which labels, but the limited amount of training data
makes this highly challenging. As a solution, in this paper, we
propose to use word embeddings as a form of prior knowl-
edge about the meaning of the labels. In particular, visual
prototypes are obtained by aggregating the local feature maps
of the support images, using an attention mechanism that re-
lies on the label embeddings. As an important advantage, our
model can infer prototypes for unseen labels without the need
for fine-tuning any model parameters, which demonstrates its
strong generalization abilities. Experiments on COCO and
PASCAL VOC furthermore show that our model substan-
tially improves the current state-of-the-art.

Introduction
Multi-label image classification (ML-IC) has received con-
siderable attention in recent years (Wang et al. 2016; Chen
et al. 2019; Wang et al. 2017; Yazici et al. 2020). The aim
of this task is to assign descriptive labels to images, where
each image is typically associated with multiple labels. Stan-
dard approaches for this task often focus on modelling label
dependencies, e.g. taking advantage of the fact that the pres-
ence of one label makes the presence of another label more
(or less) likely. In the few-shot setting, however, we only
have a small number of images available for training, possi-
bly only a single image for some labels. Clearly, relying on
label co-occurrence statistics is not feasible in such a setting.

The problem of few-shot image classification (FSIC), i.e.
image classification with limited training data in the single-
label setting, has also received considerable attention. How-
ever, standard approaches for this task are not suitable for the
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multi-label setting. For instance, so-called metric-based ap-
proaches learn a prototype for each image category, and then
assign images to the category whose prototype is closest to
the image in some sense. These prototypes are typically ob-
tained by averaging a representation of the training images.
In the seminal ProtoNet model (Snell, Swersky, and Zemel
2017), for instance, prototypes are simply defined as the av-
erage of the global feature maps of the available training ex-
amples. This strategy crucially relies on the assumption that
most of the image is somehow relevant to its category. In the
multi-label setting, however, such an assumption is highly
questionable, given that different labels tend to refer to dif-
ferent parts of the image. For instance, given an image de-
picting a car and a bike, using a representation of the entire
image to obtain a prototype for bike would be misleading.

Our aim in this paper is to introduce a metric-based model
for multi-label few-shot image classification (ML-FSIC).
Given the aforementioned concerns, we need a strategy that
is based on local image features, allowing us to focus on
those parts of the training images that are most likely to be
relevant. However, as we may only have a single training
example for some labels, we cannot implement such a strat-
egy without some kind of prior knowledge about the mean-
ing of the labels. We will rely on word vectors (Pennington,
Socher, and Manning 2014) for this purpose. Some previ-
ous works for the single-label setting have already relied on
word vectors for inferring prototypes directly (Xing et al.
2019; Yan et al. 2021a), but as the resulting prototypes are
inevitably noisy, such strategies are most useful in combi-
nation with prototypes that are derived from visual features.
Therefore, taking a different approach, in this paper we only
use word vectors to identify which regions of the training
images are most likely to be relevant for a given label. As
an example to explain the intuition of how word vectors can
be useful for this purpose, assume that we have a number
of labels that refer to animals. These labels will have sim-
ilar word vectors, which tells the model that the predictive
visual features for these different labels are likely to be sim-
ilar. Now suppose we have an image which is labelled with
cat. Based on training data for other labels, the model will
select areas that are likely to contain an animal (although
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it would not necessarily be able to distinguish between cats
and closely related animals). Note that word embeddings are
thus used as prior knowledge about the similarity of differ-
ent labels. An important practical advantage of our method
is that we can apply the model to previously unseen labels,
without the need for any fine-tuning of the model’s parame-
ters on the novel label set. To the best of our knowledge, our
model is also the first end-to-end method for ML-FSIC.

As another contribution, we propose a number of changes
to the evaluation methodology for ML-FSIC systems. The
most important change is concerned with how support sets
are sampled, as part of an episode based strategy. The stan-
dard N -way K-shot framework for evaluating FSIC systems
is based on the idea that exactly K training images are avail-
able for each category of interest. While earlier work in ML-
FSIC has aimed to mimic this N -way K-shot framework as
closely as possible, we found this to have significant draw-
backs when images can have multiple labels. We also pro-
pose some changes related to how the query set is sampled
and the choice of evaluation metrics. Finally, we propose a
new ML-FSIC dataset based on PASCAL VOC (Evering-
ham et al. 2015), which is a standard ML-IC dataset that we
adapt for the few-shot setting.

Related Work
In this section, we review the related work on multi-label
image classification, few-shot image classification, and the
combined area of multi-label few-shot image classification.

Multi-label Image Classification
Early solutions for ML-IC simply learned a binary classi-
fier for each label (Tsoumakas and Katakis 2007). More re-
cently, various methods have been proposed to improve on
this basic strategy by exploiting label dependencies in some
way. For instance, the CNN-RNN architecture (Wang et al.
2016) learns a joint embedding space for representing both
images and labels, which is used to predict image-label rel-
evance. Because the labels are represented as vectors, se-
mantic dependencies are implicitly taken into account. To
avoid the need for a predefined label order, as in RNN
based architectures, Yazici et al. (2020) proposed minimal
loss alignment (MLA) and predicted label alignment (PLA)
to dynamically order the ground truth labels with the pre-
dicted label sequence. Some studies (Wang et al. 2020; Chen
et al. 2019; You et al. 2020) also exploit graph convolutional
networks (GCN) (Kipf and Welling 2017) to model label
dependencies more explicitly. Recently, Lanchantin et al.
(2021) used transformers to better exploit the complex de-
pendencies among visual features and labels. However, the
above methods require a large amount of training data, and
can thus not be directly applied in the few-shot setting.

As mentioned in the introduction, attention mechanisms
play an important role in ML-IC, to associate labels with
specific image regions. For instance, Wang et al. (2017) pro-
posed a spatial transformer layer to locate attentional re-
gions in convolutional feature maps, and applied an LSTM
sub-network to sequentially predict labels from the result-
ing regions. Zhu et al. (2017) proposed the spatial regu-
larization network to generate attention maps for all labels

and captures the underlying relations via learnable convolu-
tions. These existing strategies again require sufficient train-
ing data, and are thus not suitable for the few-shot setting.

Few-Shot Image Classification
Different strategies for single-label few-shot image classifi-
cation have already been proposed, with metric-based (Sung
et al. 2018; Kim et al. 2019; Satorras and Estrach 2018; Ye
et al. 2020) and meta-learning based (Ravi and Larochelle
2017; Finn, Abbeel, and Levine 2017; Li et al. 2017) meth-
ods being the most prominent. Meta-learning based meth-
ods use a meta-learner to learn to adapt model parameters to
new categories in the few-shot regime. Our method is more
closely related to metric-based methods, which aim to learn
a generalizable visual embedding space in which different
image categories are spatially separated. ProtoNet (Snell,
Swersky, and Zemel 2017) generates a visual prototype for
each class by simply averaging the embeddings of the sup-
port images in this embedding space. The category of a
query image is then determined by its Euclidean distance
to these prototypes. Instead of using Euclidean distance, the
Relation Network (Sung et al. 2018) learns to model the
distance between query and support images. Other notable
models include FEAT (Ye et al. 2020), which uses a trans-
former to contextualize the image features relative to the
support set and PSST (Chen et al. 2021), which introduced
a self-supervised learning strategy.

While most models rely on global features, methods ex-
ploiting local features have also been proposed (Li et al.
2019; Yan et al. 2021c), but these methods are designed for
single-label classification. For instance, Li et al. (2019) cal-
culate the similarity between all local features of the query
image and all local features of the support images. As such,
there is no attempt to focus on particular regions of the sup-
port images. The use of word vectors has also been con-
sidered, for instance for estimating visual prototypes (Xing
et al. 2019; Yan et al. 2021a). However, due to the inevitably
noisy nature of the predicted prototypes, such methods are
best used in combination with prototypes obtained from vi-
sual features. Word vectors have also been used in margin-
based models, to adaptively set margins based on the se-
mantic similarity between categories (Li et al. 2020), and
for grouping visual features into facets (Yan et al. 2021b).

Multi-Label Few-Shot Image Classification
The ML-FSIC problem has only received limited attention.
LaSO (Alfassy et al. 2019) was the first model that was de-
signed to address this problem. It relies on a data augmenta-
tion strategy which generates synthesized feature vectors via
label-set operations. KGGR (Chen et al. 2020) uses a GCN
to take label dependencies into account, where labels are
modelled as nodes and two nodes are connected if the cor-
responding labels tend to co-occur. The strength of these la-
bel dependencies is normally estimated from co-occurrence
statistics, but for labels with limited training data, depen-
dency strength is instead estimated based on GloVe word
vectors (Pennington, Socher, and Manning 2014). Li, Mozer,
and Whitehill (2021) proposed an ML-FSIC method which
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learns compositional embeddings based on weak supervi-
sion. Due to its use of weak supervision, this method is not
directly comparable with our method. LaSO and KGGR, on
the other hand, focus on the same supervised setting that we
consider in this paper. However, our approach has the ad-
vantage that model parameters do not need to be updated
to predict previously unseen labels, which makes our model
easier to use than LaSO and KGGR. Moreover, unlike these
two existing methods, our model can be trained end-to-end.

Problem Setting

We consider the following multi-label few-shot image clas-
sification (ML-FSIC) setting. We are given a set of base
labels Cbase and a set of novel labels Cnovel, where Cbase ∩
Cnovel = ∅. We also have two sets of labelled images: Ebase,
containing images with labels from Cbase, and Enovel, contain-
ing images with labels from Cnovel, where Ebase ∩ Enovel = ∅.
The images from Ebase are used for training the model, while
those in Enovel are used for testing. The goal of ML-FSIC
is to obtain a model that performs well for the labels in
Cnovel, when given only a few examples of images that have
these labels. Models are trained and evaluated using so-
called episodes. Each training episode involves a support set
and a query set. The support set corresponds to the examples
that are available for learning to predict the labels in Cbase,
while the query set is used to assess how well the system has
accomplished this goal.

To construct the support set of a given episode, for every
label in Cbase, we sample one image from Ebase which has
that label. These images are sampled without replacement,
meaning that the total number of images in the support set is
given by |Cbase|. The query set is sampled in the same way,
except that we sample a larger number of images per label.
Testing episodes are constructed similarly, but with labels
from Cnovel and images from Enovel instead.

Note that our strategy for sampling episodes differs from
the standard strategy from FSIC. In particular, FSIC mod-
els are usually evaluated using episodes that contain a sub-
sample of N classes, where the support set contains ex-
actly K examples of each class. In ML-FSIC, this strategy
is difficult to adopt, since each image may have multiple la-
bels. The idea of setting N = |Cbase| during training and
N = |Cnovel| during testing conforms to the strategy that was
used by Alfassy et al. (2019) and Chen et al. (2020). How-
ever, Alfassy et al. (2019) fix the number of training exam-
ples per label as K, with K ∈ {1, 5}, which has two impor-
tant shortcomings. First, there are typically only few combi-
nations of images that can be selected to construct support
sets, while adhering to the requirement that each label has to
occur K times (even when somewhat relaxing this require-
ment). This means that only a few episodes can be sampled,
which makes it harder to train the model, and makes the test
results less stable, as they are averaged over a small number
of test episodes. Second, the total number of images in the
support set can vary substantially. For example, if one image
contains all labels, then we may have a support set that only
contains that one image when K = 1.
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Figure 1: A joint embedding space is learned in which both
labels and images are represented.
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Figure 2: An attention mechanism is used to compute la-
bel prototypes from the local features of the relevant images
from the support set. The embedding of the considered label
plays the role of query in this attention mechanism.

Method
Our model consists of two main components. The first com-
ponent is aimed at jointly representing label embeddings and
visual features in the same vector space. Essentially, this
component aims to predict visual prototypes from the la-
bel embeddings. Since such prototypes are noisy, we do not
use them directly for making the final label predictions. This
component is merely used to learn a joint representation of
visual features and labels; it is illustrated in Figure 1. The
second component is aimed at computing the final proto-
types, by aggregating the local features of the corresponding
support images based on an attention mechanism, which re-
lies on the label representations that are obtained by the first
component. This second component is illustrated in Figure
2. Finally, to classify a query image, we project it to the joint
embedding space and then compare it with the learned pro-
totypes, as illustrated in Figure 3. We now describe these
different steps in more detail.

Joint Embedding of Visual Features and Labels
Given an input image I , we first use a feature extractor to
obtain its local feature map f Iloc ∈ Rn×h×w, where n is
the number of channels, h is the height and w is the width.
In this paper, we use a fully convolutional network such as
ResNet (He et al. 2016) for this purpose. The global visual
feature vector f Iglo for image I is obtained by feeding the lo-
cal feature map through an adaptive average pooling layer:

f Iglo = AdaptiveAvgPool(f Iloc) (1)
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Figure 3: Query images are classified based on their distance
to the visual prototypes.

We use pre-trained word embeddings to represent the labels
in Cbase ∪ Cnovel. Let us write wc for the word vector repre-
senting label c, and let dw be the dimensionality of the word
vectors. With the aim of representing images and labels in
the same vector space, we learn two linear transformations:

f̂ Iglo = Avisual f
I
glo ŵc = Atext wc

where Avisual ∈ Rdj×n is used to project the global feature
vector for I onto a space of dj dimensions. Similarly, Atext ∈
Rdj×dw is used to project the dw-dimensional embedding of
a label c onto the same dj-dimensional space. To ensure that

the resulting image vectors f̂ Iglo and label representations ŵc

are semantically compatible, we use the following loss:

Lcmw =
∑
I∈S

|C|∑
i=1

yIi · log σ(sIi ) + (1− yIi · log(1− σ(sIi )))

where S represents the set of images from the support set
of the current training episode, C = {c1, ..., c|C|} is the set
of labels, σ(·) is the sigmoid function and yIi represents the
ground truth, i.e. yIi = 1 if image I has label ci and yIi = 0
otherwise. Finally, we have

sIi = λ cos(f̂glo
I
, ŵci) (2)

The scalar λ is a hyper-parameter to address the fact that the
cosine is bounded between -1 and 1. Since the aim of the loss
Lcmw is to align two different modalities (word vectors and
visual features), we refer to it as the Cross-Modality Weights
Loss (CMW-loss).

Constructing Attention Based Prototypes
We now explain how the label prototypes are constructed.
Consider a label c and suppose this label has been assigned
to m images from the support set. We can obtain a total of
l = h · w · m local feature vectors from these m images.
Let us write these local feature vectors as u1, ...,ul. We first
map these feature vectors to the joint embedding space:

ûi = Avisual ui

The prototype of c will be obtained from these local fea-
ture vectors using an attention mechanism that is inspired

by Vaswani et al. (2017), where the label embedding ŵc is
used as the query component. Specifically, we have

qj
c = Qjŵc

kj
i = Kjûi

vj
i = Vjûi

(µj
1, ..., µ

j
l ) = softmax

(
qj
c · k

j
1√

da
, ...,

qj
c · k

j
l√

da

)
pj
c =

∑
i

µj
iv

j
i

where da is the dimensionality of the vectors qj
c, kj

i , and vj
i .

The vector pj
c represents the contribution of the jth attention

head to the prototype of label c. We use a total of na attention
heads. The final prototype of label c is given by:

pc = mlp(p1
c ⊕ ...⊕ pna

c ) (3)

where we write ⊕ for vector concatenation and mlp consists
of two fully connected feedforward layers with GeLU ac-
tivation and dropout. Since the prototype pc should be dj
dimensional, we have da =

dj

na
.

To train the attention mechanism, we use the following
loss function, which we refer to as the Query Loss:

Lquery =
∑
I∈Q

|C|∑
i=1

yIi · log σ(qIi ) + (1− yIi ) · log(1− σ(qIi ))

where Q represents the set of images from the query set of
the current training episode. As before, C is the set of labels
and yIi represents the ground truth. The predictions qi are
obtained as follows:

qIi = λ cos(f̂glo
I
,pci) (4)

with λ the same scalar as in (2). Note that there are two
key differences between Lcmw and Lquery: (i) Lcmw is trained
using the support images while Lquery is trained using the
query images; and (ii) prototypes in Lcmw are estimated from
word vectors while prototypes in Lquery are those obtained
by aggregating local visual features.

Model Training and Evaluation
The model is trained by repeatedly sampling training
episodes from Cbase, as explained in Section . Given a train-
ing episode with support set S and query set Q, the model
parameters are updated using the following loss:

Lall = Lcmw + γLquery

with γ a hyperparameter to control the relative importance of
both components. These components are defined as above,
where C represents the the set Cbase during training.

After the model has been trained, it can be evaluated on
test episodes as follows. For each episode, we first construct
the prototypes using the support set, as in (3). Note that we
can do this without fine-tuning any model parameters. For
each query image I , the probability that it has label ci is
computed as σ(qIi ) with qIi as defined in (4).

2994



Micro Macro

Prec Recall F1 AP Prec Recall F1 AP

ResNet-50 9.96 17.62 12.51 11.31 10.25 17.69 13.27 19.67
ResNet-101 9.81 17.65 12.04 10.22 9.48 17.86 12.18 18.87
ViT 9.63 12.96 11.02 10.07 9.22 14.16 11.13 16.94
ResNet-50 + ViT 8.21 13.51 10.21 10.13 9.15 14.72 11.17 16.71
PLA 13.29 55.44 20.89 21.33 13.24 54.79 20.96 30.61
PLA (GloVe) 14.12 55.83 22.15 23.02 13.51 53.21 20.37 30.13
LaSO 12.31 19.77 15.09 16.83 13.64 20.03 16.11 25.41
MAML 15.42 53.21 23.11 25.42 15.63 51.63 23.82 35.30

Ours 49.72 26.60 34.21 35.30 34.50 25.07 28.91 42.84

Table 1: Experimental results for COCO.

Micro Macro

Prec Recall F1 AP Prec Recall F1 AP

ResNet-50 14.11 39.60 20.77 16.57 12.96 39.69 21.92 27.24
ResNet-101 16.58 42.85 23.86 19.23 15.13 42.66 22.17 30.11
ViT 13.68 25.52 17.76 16.69 13.16 25.61 17.15 27.72
ResNet-50 + ViT 11.96 16.19 13.70 18.71 11.14 16.24 12.86 28.76
PLA 23.45 86.44 36.81 41.98 24.24 87.50 37.83 47.29
PLA (GloVe) 22.67 88.03 35.84 41.31 23.16 88.64 36.55 46.54
LaSO 18.71 48.48 27.02 22.12 17.11 48.12 25.20 32.50

Ours 26.78 83.97 40.19 46.28 29.64 85.44 43.35 53.26

Table 2: Experimental results for PASCAL VOC.

Experiments

Experimental Setup

Datasets We have conducted experiments on two datasets.
First, we used COCO (Lin et al. 2014). This dataset was al-
ready used by Alfassy et al. (2019), who proposed a split into
64 training labels and 16 test labels. However, as they did not
include a validation split, we split their 64 training labels
into 12 labels for validation (cow, dining table, zebra, sand-
wich, bear, toaster, person, laptop, bed, teddy bear, baseball
bat, skis) and 52 labels for training, while keeping the same
16 labels for testing. We include images from the COCO
2014 training and validation sets. The images which do not
contain any of the test and validation labels are used as the
training set. Similarly, the validation set only contains im-
ages that do not contain any training or test labels. Second,
we propose a new ML-FSIC dataset based on PASCAL VOC
(Everingham et al. 2015), which has 20 labels. To use as
many images as possible, we select the following six labels
for the novel set Cnovel: dog, sofa, cat, potted plant, tv mon-
itor, sheep. The following six labels were selected for the
validation split: boat, cow, train, aeroplane, bus, bird. The
remaining eight labels are used for training. We use the im-
ages from the VOC 2007 training, validation and test splits,
as well as the VOC 2012 training and validation splits (not-
ing that the labels of the VOC 2012 test split are not publicly
available). We again ensure that the training images do not
contain any labels from the validation and test splits, and the
validation images do not contain any test labels.

Methodology Every model is trained for 200 epochs, with
the first 10 epochs used as warm-up. We used the Adam op-
timizer with an initial learning rate of 0.001. In contrast to
our model, existing methods require a fine-tuning step dur-
ing the test phase. We set the number of epochs for this fine-
tuning step to 40. During the test phase, we sample 200 test
episodes. Different from Alfassy et al. (2019), in addition
to macro-AP, we also report micro-AP. Moreover, following
usual practice in ML-IC, we also report the (macro and mi-
cro) precision, recall and F1 metrics, where we assume that
a label is predicted as positive if its estimated probability is
greater than 0.5 (Zhu et al. 2017).

Implementation Details We use ResNet-50 and ResNet-
101 (He et al. 2016) as feature extractors. The dimensional-
ity of the joint embedding space was set as dj = 512. When
sampling episodes, we sample one image for each label to
construct the support set and four images for each label to
construct the query set. As word embeddings, we considered
300-dimensional GloVe (Pennington, Socher, and Manning
2014) vectors1. We similarly used standard pre-trained fast-
Text and word2vec embeddings from an online repository2.
Based on the validation split, for both datasets, the number
of attention heads was set to 8, the 300-dimensional GloVe

1Specifically, we used vectors that were trained from Wikipedia
2014 and Gigaword 5, which we obtained from the GloVe project
page, at https://nlp.stanford.edu/projects/glove.

2https://developer.syn.co.in/tutorial/bot/oscova/pretrained-
vectors.html
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vectors were selected as the word embedding model, and the
hyper-parameter γ was set to 1.

Baselines
We compare with LaSO (Alfassy et al. 2019) and
KGGR (Chen et al. 2020), which were designed for the ML-
FSIC setting. To put the results in context, we also compare
with some methods that were designed for ML-IC. First,
following LaSO (Alfassy et al. 2019), we attach a stan-
dard multi-label classifier to a number of different feature
extractors: ResNet-50, ResNet-101, ViT-Base (Dosovitskiy
et al. 2020) and ResNet-50 + ViT-Base. We also report re-
sults for the recent state-of-the-art CNN-RNN based method
PLA (Yazici et al. 2020), which to the best of our knowledge
has not previously been evaluated in the ML-FSIC setting.
With the exception of KGGR, we used the original source
code of the different baselines to produce the results. Since
we did not have access to the KGGR source code, we only
compare our method against the published results from the
original paper, which followed the experimental setting from
LaSO. For PLA, LaSO and our method, we used ResNet-50
as the feature extractor in the main experiments. However,
since the reported results of KGGR are based on ResNet-
101 and GoogleNet-v3, we used the latter models as feature
extractors in the comparison with KGGR.

Experimental Results
The experimental results for COCO are shown in Table 1,
showing that our proposed method outperforms the other
methods by a substantial margin. It is evident that large mod-
els are prone to overfitting, noting that in terms of model
size, we have: ResNet-50 + ViT-Base >ViT-Base >ResNet-
101 >ResNet-50. This is not unexpected given the small
number of labeled examples in ML-FSIC. LaSO can im-
prove the ResNet-50 baseline because of its data augmen-
tation strategy. Somewhat surprisingly, PLA performs better
than LaSO, which shows that its LSTM component is able
to model label dependencies in a meaningful way. PLA also
needs word embeddings, but in the original model these em-
beddings are learned from the training data itself. For com-
parison, we also report results for a variant where these word
vectors are initialised using the 300-dimensional GloVe vec-
tors instead; the results are shown as PLA (GloVe). As can
be seen, using pre-trained word vectors does not lead to a
meaningful improvement over the original PLA model. Fi-
nally, we also add results for MAML (Finn, Abbeel, and
Levine 2017), which is a popular meta-learning method for
FSIC, but which was not specifically designed for the ML-
FSIC. To compare with KGGR, we use the 1-shot and 5-
shot settings proposed by LaSO. As shown in Table 3, for
ResNet-101, in the 1-shot setting we achieved a macro-
AP of 55.73, compared to 52.3 for KGGR. In the 5-shot
setting, we achieved a macro-AP of 68.12, compared to
63.5 for KGGR. Moreover our method can also consis-
tently outperform both KGGR and LaSO in combination
with GoogleNet-v3 (Szegedy et al. 2016). Experimental re-
sults for PASCAL VOC are shown in Table 2. We can again
see that our proposed method achieves the best results.

Method 1-shot 5-shot

LaSO (GoogleNet-v3) 45.3 58.1
KGGR (GoogleNet-v3) 49.4 61.0
KGGR (ResNet-101) 52.3 63.5

Ours (GoogleNet-v3) 53.41 65.07
Ours (ResNet-101) 55.73 68.12

Table 3: Experimental results following the common data
and evaluation setting from LaSO (Alfassy et al. 2019).

bicycle

frisbee bird

zebra cow

Figure 4: Visualization of the attention weights of local fea-
tures for construction label prototypes. The first two exam-
ples are taken from the COCO test set, while last example is
taken from the COCO validation set.

Ablation Study
Here we analyze the importance of the main components
of our model. Some additional ablation analysis is provided
in an online appendix3. All experiments in this section are
conducted on the COCO dataset with the ResNet-50 feature
extractor.

Importance of the CMW-Loss To analyze the effect of
the CMW-loss, in Table 4 we report the results that are ob-
tained when this component of the loss function is removed.
In particular, for this variant, we only use Lquery for training
(using both the images from the support set and the query
set in this case). Note that the alignment between the word
vectors and visual features then has to be learned indirectly,
together with the parameters of the overall model. As can be
seen, removing the CMW-loss results in substantially lower
macro-AP and micro-AP scores.

Importance of the Attention Mechanism To evaluate the
effect of the proposed attention mechanism, in Table 4 we
also report results for a variant that relies on a simpler mech-
anism for generating prototypes (shown as Simple atten-
tion). In particular, in this variant, we generate the prototype

3https://arxiv.org/pdf/2112.01037.pdf
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Method Macro-AP Micro-AP

Without CMW-loss 36.17 26.44
Simple attention 37.53 28.56
Attention with global features 35.82 27.39
Simple att. with loc. features 31.21 21.07
Low-rank bilinear pooling 33.41 24.69
Full model 42.84 35.30

Table 4: Results for different variations of the proposed
model.

Word Embeddings Macro-AP Micro-AP

FastText 35.67 24.72
Skip-Gram 38.67 29.47
GloVe-50 27.99 17.73
GloVe-100 33.48 21.52
GloVe-200 39.13 28.86
GloVe-300 42.84 35.30
BERT 36.46 28.33

Table 5: Results for different word embeddings.

of a label c by taking a weighted average of the global fea-
tures of the support images that have that label. The weights
are obtained by computing the cosine similarity between the
vectors ŵc and the feature vectors f̂ Iglo, multiplying these co-
sine similarities with the scalar λ, and feeding the resulting
values to a softmax layer. As shown in Table 4, in this sim-
plified setting, there is a drop of 5.31 and 6.74 percentage
points in macro-AP and micro-AP respectively. We further-
more report results of a variant where the (full) attention
mechanism uses global features instead of local features (At-
tention with global features). We also report results when
local features are used instead of global features in the sim-
plified attention mechanism (Simplified attention with local
features). Finally, we experimented with a variant that learns
visual prototypes in the same way as in KGGR, where the
weights of local features are generated by a low-rank bilin-
ear pooling method followed by a fully-connected layer with
softmax activation (Low-rank bilinear pooling). The results
in Table 4 show that all of these variants result in lower per-
formance.

Fine-Tuning Although our method can be used without
fine-tuning during the test phase, it is possible to fine-tune
the parameters with the CMW-Loss. As shown in Table 6,
fine-tuning results in an increase of 2.43 percentage points
in macro-AP, but no obvious improvement in micro-AP.

Word Embeddings Table 5 compares the results we
obtained with different word embeddings: FastText (Bo-
janowski et al. 2017), Word2Vec (Mikolov, Yih, and Zweig
2013), GloVe (Pennington, Socher, and Manning 2014) and
BERT (Devlin et al. 2019). We also experimented with
GloVe vectors of 50, 100 and 200 dimensions obtained from
the official GloVe project (Wikipedia 2014 + Gigaword 5)4.

4https://nlp.stanford.edu/projects/glove/

Method Macro-AP Micro-AP

Without Fine-tuning 42.84 35.30
With Fine-tuning 45.27 35.70

Table 6: Impact of fine-tuning during the test phase.

To obtain pre-trained label embeddings from BERT, we fol-
lowed the setting from (Yan et al. 2021a), using BERT-base
with masking. In this case, word vectors are obtained by tak-
ing the average of 1000 contextualized vectors. As can be
seen in Table 5, the best results are obtained for GloVe-300.

Qualitative Analysis
Figure 4 illustrates which regions are selected by the pro-
posed attention mechanism. For better visualization, we take
the values before the softmax layer as the scores of the lo-
cal features, and we take the sum of attention weights across
all attention heads. As the example of the bicycle shows,
the model is often successful in identifying the most rele-
vant image region. The second example furthermore shows
that the attention weights are indeed label-specific. In this
example, the model correctly selects the frisbee or the duck
depending on the selected label. This is despite the fact that
no images with these labels were present in the training data.
On the other hand, as the last example shows, for labels that
are semantically closely related, such as zebra and cow in
this case, word vectors are not sufficiently informative. For
both labels, the model correctly selects the group of animals,
but it fails to make a finer selection.

Conclusion
We introduced the first metric-based method for multi-label
few-shot image classification. The main idea is to use word
vectors to obtain noisy prototypes, which are then used to
implement an attention mechanism. This attention mecha-
nism aims to construct the final prototypes by aggregating
the local features of the support images. Our model achieved
substantially better results than existing models, both on
COCO and a newly proposed split of PASCAL VOC. More-
over, an important advantage of our model is that it can be
used without fine-tuning during the testing phase.
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