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Abstract

We present a collaborative learning method called Mutual
Contrastive Learning (MCL) for general visual representation
learning. The core idea of MCL is to perform mutual interac-
tion and transfer of contrastive distributions among a cohort
of networks. A crucial component of MCL is Interactive Con-
trastive Learning (ICL). Compared with vanilla contrastive
learning, ICL can aggregate cross-network embedding infor-
mation and maximize the lower bound to the mutual infor-
mation between two networks. This enables each network to
learn extra contrastive knowledge from others, leading to bet-
ter feature representations for visual recognition tasks. We
emphasize that the resulting MCL is conceptually simple yet
empirically powerful. It is a generic framework that can be
applied to both supervised and self-supervised representation
learning. Experimental results on image classification and
transfer learning to object detection show that MCL can lead
to consistent performance gains, demonstrating that MCL can
guide the network to generate better feature representations.
Code is available at https://github.com/winycg/MCL.

Introduction
Contrastive learning has been widely demonstrated as
an effective framework for both supervised (Schroff,
Kalenichenko, and Philbin 2015; Khosla et al. 2020) and
self-supervised (Luo et al. 2020; Yao et al. 2020; He et al.
2020; Chen et al. 2020b; Li et al. 2021; Zhang et al. 2021) vi-
sual representation learning for artificial intelligence appli-
cations (Xu et al. 2021). The core idea of contrastive learn-
ing is to pull positive pairs together and push negative pairs
apart in the feature embedding space by a contrastive loss.
The current pattern of contrastive learning consists of two
aspects: (1) how to define positive and negative pairs; (2)
how to form a contrastive loss. The main difference between
supervised and self-supervised contrastive learning lies in
the aspect (1). In the supervised scenario, labels often guide
the definition of contrastive pairs. A positive pair is formed
by two samples from the same class, while two samples from
different classes form a negative pair. In the self-supervised
scenario, since we do not have label information, a posi-
tive pair is often formed by two views (e.g. different data
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(a) Positive and negative pairs
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(b) Vanilla Contrastive Learning with Mutual Mimicry
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(c) Interactive Contrastive Learning with Mutual Mimicry

Figure 1: Overview of the proposed Mutual Contrastive
Learning. f1 and f2 denote two different networks. vi

m is
the embedding vector inferred from fm with the input sam-
ple xi. The dashed and dotted arrow denotes the direction
we want to push close or apart by a contrastive loss. We also
perform mutual alignment between two different softmax-
based similarity distributions.

augmentations) of the same sample, while negative pairs are
formed by different samples. Given the positive and negative
pairs, we can apply a contrastive loss to generate a meaning-
ful feature embedding space. In general, loss functions are
independent of how to define pairs. This paper focuses on a
generic mutual contrastive loss among multiple networks.

Beyond feature embedding-based contrastive learning,
another vein for supervised learning focuses on logit-based
learning. The conventional way is to train a network us-
ing cross-entropy loss between predictive class probability
distribution and the one-hot ground-truth label. Some logit-
based online Knowledge Distillation (KD) (Zhang et al.
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2018; Lan, Zhu, and Gong 2018; Song and Chai 2018)
methods demonstrate that a cohort of models can bene-
fit from mutual learning of class probability distributions.
Each model in such a peer-teaching manner learns better
compared with learning alone in conventional supervised
training. From this perspective, we hypothesize that it may
be desirable to perform mutual contrastive learning among
a cohort of models for learning better feature representa-
tions. Unlike the class posterior, feature embeddings con-
tain structured knowledge and are more tractable to capture
dependencies among various networks. However, existing
works (Khosla et al. 2020; He et al. 2020; Chen et al. 2020b)
often train a single network to encode data points and apply
contrastive learning for its own feature embedding space.
Thus it makes sense to take advantage of collaborative learn-
ing for better visual representation learning.

To this end, we propose a simple Mutual Contrastive
Learning (MCL) framework. The main core of MCL is
to perform mutual interaction and transfer of contrastive
distributions among a cohort of models. MCL includes
Vanilla Contrastive Learning (VCL) and Interactive Con-
trastive Learning (ICL). Compared with the conventional
VCL, our proposed ICL forms contrastive similarity distri-
butions between diverse embedding spaces derived from two
different networks. We demonstrate that the objective of ICL
is equivalent to maximizing the lower bound to the mutual
information between two peer networks. This can be under-
stood to capture dependencies and enable a network to learn
extra contrastive knowledge from another network.

Inspired by the idea of DML (Zhang et al. 2018), we also
perform mutual alignment between different softmax-based
contrastive distributions from various networks formed by
the same data samples. Similar to DML (Zhang et al. 2018),
the distributions can be seen as soft labels to supervise oth-
ers. Such a peer-teaching manner with soft labels takes ad-
vantage of representation information embedded in differ-
ent networks. Over two types of contrastive learning, we
can derive soft VCL label and soft ICL label. Although the
soft VCL label has been applied in previous KD works (Ge,
Chen, and Li 2020; Fang et al. 2021), its anchor and con-
trastive embeddings are still formed from the same network,
limiting the information interactions. Instead, our proposed
soft ICL label aggregates cross-network embeddings to con-
struct contrastive distributions, which is demonstrated to be
more informative than the conventional soft VCL label.

To maximize the effectiveness of MCL, we summarize
VCL and ICL with mutual mimicry into a unified frame-
work, as illustrated in Fig. 1. MCL helps each model capture
extra contrastive knowledge to construct a better representa-
tion space. Inspired by DML, since networks start from dif-
ferent initial conditions, each one can learn knowledge that
others have not. In fact, MCL can be regarded as a group-
wise contrastive loss and is orthogonal to defining positive
and negative pairs. Therefore, we can readily apply MCL for
both supervised and self-supervised contrastive learning.

We apply MCL to representation learning for a broad
range of visual tasks, including supervised and self-
supervised image classification and transfer learning to ob-
ject detection. MCL can lead to consistent performance

gains upon the baseline methods. Note that collaborative
learning among a cohort of models is conducted during the
training stage. Any network in the cohort can be kept during
the inference stage. Compared with the original network, the
kept network does not introduce additional inference costs.

Our main contributions are listed as follows: (1) We pro-
pose a MCL framework that aims to facilitate mutual inter-
action and transfer of contrastive knowledge among a cohort
of models. (2) MCL is a new collaborative training scheme
in terms of representation learning. It is a simple yet pow-
erful framework that can be applied to both supervised and
self-supervised representation learning. (3) Thorough exper-
imental results show that MCL can lead to significant perfor-
mance improvements across frequently-used visual tasks.

Related Work
Contrastive Learning. Contrastive learning has been ex-
tensively exploited for both supervised and self-supervised
visual representation learning. The main idea of contrastive
learning is to push positive pairs close and negative pairs
apart by a contrastive loss (Hadsell, Chopra, and LeCun
2006) to obtain a discriminative space. For supervised learn-
ing, contrastive learning is often used for image classifica-
tion (Khosla et al. 2020) and deep metric learning (Schroff,
Kalenichenko, and Philbin 2015). Recently, self-supervised
contrastive learning can guide networks to learn general
features and achieve state-of-the-art performance for down-
stream visual recognition tasks. The core idea is to learn in-
variant representations over human-designed pretext tasks
by a contrastive loss (Oord, Li, and Vinyals 2018). Typ-
ical pretext tasks are jigsaw (Noroozi and Favaro 2016)
used in PIRL (Misra and Maaten 2020) and data augmen-
tations used in SimCLR (Chen et al. 2020b) and MoCo (He
et al. 2020). This paper does not design a new contrastive
method. Instead, our focus is to propose a generic mutual
contrastive learning framework. We can incorporate MCL
with the above advanced contrastive works to learn better
feature representations by taking advantage of collabora-
tive learning. Although previous MVCL (Yang, An, and Xu
2021) also conducts contrastive representation learing with
multiple networks, it does not perform explicit transfer of
contrastive distributions. Moreover, MVCL can only be ap-
plied to the supervised scenario and can not generalize to
self-supervised learning.

Collaborative Learning. The idea of collaborative learn-
ing has been explored in online knowledge distillation.
DML (Zhang et al. 2018) shows that a group of models
can benefit from mutual learning of predictive class prob-
ability distributions. CL (Song and Chai 2018) further ex-
tends this idea to a hierarchical architecture with multiple
classifier heads. PCL (Wu and Gong 2021) introduces an
extra temporal mean network for each peer as the teacher
role. HSSAKD (Yang et al. 2021b) proposes mutual trans-
fer of self-supervision augmented distributions by extending
the teacher-student based counterpart (Yang et al. 2021a).
In contrast to mutual mimicry, ONE (Lan, Zhu, and Gong
2018), OKDDip (Chen et al. 2020a) and KDCL (Guo et al.
2020) construct an online teacher via a weighted ensemble
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logit distribution but differ in various aggregation strategies.
Beyond logit level, we take advantage of collaborative learn-
ing from the perspective of representation learning. More-
over, we can readily incorporate MCL with previous logit-
based methods together.

Embedding-based Relation Distillation. Compared with
the final class posterior, the latent feature embeddings
encapsulates more structural information. Some previous
KD methods transfer the embedding-based relational graph
where each node represents one sample (Park et al. 2019;
Peng et al. 2019). More recently, MMT (Ge, Chen, and Li
2020) employs soft softmax-triplet loss to learn relative sim-
ilarities from other networks for unsupervised domain adap-
tation on person Re-ID. To compress networks over self-
supervised MoCo (He et al. 2020), SEED (Fang et al. 2021)
transfers soft InfoNCE-based (Oord, Li, and Vinyals 2018)
contrastive distributions from a teacher to a student. A com-
mon characteristic of previous works is that contrastive dis-
tributions are often constructed from the same embedding
space, restricting peer information interactions. Instead, we
aggregate cross-network embeddings to model interactive
contrastive distributions.

Methodology
Collaborative Learning Architecture
Notation. A classification network f(·) can be divided into
a feature extractor ϕ(·) and a linear FC layer FC(·). f maps
an input image x to a logit vector z, i.e. z = f(x) =
FC(ϕ(x)). Moreover, we add an additional projection head
φ(·) that includes two sequential FC layers with a middle
ReLU. φ(·) is to transform a feature embedding from the
feature extractor ϕ(·) into a latent embedding v ∈ Rd, i.e.
v = φ(ϕ(x)), where d is the embedding size. The embed-
ding v is used for contrastive learning.

Training Graph. The overall training graph contains
M(M > 2) classification networks denoted by {fm}Mm=1
for collaborative learning. When M = 2, we use two in-
dependent networks f1 and f2. When M > 2, the low-
level feature layers across {fm}Mm=1 are shared to reduce
the training complexity. All the same networks in the cohort
are initialized with various weights to learn diverse repre-
sentations. This is a prerequisite for the success of knowl-
edge mutual learning. Each fm in the cohort is equipped
with an additional embedding projection module φm. The
overall training graph is shown in Fig. 3.

Inference Graph. During the test stage, we discard all
projection modules {φm}Mm=1 and keep one network for in-
ference. The architecture of the kept network is identical to
the original network. That is to say that we do not introduce
extra inference costs. Moreover, we can select any fm in the
cohort for the final deployment.

Mutual Contrastive Learning
Vanilla Contrastive Learning (VCL). The idea of con-
trastive loss is to push positive pairs close and negative pairs
apart in the latent embedding space. Given an input sam-
ple x0 as the anchor, we can obtain 1 positive sample x1

and K(K > 1) negative samples {xk}K+1
k=2 . For supervised

learning, the positive sample is from the same class with the
anchor, while negative samples are from different classes.
For self-supervised learning, the anchor and positive sam-
ples are often two copies from different augmentations ap-
plied on the same instance, while negative samples are dif-
ferent instances. For ease of notation, we denote the anchor
embedding as v0

m, the positive embedding as v1
m andK neg-

ative embeddings as {vk
m}K+1

k=2 . m represents that the em-
bedding is generated from fm. Here, feature embeddings are
preprocessed by l2-normalization.

We use the dot product to measure similarity distribution
between the anchor and contrastive embeddings with soft-
max normalization. Thus, we can obtain contrastive prob-
ability distribution pm = softmax([(v0

m · v1
m/τ), (v

0
m ·

v2
m/τ), · · · , (v0

m · vK+1
m /τ)]), where τ is a constant tem-

perature. pm measures the relative sample-wise similarities
with a normalized probability distribution. A large proba-
bility represents a high similarity between the anchor and
a contrastive embedding. We use cross-entropy loss to force
the positive pair close and negative pairs away upon the con-
trastive distribution pm:

LV CL
m = − log p1

m = − log
exp(v0

m · v1
m/τ)∑K+1

k=1 exp(v0
m · vk

m/τ)
. (1)

Here, pk
m is the k-th element of pm. This loss is equiva-

lent to a (K + 1)-way softmax-based classification loss that
forces the network to classify the positive sample correctly.
In fact, the form of Eq.(1) is an InfoNCE loss (Oord, Li,
and Vinyals 2018), which has been widely used in recent
self-supervised contrastive learning (He et al. 2020). When
applying contrastive learning to a cohort ofM networks, the
vanilla method is to summarize each contrastive loss:

LV CL
1∼M =

M∑
m=1

LV CL
m . (2)

Interactive Contrastive Learning (ICL). However,
vanilla contrastive learning does not model cross-network
relationships for collaborative learning. This is because the
contrastive distribution is learned from the network’s own
embedding space. To take full advantage of information
interaction among various peer networks, we propose a
novel Interactive Contrastive Learning (ICL) to model
cross-network interactions to learn better feature repre-
sentations. We formulate ICL for the case of two parallel
networks fa and fb, where a, b ∈ {1, 2, · · · ,M}, a 6= b,
and then further extend ICL to more than two networks
among {fm}Mm=1.

To conduct ICL, we first fix fa and enumerate over fb.
Given the anchor embedding v0

a extracted from fa, we
enumerate the positive embedding v1

b and negative embed-
dings {vk

b }
K+1
k=2 extracted from fb. Here, both {vk

a}K+1
k=0

and {vk
b }

K+1
k=0 are generated from the same K + 1 sam-

ples {xk}K+1
k=0 correspondingly, as illustrated in Fig. 1a.

The contrastive probability distribution from fa to fb can
be formulated as qa→b = softmax([(v0

a · v1
b/τ), (v

0
a ·
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v2
b/τ), · · · , (v0

a·vK+1
b /τ)]). Similar to Eq.(1), we use cross-

entropy loss upon the contrastive distribution qa→b:

LICL
a→b = − log q1

a→b = − log
exp(v0

a · v1
b/τ)∑K+1

k=1 exp(v0
a · vk

b /τ)
. (3)

Here, qk
a→b is the k-th element of qa→b. We can observe that

the main difference between Eq.(1) and Eq.(3) lies in various
types of embedding space for generating contrastive distri-
butions. Compared with Eq.(1), Eq.(3) employs contrastive
embeddings from another network instead of the network’s
own embedding space. It can model explicit corrections or
dependencies in various embedding spaces among multiple
peer networks, facilitating information communications to
learn better feature representations.

When extending to {fm}Mm=1, we perform ICL in every
two of M networks to model fully connected dependencies,
leading to the overall loss as:

LICL
1∼M =

M∑
1≤a<b≤M

(LICL
a→b + LICL

b→a) (4)

Theoretical Analysis. Compared to Eq.(1), we attribute
the superiority of minimizing Eq.(3) to maximizing the
lower bound on the mutual information I(va,vb) between
fa and fb, which is formulated as:

I(va,vb) ≥ log(K)− E(va,vb)L
ICL
a→b. (5)

Inspired by (Tian, Krishnan, and Isola 2020), detailed
proof from Eq.(3) to derive Eq.(5) is provided in Appendix.
Intuitively, the mutual information I(va,vb) measures the
reduction of uncertainty in contrastive feature embeddings
from fb when the anchor embedding from fa is known.
This can be understood that each network could gain extra
contrastive knowledge from others benefiting from Eq.(3).
Thus, it can lead to better representation learning than in-
dependent contrastive learning of Eq.(1). As K increases,
the mutual information I(va,vb) would be higher, indicat-
ing that fa and fb could learn more common knowledge.

Soft Contrastive Learning with Online Mutual Mimicry.
The success of Deep Mutual Learning (Zhang et al. 2018)
suggests that each network can generalize better from mutu-
ally learning other networks’ soft class probability distribu-
tions in an online peer-teaching manner. This is because the
output of class posterior from each network can be seen as a
natural soft label to supervise others. Based on this idea, it is
desirable to derive soft contrastive distributions as soft labels
from contrastive learning, for example, pm from VCL and
qa→b from ICL. In theory, both pm and qa→b can also be
seen as class posteriors. Thus it is theoretically reasonable
to perform mutual mimicry of these contrastive distributions
for better representation learning.

Specifically, we utilize Kullback Leibler (KL)-divergence
to force each network’s contrastive distributions to align cor-
responding soft labels provided from other networks within
the cohort. This paper focuses on mutually mimicking two
types of contrastive distributions from VCL and ICL:

Soft Vanilla Contrastive Learning (Soft VCL). For
refining pm from fm, the soft pseudo labels are

peer contrastive distributions {pl}l=M
l=1,l 6=m generated from

{fl}l=M
l=1,l 6=m, respectively. We use KL divergence to force

pm to align them. For applying soft VCL to the cohort of
{fm}Mm=1, the overall loss can be formulated as:

LSoft V CL
1∼M =

M∑
m=1

M∑
l=1,l 6=m

KL(pl ‖ pm). (6)

Here, pl is the soft label detached from gradient back-
propagation for stability.

Soft Interactive Contrastive Learning (Soft ICL).
Given two networks fa and fb, we can derive interac-
tive contrastive distributions qa→b and qb→a using ICL. It
makes sense to force the consistency between qa→b and
qb→a for mutual calibration by Soft ICL. When extending
to {fm}Mm=1, we perform Soft ICL in every two of M net-
works, leading to the overall loss as:

LSoft ICL
1∼M =

M∑
a=1

M∑
b=1,b 6=a

KL(qb→a ‖ qa→b). (7)

Here, qb→a is the soft label detached from gradient back-
propagation for stability.

Discussion with Soft VCL and Soft ICL. We remark
that using a vanilla contrastive distribution p as a soft la-
bel has been explored by some previous works (Ge, Chen,
and Li 2020; Fang et al. 2021). These works often con-
struct contrastive relationships using embeddings from the
same network, as illustrated in Eq.(1). In contrast, we pro-
pose an interactive contrastive distribution q to perform Soft
ICL. Intuitively, q aggregates cross-network embeddings to
model the soft label, which is more informative than p con-
structed from a single embedding space. Moreover, refin-
ing a better q may decrease LICL

a→b, further maximizing the
lower bound on the mutual information I(va,vb) between
fa and fb. Compared with soft VCL, soft ICL can facilitate
more adequate interactions among multiple networks. Em-
pirically, we found soft ICL excavates better performance
gains by taking full advantage of collaborative contrastive
learning.

Overall loss of MCL. To take full advantage of collabora-
tive learning, we summarize all contrastive loss terms as the
overall loss for MCL among a cohort of M networks:

LMCL
1∼M =αLV CL

1∼M + βLICL
1∼M

+ γLSoft V CL
1∼M + λLSoft ICL

1∼M , (8)

where α, β, γ and λ are weight coefficients. We set α = β =
0.1 in supervised learning and α = β = 1 in self-supervised
learning. We set γ = λ = 1 for KL-divergence losses.

Apply MCL to Supervised Learning
For the small-scale dataset like CIFAR-100, we create a
class-aware sampler to derive contrastive samples from the
mini-batch. The mini-batch with a batch size of B consists
ofB/2 classes. Each class has two samples, and others from
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Figure 2: Overview of incorporate MCL with MoCo (He et al. 2020) for self-supervised learning.
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Figure 3: Overview of MCL for supervised learning.

different classes are negative samples. We regard each sam-
ple as an anchor instance and others as contrastive instances
within the current mini-batch. For the large-scale dataset
like ImageNet, we create an online memory bank (Wu et al.
2018) to store massive embeddings since the batch size lim-
its the number of available contrastive samples. We illustrate
the overview of MCL under supervised learning in Fig. 3.

For supervised learning, we also perform the conven-
tional sample-independent logit-based learning. For M net-
works {fm}Mm=1 with the input x, their generated logit vec-
tors are {zm}Mm=1. Each network is supervised by a cross-
entropy loss Lce between the predictive probability dis-
tribution and the ground-truth label y. The total loss is:
Lvanilla
1∼M =

∑M
m=1 Lce(softmax(zm), y).

We summarize the logit-based classification loss and
embedding-based MCL as the overall loss for collaborative
learning. The overall loss is Lsup

1∼M :

Lsup
1∼M = Lvanilla

1∼M + LMCL
1∼M . (9)

MCL on Self-Supervised Learning
When MCL is used for self-supervised learning, a positive
pair includes two copies from different augmentations ap-
plied on the same sample, while negative pairs are often con-
structed from different samples. Since recent self-supervised
contrastive learning often uses an InfoNCE loss, i.e. the form
of Eq.(1), MCL can be readily incorporated with those great
works, e.g. MoCo (He et al. 2020) and MoCoV2 (Chen et al.
2020c). As shown in Fig. 2, we illustrate the overview of
incorporating MCL with MoCo for learning visual repre-
sentation between two models. Because self-supervised con-
trastive learning often needs a large number of negative sam-
ples, MoCo constructs a momentum encoder and a queue for
providing contrastive embeddings. Self-supervised learning
only involves feature embedding-based learning so that the
overall loss is formulated as the MCL loss.

Experiments
Supervised Image Classification
Datasets. We use CIFAR-100 (Krizhevsky, Hinton et al.
2009) and ImageNet (Deng et al. 2009) datasets for image
classification, following the standard data augmentation and
preprocessing pipeline (Huang et al. 2017).

Hyper-parameters settings. Following SimCLR (Chen
et al. 2020b), we use τ = 0.1 on CIFAR and τ = 0.07
on ImageNet for similarity calibration of LV CL and LICL.
In soft losses of LSoft V CL and LSoft ICL, we utilize τ =
0.1 × 3 = 0.3 on CIFAR-100 and τ = 0.07 × 3 = 0.21
on ImageNet, 3× larger than that of hard losses to smooth
similarity distributions. The contrastive embedding size d is
128. For CIFAR-100, we useK = 126 as the number of neg-
ative samples due to a batch size of 128. For ImageNet, we
retrieve one positive and K = 8192 negative embeddings
from the memory bank.

Training settings. For CIFAR-100, all networks are
trained by SGD with a batch size of 128 and a weight decay
of 5×10−4. We use a cosine learning rate that starts from 0.1
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Network Baseline DML CL ONE OKDDip MVCL MCL(×4)+Logit Gain (↑)
WRN-16-2 72.55±0.24 75.04±0.22 74.18±0.34 74.04±0.19 74.99±0.45 75.76±0.21 76.34±0.22 0.58
WRN-40-2 76.89±0.29 78.45±0.42 78.64±0.31 79.05±0.22 79.21±0.06 79.16±0.36 80.02±0.45 0.81
WRN-28-4 79.17±0.29 80.54±0.38 80.83±0.27 80.58±0.17 80.47±0.27 81.16±0.36 81.68±0.31 0.52

ShuffleNetV2 1× 70.93±0.24 75.35±0.30 75.94±0.25 75.74±0.33 75.24±0.30 75.88±0.13 77.02±0.32 1.08
HCGNet-A2 79.00±0.41 82.10±0.29 81.94±0.11 80.64±0.20 80.11±0.19 82.04±0.15 82.47±0.20 0.37

Table 1: Top-1 accuracy (%) of jointly training four networks with the same architecture on CIFAR-100. The bold number rep-
resents the best result among various methods. ’Gain’ indicates the accuracy improvement of MCL upon the second-best result.

Network Baseline DML CL ONE OKDDip PCL MVCL MCL(×3)+Logit Gain (↑)
ResNet-18 69.76 69.82±0.08 70.04±0.05 70.18±0.13 69.93±0.06 70.42±0.13 70.46±0.09 70.82±0.06 0.36

Table 2: Top-1 accuracy (%) of jointly training three networks with the same architecture on ImageNet. Part of compared results
are obtained from PCL (Wu and Gong 2021). ’Logit’ represents logit-based collaborative learning (Yang, An, and Xu 2021).

Network Baseline MCL(×2) MCL(×4)

ResNet-32 70.91±0.14 72.96±0.28 74.04±0.07
ResNet-56 73.15±0.23 74.48±0.23 75.74±0.16
ResNet-110 75.29±0.16 77.12±0.20 78.82±0.14
WRN-16-2 72.55±0.24 74.56±0.11 75.79±0.07
WRN-40-2 76.89±0.29 77.51±0.42 78.84±0.22

HCGNet-A1 77.42±0.16 78.62±0.26 79.50±0.15
ShuffleNetV2 0.5× 67.39±0.35 69.55±0.22 70.92±0.28
ShuffleNetV2 1× 70.93±0.24 73.26±0.18 75.18±0.25

Table 3: Top-1 accuracy (%) of jointly training two or four
networks with the same architecture on CIFAR-100. ×M
indicates the cohort has M networks for MCL. ’Gain’ indi-
cates the accuracy improvement of MCL upon the Baseline.

Method ResNet-18 ResNet-34
ImageNet Pascal VOC ImageNet Pascal VOC

Baseline 69.76 76.18 73.30 79.81
MCL (×2) 70.32 77.20 74.13 80.37
MCL (×4) 70.77 77.68 74.34 80.81

Table 4: Top-1 classification accuracy (%) on ImageNet by
jointly training two or four networks and mAP(%) of down-
stream transfer learning to object detection on Pascal VOC
over Faster-RCNN (Ren et al. 2016) framework.

and gradually decreases to 0 throughout the 300 epochs. For
ImageNet, all networks are trained by SGD with a batch size
of 256 and a weight decay of 1× 10−4. The initial learning
rate starts at 0.1 and is decayed by a factor of 10 at 30 and
60 epochs within the total 90 epochs. We conduct all exper-
iments with the same training settings and report the mean
result over three runs for a fair comparison.

Apply MCL upon baseline on CIFAR-100. As shown
in Table 3, we first investigate the efficacy of MCL upon
the conventional supervised training. We apply widely used
ResNets (He et al. 2016), WRNs (Zagoruyko S 2016),
HCGNets (Yang et al. 2020) and ShuffleNetV2 (Ma et al.
2018) as the backbone networks to evaluate the perfor-
mance. All results are achieved from jointly training two net-

works by MCL(×2) or four networks by MCL(×4) with the
same architecture. We observe that our MCL(×2) leads to
an average improvement of 1.69% across various architec-
tures upon the independent training for an individual net-
work. The results indicate that MCL can help each net-
work learn better representations effectively. When extend-
ing MCL(×2) to MCL(×4), the accuracy gains get more
significant. MCL(×4) further advances an average improve-
ment of 3.04% upon baseline. These results verify our claim
that more networks in the cohort can capture richer con-
trastive knowledge, conducive to representation learning.

Training complexity on CIFAR-100. We examine train-
ing costs introduced by MCL. For independently training
two networks with the same architecture by the conventional
cross-entropy loss, the training time and GPU memory are
2× than one network. MCL needs to compute similarity dis-
tributions with contrastive embeddings. For supervised con-
trastive learning on MCL(×2), we use 128-d embedding
size, 1 positive and 126 negative embeddings. Extra com-
putation is 4 × (1 + 126) × 128 ≈ 0.07M FLOPs for each
sample, where 4 represents 2 VCL and 2 ICL distributions.
Given two ResNet-110 with 335M FLOPs for an example,
applying MCL only introduces an extra 0.02% computation.
Since MCL derives contrastive embeddings in mini-batch,
we did not find a distinct change of GPU memory cost.

Apply MCL upon baseline on ImageNet. Extensive ex-
periments on more challenging ImageNet further show the
scalability of MCL for representation learning to the large-
scale dataset. As shown in Table 4, MCL leads to consistent
performance improvements over top-1 and top-5 accuracy.

Transferring features to object detection. We use pre-
trained ResNets on ImageNet as the backbone over Faster-
RCNN (Ren et al. 2016) for downstream object detection on
Pascal VOC (Everingham et al. 2010). The model is fine-
tuned on trainval07+12 and evaluated on test2007
using mAP. The fine-tuning strategy follows the original im-
plementation (Ren et al. 2016). As shown in Table 4, us-
ing MCL for training feature extractors of ResNet-18 and
ResNet-34 on ImageNet achieves significant mAP gains
consistently for downstream detection. The results demon-
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(a) Independent training. (b) Our proposed MCL.

Figure 4: T-SNE visualization of embedding spaces for two
ResNet-32 (Net1 and Net2) with (a) independent training
and (b) our MCL on CIFAR-10 dataset. The embeddings de-
noted by ’©’ or ’+’ are produced from Net1 and Net2, re-
spectively. The colors represent various classes. In (b), two
clusters in the same circle are from the same class.

Network MoCo MCL(×2) MoCoV2 MCL(×2)

ResNet-18 47.45±0.11 48.04±0.13 52.30±0.09 52.76±0.06

Table 5: Top-1 accuracy (%) for self-supervised contrastive
learning on ImageNet.

strate the efficacy of MCL for learning better representations
to downstream semantic recognition tasks.

Comparison with SOTAs. We compare MCL with re-
cent collaborative learning methods, including DML (Zhang
et al. 2018), CL (Song and Chai 2018), ONE (Lan, Zhu,
and Gong 2018), OKDDip (Chen et al. 2020a), PCL (Wu
and Gong 2021) and MVCL (Yang, An, and Xu 2021).
To maximize performance gains, we also incorporate MCL
with logit-based collaborative learning (Yang, An, and Xu
2021) to distill class posterior information. As shown in Ta-
ble 1 and 2, our MCL achieves the best performance gains
against prior works across various networks. It surpasses the
previous SOTA MVCL by an average margin of 0.67% on
CIFAR-100 and a margin of 0.36% over ResNet-18 on Ima-
geNet. These results demonstrate that exploring contrastive
representation may be an effective way for collaborative
learning beyond class posterior.

Apply MCL to Self-Supervised Learning
We incorporate MCL with recent self-supervised contrastive
learning methods of MoCo (He et al. 2020) and Mo-
CoV2 (Chen et al. 2020c). We follow the standard experi-
mental settings and linear classification protocol (He et al.
2020). As illustrated in Fig. 2, we use two networks of f1
and f2 with two peer momentum encoders of f

′

1 and f
′

2
respectively. As shown in Table 5, MCL improves popu-
lar MoCo and MoCoV2 with 0.59% and 0.46% accuracy
improvements on ImageNet, respectively. The results indi-
cate that MCL can help these methods to learn better self-
supervised feature representations.

Loss Baseline MCL(×4)

LV CL - X X - - X
LSoft V CL - - X - - X
LICL - - - X X X
LSoft ICL - - - - X X

ResNet-32 70.91 71.57 73.06 71.92 73.68 74.04
WRN-16-2 72.55 73.49 74.55 73.89 75.20 75.79

Table 6: Ablation study of loss terms over MCL(×4).

M 2 3 4 5

ResNet-32 72.96±0.28 73.74±0.23 74.04±0.07 74.10±0.10
WRN-16-2 74.56±0.11 75.32±0.30 75.79±0.07 75.86±0.25

Table 7: Ablation study of the number of networks M .

Ablation Study and Analysis
Does MCL make networks more similar? With the mu-
tual mimicry by MCL, one may ask if output embeddings
of different networks in the cohort would get more simi-
lar. To answer this question, we visualize the learned em-
bedding spaces of two ResNet-32 with independent training
and MCL, as shown in Fig. 4. We observe that two networks
trained with MCL indeed show more similar feature distri-
butions compared with the baseline. This observation reveals
that various networks using MCL can learn more common
knowledge from others. Moreover, compared with the in-
dependent training, MCL can enable each network to learn
a more discriminative embedding space, which benefits the
downstream classification performance.

Ablation study of loss terms in MCL. As shown in
Table 6, we can observe that each loss term is con-
ducive to the performance gain on CIFAR-100. Moreover,
LICL +LSoft ICL outperforms the counterpart of LV CL +
LSoft V CL with an average accuracy gain of 0.64%. The re-
sults verify our claim that ICL and its soft labels are more
crucial than the conventional VCL and its soft labels. This
is because ICL is more informative than VCL by aggregat-
ing cross-network embeddings. Finally, summarizing VCL
and ICL into a unified MCL framework can maximize the
performance gain for collaborative representation learning.

Impact of the number of networksM . It is interesting to
examine performance gains as the number of networks for
MCL increases. As shown in Table 7, We start from M = 2
to M = 5 and find accuracy steadily increases but saturates
at M = 5 over ResNet-32 and WRN-16-2 on CIFAR-100.

Conclusion
We propose a simple yet effective Mutual Contrastive Learn-
ing method for collaboratively training a cohort of models
from the perspective of contrastive representation learning.
Experimental results show that it can enjoy broad usage for
both supervised and self-supervised learning. We hope our
work can foster future research to take advantage of collab-
orative training from multiple networks to enhance super-
vised or self-supervised representation learning.
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