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Abstract

We address cross-species 3D face morphing (i.e., 3D face
morphing from human to animal), a novel problem with
promising applications in social media and movie industry.
It remains challenging how to preserve target structural infor-
mation and source fine-grained facial details simultaneously.
To this end, we propose an Alignment-aware 3D Face Morph-
ing (AFM) framework, which builds semantic-adaptive corre-
spondence between source and target faces across species, via
an alignment-aware controller mesh ( Explicit Controller, EC)
with explicit source/target mesh binding. Based on EC, we in-
troduce Controller-Based Mapping (CBM), which builds se-
mantic consistency between source and target faces accord-
ing to the semantic importance of different face regions. Ad-
ditionally, an inference-stage coarse-to-fine strategy is ex-
ploited to produce fine-grained meshes with rich facial details
from rough meshes. Extensive experimental results in multi-
ple people and animals demonstrate that our method produces
high-quality deformation results.

Introduction
3D face morphing with artificial design has received consid-
erable attention in computer vision community for a long
time. Previous methods mainly fall into two categories:
1) Deforming a 3D face towards different expressions and
shapes (Smith et al. 2020; Li et al. 2020; Geng, Cao, and
Tulyakov 2019; Jiang et al. 2019; Ranjan et al. 2018; Chan-
dran et al. 2020), and 2) Transferring deformations of source
faces to control a new target avatar (e.g., face retargeting
or reenactment) (Thies et al. 2016; Chaudhuri, Vesdapunt,
and Wang 2019; Ouzounis, Kilias, and Mousas 2017; Ribera
et al. 2017; Gao et al. 2020; Yao et al. 2020; Le and Deng
2017). These works do not consider directly morphing 3D
human faces to different structures such as human-to-animal
morphing where the structures and feature details of source
human faces and target animal faces are quite different.

In this study, we are interested in morphing a 3D human
face mesh into a specific 3D animal face mesh while pre-
serving human features, i.e., cross-species 3D face morph-
ing. As shown in Fig. 1, the human face mesh is morphed
into a cat while the human details are preserved, including
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Figure 1: Visualization of the proposed alignment-aware 3D
face morphing (AFM) framework. Morphing a textured hu-
man face of rich details into a cat.

human identity features, face expression, wrinkles and so
on. This task has a huge number of application potentials,
e.g., 3D animated characters (Ho, Sun, and Tsai 2019), vir-
tual reality (Clay, König, and König 2019) and game simu-
lation (Wang et al. 2019a). To our knowledge, it is the first
attempt at this fancy but challenging problem.

Specifically, challenges of cross-species 3D face morph-
ing are two folds: 1) Shape alignment and human feature
preservation. Due to the large gap between the geometric
structures of 3D human faces and animal faces, it is diffi-
cult to learn the deformation that satisfies two competing
objectives simultaneously, that is animal shape alignment
and human feature preservation. Neural Cages (NC) (Wang
et al. 2020) introduces cage-based deformation to preserve
surface details regardless of the shape’s intricacy and per-
forms well on deforming chairs, tables and cars. However,
we empirically show that NC is only capable of performing
rough deformations on human faces when applied to cross-
species 3D face morphing, as illustrated in Fig. 2(a). The
reason is that the cage used in NC is rough as a result of be-
ing implicitly trained in network without any cage-specific
constraints. This adds much regularization to the deforma-
tion process and limits the degrees of freedom to deform
the source objects, which makes NC lack the ability of fine
deformation. 2) Semantic consistency. Semantic mismatch
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(a) Baseline (b) Our AFMHuman face

Figure 2: The baseline (a) using Neural Cages (Wang et al.
2020) only performs rough morphing on the human face due
to the limit of the rough cage. Instead, the proposed AFM (b)
achieves semantic-adaptive fine deformation of the human
face via an alignment-aware controller.

across species is a challenging problem to be solved. For ex-
ample, the positions of the ears, eyes, and chin between the
human face and animal face should be consistent after mor-
phing. The change of semantic information in the morphing
process is uncontrollable since there is no ground truth of
the deformed human face.

To address the issues above, we propose an Alignment-
aware 3D Face Morphing (AFM) framework to build the
uniform semantic-adaptive correspondence across species.
To achieve fine control of face morphing while preserv-
ing human feature details, we propose Explicit Controller
(EC), a simplified mesh that encloses the object and trans-
fers the deformation to the object by weight binding. The
weight binding scheme interpolates the translations of the
controller vertices and is carefully designed to preserve the
source features. EC is alignment-aware under being trained
with explicit constraints and thus yields a structured defor-
mation operation set, which is sufficient for fine deforma-
tion. To maintain the semantic consistency across species,
we propose Controller-Based Mapping (CBM), which takes
advantage of ECs to map the semantic information between
human and animal faces. The proposed CBM builds corre-
spondences between source ECs and target ECs in a seman-
tic importance manner, i.e., face regions with more dedicated
local structures such as eyes and ears are constrained with
denser correspondences while regions with plain structures
receive less attention. In this way, the subsequent shape de-
formation will be conducted in a semantic-adaptive manner.
As demonstrated in Fig. 2(b), the proposed AFM achieves
semantic-adaptive fine deformation of human faces, which
significantly outperforms the prior art (Wang et al. 2020).
Notably, our method is end-to-end trainable as a whole
framework, where the output (mesh) of each step is explain-
able and intuitive.

Furthermore, in recent learning-based deformation works
related to our study (Wang et al. 2020; Pan et al. 2019;
Tretschk et al. 2020), a well-trained model could only work
on meshes with a similar number of vertices during train-
ing and inference stage, usually no more than 5,000 vertices
which is sparse. In real applications, a human face mesh with
dense vertices cannot be processed by the trained model di-

rectly. We propose an inference-stage sparse-to-dense strat-
egy to solve this problem. Extensive experiments validate
the effectiveness of the proposed method on deforming hu-
man faces to animal faces of multiple species.

Related Work
Human Face Morphing. Recently, 3D human face morph-
ing has increasingly attracted the interest of researchers and
could be divided into two aspects: deforming directly on
3D human faces and deformation transfer. 1) For deform-
ing directly on 3D human faces, Blanz and Vetter (Blanz
and Vetter 1999) derived a morphable face model known as
3DMM. Following this framework, many researchers (Smith
et al. 2020; Li et al. 2020; Geng, Cao, and Tulyakov 2019;
Jiang et al. 2019; Ranjan et al. 2018; Chandran et al. 2020;
Chen and Kim 2021; Bailey et al. 2020) directly deformed
the original 3D human face meshes to have different expres-
sions. In these works, only facial expressions changed after
the deformation while the overall shapes were still similar.
Some recent works of 3D face reconstruction from 2D im-
ages devoted to learning the deformation of a template mesh
to generate human face meshes (Zhou et al. 2019; Lee and
Lee 2020a; Sidhu et al. 2020; Chaudhuri et al. 2020; Lee
and Lee 2020b; R et al. 2021) but still did not pay atten-
tion to the change of semantic information during morph-
ing. 2) Researchers also made significant progress in de-
formation transfer, i.e., face reenactment or face retarget-
ing. Some works (Thies et al. 2016; Chaudhuri, Vesdapunt,
and Wang 2019; Ouzounis, Kilias, and Mousas 2017; Ribera
et al. 2017; Gao et al. 2020; Yao et al. 2020; Le and Deng
2017; Zhang, Chen, and Zheng 2020; Bai et al. 2021; Sum-
ner and Popović 2004) retargeted the facial animation in a
new character. These works controlled an avatar by human
faces rather than morphing human face meshes themselves.
Different from the above works, we make the first attempt at
cross-species 3D human face morphing.

Cage-Based Deformation. Sederberg (Sederberg and
Parry 1986) firstly proposed cage, a simple mesh enclosing
the object, to deform any solid geometric models in a free-
form manner. All the surface points on the object were bind-
ing to the cage vertices by linear combinations with weights.
Many works (Hoppe 1997; Xia and Varshney 1996; Sander
et al. 2000; Calderon and Boubekeur 2017; Sacht, Vouga,
and Jacobson 2015; Joshi et al. 2007) focused on how to
compute the weights. Ju (Ju, Schaefer, and Warren 2005)
generalized Mean Value Coordinates from closed 2D poly-
gons to closed triangular meshes. The works (Huang et al.
2006; Zhang et al. 2020; Ju et al. 2008; Chen et al. 2010;
Sung et al. 2020; Ramachandran et al. 2018) used man-
ually calibrated cages or optimization-based cages to de-
form objects, which suffered from heavy computation over-
heads. Neural Cages (Wang et al. 2020) introduced neural
networks to learn the deformation on cages. However, the
cages in (Wang et al. 2020) conveyed no semantic informa-
tion and could not handle fine deformation since it was not
constrained explicitly. (Jakab et al. 2021) also introduced
cages, but it only performs rough deformation on objects
from the same object category. Differently, we propose an
explicit controller and controller-based mapping to achieve
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the semantic-adaptive fine deformation on human faces.

Method
In this paper, a novel Alignment-aware 3D Face Morphing
Framework called AFM is proposed to address cross-species
3D face morphing. Explicit Controller (EC) and Controller-
Based Mapping (CBM) are proposed to build semantic-
adaptive correspondences between human and animal faces.
The encoder-decoder structure is used to predict controllers
and learn deformations. In this section, we start from revis-
iting the cage, as the weight binding and key ideas of our
method are inspired from this technique.

Preliminary: Revisiting Cage
Cage is a closed mesh surrounding the object, which is also
called bounding proxy(Calderon and Boubekeur 2017). The
control of the cage to the object is realized by binding the
cage to the object with the weight computed by a designed
interpolation function. Given a meshM = (VM,FM) and
a cage C = (VC ,FC), where VM and VC are sets of vertices,
FM and FC are sets of triangles, the i-th vertex vm

i ∈ VM
can be expressed as an interpolation result by the designed
weight w:

vm
i =

∑
0≤j≤|VC|

wi,jv
c
j , (1)

where vc
j ∈ Vc and wi,j is the weight of the j-th vertex of C

to the i-th vertex ofM. Mean value coordinates (MVC) (Ju,
Schaefer, and Warren 2005) are used to compute the weight
w with good feature preservation properties and differentia-
bility as:

w = MVC(V ,VC ,FC). (2)

The computed weight w could be used for deforming a
cage into a new one, where the corresponding deformed
mesh ofM is computed by w following Eq. 1.

Explicit Controller
Neural Cages (Wang et al. 2020) is generally well-
performing in feature preservation when deforming objects,
while it has limited performance on fine deformation. To
this end, we propose the Explicit Controller (EC), a con-
troller mesh with explicit constraints to perform fine de-
formations on the human face. EC has a desirable shape
aligned with the source human and the target animal respec-
tively. Therefore, the deformation of the enclosed object can
be restricted by explicitly restricting the deformation of the
controller. EC provides the basis for subsequently building
multi-density correspondences between human and animals
based on semantic information, thereby realizing semantic-
adaptive cross-species morphing.

Network Architecture. As illustrated in Fig. 3, the whole
network architecture consists of 3 sub-networks: 1) a shape
encoder ΦE to embed the shape into a latent space, 2) a con-
troller generator ΦG to generate ECs for source and target
respectively, i.e., source controller and target controller, and
3) a deformation decoder ΦD to predict the deformed con-
troller from the source controller. The three networks work
on mesh vertices as those in Neural Cages (Wang et al.

Source
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Target Controller
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Figure 3: An overview of the proposed Alignment-aware
3D Face Morphing (AFM) framework. We first compute
the Explicit Controllers (i.e., source and target controllers)
of source and target meshes, respectively. Semantic trans-
formation is applied on the source controller to obtain a
deformed controller via Controller-Based Mapping, from
which the deformed human mesh is recovered via weight
binding. ΦE , ΦG and ΦD are three neural networks to pro-
cess mesh vertices.

2020). In addition, to strengthen the shape alignment, we
further introduce differentiable rendering layers.

The inputs of AFM are a source human face meshMs =
(Vs,Fs), a target animal face meshMt = (Vt,Ft) and sev-
eral predefined landmarks. First of all,Ms andMt are sent
to the encoder ΦE respectively to get embedding vectors
xs and xt. Then ΦG uses the embedding vector xs / xt as
input to predict EC meshes Cs / Ct from a controller tem-
plate (a 322-vertex sphere). The decoder ΦD uses xs, xt and
Cs as input, and outputs a deformed controller Cs→t which
is an offset from Cs. Finally, according to the weights pre-
computed by Eq. 2 forMs and Cs, an output deformed mesh
Ms→t is attained by Eq. 1.

Shape Alignment Loss. To measure the shape differ-
ence between two meshes M1 and M2, we compute the
Chamfer distance LCD to directly measure distances over
3D surfaces, and 2D rendering loss LR to measure distances
over 2D silhouettes. We adopt the open-sourced soft raster-
izer (Liu et al. 2019) for differentiable rendering, where gra-
dients of the 2D image loss could be back-propagated to
3D coordinates of meshes. To strengthen the similarity of
3D meshes silhouettes, multi-view 2D rendering loss is de-
signed. Assuming A represents the view point angles, the
rendering image IM(A) of the meshM can be denoted as:

IM(A) = R(M,A), (3)

where R represents the rendering layer. LCD and LR are
computed as:

LCD(M1,M2) =
∑
x∈V1

min
y∈V2

‖x− y‖22 +
∑
y∈V2

min
x∈V1

‖x− y‖22,

(4)

LR(M1,M2,A) =
∑
ai∈A

‖IM1
(ai)− IM2

(ai)‖22. (5)
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Explicit Constraints. Explicit constraints LEC on the
shape of controllers are proposed to predict ECs to align well
with source and target respectively. It works on the shape en-
coder ΦE and the controller generator ΦG. The loss for EC
is formulated as:

LEC = LCD(Cs,Ms) + LCD(Ct,Mt)

+ LR(Cs,Ms,A) + LR(Ct,Mt,A),
(6)

where three angles are taken during rendering from the front,
top and right.

To drive the deformation towards the target, Ldeform is
designed to compute the distance between the deformed hu-
man face and target animal face. The loss for deformation is
computed by:

Ldeform = LCD(Ms→t,Mt) + LR(Ms→t,Mt,A)

+ LSYM(Cs→t),
(7)

where LSYM is a symmetry loss added on the controllers
Cs→t to maintain the symmetry of the source human face
structure.

To avoid geometric aliasing that makes the deformation
unreliable like self-intersections, flattening loss(Liu et al.
2019) and point-to-face (p2f) distance(Wang et al. 2020) are
used as our smoothing loss Lsmooth. Unlike (Wang et al.
2020) to compute the difference of p2f values betweenMS

andMs→t, we just penalize positive p2f values ofMs→t.
Lsmooth is computed as:

Lsmooth = Lfl(Cs→t) + Lp2f (Ms→t). (8)

Moreover, to preserve the original characteristics of peo-
ple as much as possible, eye-keeping loss is designed to re-
tain the features of original human eyes, which is formulated
as:

Leye = LCD(v′s,v
′
s→t), v′s,v

′
s→t ∈ N (le), (9)

where v′s and v′s→t represent the eye vertices of the source
face and deformed face, le represents the eye landmarks of
human and Ns(le) represents the neighbor vertices of le.

Controller-Based Mapping
We propose the controller-based mapping (CBM) to map
the semantic information across species taking advantage
of EC. CBM builds multi-density correspondences between
the source controller and the target controller according to
the importance of semantic information, i.e., object regions
with finer semantic information such as ears and nose are
mapped with denser constraints while regions with plain
structures such as cheeks and forehead receive less atten-
tion. We use the pre-defined landmarks on the human face
and animal face to determine the density of semantic infor-
mation on the source controller and target controller, respec-
tively. Each landmark on the face corresponds to an area on
the controller, which is regarded as rich in semantic infor-
mation and thus is restricted by CBM during morphing. In
this way, the human-to-animal shape morphing is conducted
in a semantic-adaptive way.

There are two steps of CBM. In step one, for each land-
mark of the source human, CBM finds an area with a set

Target Cat

ℒCBM

Source Human Deformed Human

Figure 4: Controller-based mapping for human and cat faces
with six landmarks. The red area on the source controller is
deformed to align with the yellow area on the target con-
troller gradually by LCBM to realize the correspondence of
the human left ear to the cat left ear.

of vertices on the source controller Cs which has the closest
distance to the landmark. Since the source controller shares
the same shape information with the source human, the ver-
tices set on the source controller shares the same semantic
information with the landmarks of the source human. Also,
CBM finds such vertices set of the target controller Ct for
each landmark of the target animal. We call these two ver-
tices sets of controllers as the source set Ss and target set St.
In step two, after ΦD predicts the deformation of Cs, the cor-
responding deformed set Ss→t on the deformed controller is
obtained from Ss. Then a constraint LCBM between Ss→t

and St is designed to build semantic consistency between
human and animal faces. The CBM loss is designed as:

LCBM = LCD(Ss→t,St). (10)

where we select six landmarks here including two ears, two
eyes, nose and chin. The example of mapping the right ear
from the human face to the animal face is shown in Fig. 4.

The facial landmarks are constrained across species
through EC, not directly on the landmarks itself. This al-
lows the surrounding areas of the landmarks on the source
human to also correspond to those of the target mesh, so that
makes the deformation result smoother and avoids human
facial feature distortion.

In total, our training loss is formulated as:

L = LEC + Ldeform + LCBM + Leye + Lsmooth, (11)

where we have omitted a set of hyper-parameters that bal-
ance the importance of different loss terms here, and provide
detailed descriptions in the supplementary materials.

Sparse-to-dense Inference Strategy
A fine-grained dense face with wrinkle details usually has at
least tens of thousands of vertices, which cannot be directly
fed into the network for training and testing. Down-sampling
the dense face and then up-sampling the deformation result
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Figure 5: Explicit controllers and morphing results for hu-
man faces and animal faces from different direction. The
controllers are well-structured to realize fine deformation.

directly causes the loss of face details. In order to achieve the
deformation of the dense human face while preserving de-
tails, we propose a sparse-to-dense strategy to use the down-
sampled sparse face to control the original dense face. The
dense source human face meshM is first down-sampled to a
sparse meshMs by leveraging mesh down-sampling (Ran-
jan et al. 2018). ThenM andMs are bound by the weight
computed following Eq. 2. After the network outputs the de-
formed meshMs→t forMs, the deformed result of source
M is computed following Eq. 1. Under this strategy, our
model can handle fine-grained dense human face meshes
with any number of vertices and still retain feature details.

Experiments
Datasets and Implementation Details
COMA (Ranjan et al. 2018) is a 3D dataset which contains
20466 head meshes of 12 different subjects. The Headspace
Dataset (Dai et al. 2020) contains 3D human faces of 1519
people with detailed BMP textures. The training data of
our model are human-animal face mesh pairs. For human
faces, our training set including 10 subjects is randomly se-
lected from 12 subjects in COMA (totally 17410 samples),
and the test set contains 2 subjects by merging the others
(2 subjects with 1000 samples) in COMA and extra 100
subject-dependent samples in Headspace. For animal faces,
we choose one cat mesh, one mouse mesh and one monkey
mesh. More details are in the supplementary materials.

Implementation Details. The network layers of ΦE , ΦG,
and ΦD are the same as encoders and the decoders used in
Neural Cages (Wang et al. 2020) which are the simplified
versions of AtlasNet (Groueix et al. 2018).

Evaluation Metrics
We evaluate the cross-species 3D face morphing task from
two aspects. That is Shape Morphing Error (SME) be-
tween the source and target, and Feature Preserving Error
(FPE) of human faces, which are two conflicting goals.

SME is defined as the sum of two metrics (i.e., species
classification error and shape alignment error). The species
classification error is measured by an animal classifier based

So
ur

ce

Target

Figure 6: Morphing results of different people to different
animals. The identity features of people are well preserved.

on ResNet-18 (He et al. 2016), which achieves a 95.6% av-
erage accuracy trained with over 10,000 images of three an-
imals. The other shape alignment error is the Chamfer dis-
tance between the source and the target.

FPE is designed to measure the identity difference
between source and deformed human using identity
loss (Gecer et al. 2019). We render the original face and
deformed face to 2D plane with texture, then we use pre-
trained face recognition model from ArcFace (Deng et al.
2019) to get the embedding vector and compute the cosine
distance. Here we use the 100 textured faces with 18000
vertices for FPE. Note that these metrics do not favor any
method, since the Chamfer distance is optimized in all meth-
ods and the other metrics are optimized in none methods.

Morphing Results
We conduct a series of qualitative experiments and illustrate
the high quality of our deformation results.

Shape Alignment using EC. As shown in Fig. 5, we vi-
sualize the controllers and deformed results of morphing a
coarse human face into a mouse face. We can see that the de-
formation of controllers is corresponding to the deformation
of the human face in an intuitive manner, which is prone to
add mapping constraints and provides more stable platform
for sophisticated or meticulous deformation.

Feature Preservation. The deformed results of four peo-
ple to three animals in Fig. 6 show that AFM is able to
preserve the characteristics of different sources, such as the
identity, the boniness of cheeks and chin, the jawbone shape
and so on. In order to demonstrate the practicability and ver-
satility of our method in high-quality real textured human
faces, we produce morphing results with texture rendering
of four human faces by mapping the texture of source human
to deformed human directly, as shown in Fig. 7. Moreover,
the dynamic process of morphing a human face to a cat face
is shown in Fig. 8 to demonstrate the wide applicability.

Sparse-to-dense Results. Fig. 9 exhibits the morphing re-
sults of two fine-grained human faces with over 18,000 ver-
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Figure 7: High-quality vivid morphing results produced for
fine-grained human faces with texture by AFM.
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Figure 8: Dynamic process of human-to-cat morphing.
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Figure 9: Morphing results for fine-grained human faces
with 18,000 vertices by sparse-to-dense strategy. Our AFM
well preserves the shape features such as the nasolabial fold
of the woman, and the beard and eye bags of the man.

tices by sparse-to-dense strategy. It can be easily seen that
AFM is able to process fine-grained meshes, where the num-
ber of vertices is far larger than that of training data.

Analysis on similar deformation methods. We com-
pare our method with other existing similar methods,
e.g., optimization-based method (non-rigid ICP (Amberg,
Romdhani, and Vetter 2007)), regression-based method
(3DN (Wang et al. 2019b), and KeypointDeformer (Jakab
et al. 2021)). For non-rigid ICP, the same six landmarks
as AFM are used. For the regression-based methods, we
retrain them on our datasets with off-the-shelf codes and
their provided training protocols. Fig. 10 shows the quali-
tative results, and Fig. 11 and Tab. 1 exhibit the quantita-

Source Target 3DN OursKeypoint
Deformer

Nonrigid 
ICP

Figure 10: Comparison of our method with nonrigid
ICP (Amberg, Romdhani, and Vetter 2007) 3DN (Wang
et al. 2019b) and KeypointDeformer (Jakab et al. 2021). Our
method outperforms them on face morphing.

AFM w/o ℒ𝑅
NC IC w/o map IC w/ LBM EC w/o map EC w/ LBM AFM (Ours)

AFM w/o ℒ𝑒𝑦𝑒 3DN Keypoint Deformer
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Figure 11: Quantitative comparison in terms of Shape Align-
ment Error (SAE) and Feature Preserving Error (FPE). The
point nearest to the bottom left is the best.

tive results. Nonrigid ICP creates artifacts and yields feature
distortion. 3DN only focuses on the shape alignment, and
completely corrupts the human facial features. KeypointDe-
former causes semantic mismatch (right ear) as some key-
points of their predictions are wrong. We experimentally
find that our method outperforms them on face morphing.

Moreover, extended experiments on other tasks (i.e., hu-
man bodies, hand, person-to-person, etc.) shows the gener-
alization and wide applicability of AFM. Please refer to sup-
plementary materials for more results.

Ablation Studies
In this section, we develop two experimental methods
termed Implicit Controller (IC) and Landmark-based Map-
ping (LBM) to demonstrate the effectiveness of AFM.

Baseline Using Neural Cages. Neural Cages (Wang et al.
2020) (NC) performs direct deformation on objects and pre-
serves surface details well. We regard the human facial fea-
tures as surface details and regard animal faces as target
shapes. We set the vertex number of NC’s cage to 322 (same
with us) and use the other default training setting of NC to
train on our human-animal face pairs as our baseline.

IC and LBM. The difference between IC and EC is that
there are no explicit constraints for IC when training, i.e.,
LEC = 0. LBM is also a mapping method to maintain se-
mantic consistency, while it directly computes the L2 loss
between landmarks on the deformed and target faces instead
of controllers compared with CBM. The loss of LBM is for-
mulated as:

LLBM = L2(Ms→t[ls],Mt[lt]), (12)
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Figure 12: Qualitative comparison of ablation studies. The results demonstrate the necessity and effectiveness of EC and CBM.

EC IC CBM LBM MS HRS Score
Nonrigid ICP / / / / 6.8 3.8 5.30
3DN / / / / 9.1 0.1 4.60
KeypointDeformer / / / / 5.8 4.6 5.20
NC 7 3 7 7 1.1 8.5 4.80
IC w/o map 7 3 7 7 1.9 1.6 1.75
IC w/ LBM 3 7 7 3 6.2 3.4 4.80
EC w/o map 3 7 7 7 2.6 2 2.30
EC w/ LBM 3 7 7 3 7.1 4.6 5.85
AFM (Ours) 3 7 3 7 8.4 8.1 8.25

Table 1: Comparison on techniques and user studies scores
(mean) in terms of Morphing Score (MS) and Human
Recognition Score (HRS).

where ls and lt represent the landmark indexes of source and
target. It is worth noting that the basis for CBM is EC, thus
the only choice for mapping of IC is LBM.

Ablation studies settings. To illustrate the effectiveness
of EC and CBM, we design four settings on human-to-
cat morphing: 1) IC w/o mapping (i.e., w/o CBM and w/o
LBM), 2) IC w/ LBM, 3) EC w/o mapping (i.e., w/o CBM
and w/o LBM), 4) EC w/ LBM. Notice that the compari-
son of their techniques is shown in Tab. 1. For losses, we let
LR = 0 and Leye = 0 to illustrate their effectiveness.

Fig. 11 shows the quantitative results of the above meth-
ods using SAE and FPE. Each 2D point in the figure rep-
resents one method, and the coordinates represent the value
of two metrics, where the origin is the ideal result. This fig-
ure confirms that our AFM achieves the balance of struc-
ture change and human feature preservation better. Fig. 12
shows the qualitative results. Compared with the baseline,
our method realizes the semantic-adaptive fine deformation
of the human face. Compared with IC w/o mapping and EC
w/o mapping, the results show that the human facial features
undergo severe distortion without mapping. The results for
losses show that LR greatly enhances the effect of align-
ment, and Leye strengthens the preservation of human eyes.

Effectiveness of EC and CBM. As illustrated in Fig. 12
(blue box), the controller of IC w/ LBM is irregular and the
deformed face is full of spiky artifacts. As shown in the yel-
low box, EC w/ LBM corrupts face features and creates self-
intersections and non-physical distortions. Especially for the
ears, the vertices of the face which do not belong to the ears
are stretched together. It indicates that EC and CBM help
preserve human facial features better during mapping.

User study. We also compare the various methods via
a human subjective evaluation for the 9 methods listed in
Tab. 1. Specifically, we introduce two types of user stud-
ies, Morphing Score (MS) and Human Recognition Score
(HRS). For MS, we randomly use 50 groups of meshes, each
consists of the source, the target, and the results of all meth-
ods. For each group, the participants are asked to score the
results by the degree of the morphing as MS, from 0 to 10
(0 is the worst, 10 is the best). For HRS, we randomly se-
lect deformed results of 50 different people for each method
respectively, and show participants a deformed face and 10
source faces (including one real source and nine randomly
selected different source) each time. The participants are
then asked to choose the right source. We multiply the cor-
rect rate of the participants’ choices by 10 as HRS. We con-
duct the user study with over 100 participants and calculate
the mean value of two scores of each method as our user
study scores. The results show that our method outperforms
the others in the preference of participants.

The above experiments demonstrate the necessity and ef-
fectiveness of AFM on cross-species 3D face morphing.

Conclusion
In this paper, we propose an alignment-aware 3D face
morphing framework called AFM for a new potential
task: cross-species 3D face morphing. Explicit Controller
and Controller-based Mapping are proposed to build the
semantic-adaptive correspondences between human and ani-
mal faces which helps preserve human features better. Com-
prehensive experimental results demonstrate the effective-
ness and exquisite performance of our method.
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