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Abstract

Temporal action proposal generation (TAPG) is a challenging
task that aims to locate action instances in untrimmed videos
with temporal boundaries. To evaluate the confidence of pro-
posals, the existing works typically predict action score of
proposals that are supervised by the temporal Intersection-
over-Union (tIoU) between proposal and the ground-truth. In
this paper, we innovatively propose a general auxiliary Back-
ground Constraint idea to further suppress low-quality pro-
posals, by utilizing the background prediction score to restrict
the confidence of proposals. In this way, the Background
Constraint concept can be easily plug-and-played into exist-
ing TAPG methods (e.g., BMN, GTAD). From this perspec-
tive, we propose the Background Constraint Network (BC-
Net) to further take advantage of the rich information of ac-
tion and background. Specifically, we introduce an Action-
Background Interaction module for reliable confidence eval-
uation, which models the inconsistency between action and
background by attention mechanisms at the frame and clip
levels. Extensive experiments are conducted on two popular
benchmarks, i.e., ActivityNet-1.3 and THUMOS14. The re-
sults demonstrate that our method outperforms state-of-the-
art methods. Equipped with the existing action classifier, our
method also achieves remarkable performance on the tempo-
ral action localization task.

Introduction
With the rapid development of mobile devices and the Inter-
net, a massive amount of video content is being uploaded to
the Internet every second. The volume of video information
has far exceeded the processing capacity of the conventional
manual system, thus video content analysis has attracted the
extensive interest of academic and industrial communities.

One of the most active research topics in video under-
standing is temporal action detection, which focuses on both
classifying the action instances present in an untrimmed
video and localizing them with temporal boundaries. The
temporal action detection task, like object detection, is di-
vided into two parts: temporal action proposal generation
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Figure 1: Illustration of the background constraint concept.
We introduce a background score for the confidence of the
proposal, which helps to restrict false-positive proposals.

(TAPG) and action recognition. Deep learning has recently
been shown to significantly improve action recognition per-
formance (Simonyan and Zisserman 2014; Lin, Gan, and
Han 2019; Wu et al. 2021a). However, the performance
of the two-stage temporal action detectors in mainstream
benchmarks (Jiang et al. 2014; Caba Heilbron et al. 2015a)
still has much room for improvement, which is mostly in-
fluenced by the quality of proposals from temporal action
proposal generation.

Hence, great efforts have been devoted to TAPG task (Lin
et al. 2018, 2019). These research generally use the tempo-
ral Intersection-over-Union (tIoU) between the proposal and
instance, called the action score, to evaluate the confidence
of the proposal in order to develop high-quality temporal ac-
tion proposals with dependable confidence scores. However,
the background information is also significant but was previ-
ously overlooked. For instance, as illustrated in Figure 1, we
can easily restrict false-positive proposals by detecting the
background “Move a chair”. Furthermore, we can evaluate
the inconsistency between the background “Move a chair”
and the action “Hitting a pinata”, leading to better action
score and background score of the proposal.

Motivated by above observations, we propose a general
auxiliary Background Constraint idea to reduce localization
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errors. Specifically, we introduce a background score for the
proposal’s confidence, and its supervision signal is defined
by the temporal Intersection-over-Anchor (tIoA) between
the proposal and the background. This concept can be flexi-
bly integrated into existing TAPG methods (e.g., BMN (Lin
et al. 2019), GTAD (Xu et al. 2020)) to improve the perfor-
mance in a plug-and-play fashion.

To further mine the rich information of action and
background, in this paper, we propose the Background
Constraint Network (BCNet) to generate high-quality tem-
poral action proposals. An essential component of BCNet
is the Action-Background Interaction (ABI) module, which
performs both frame-level and clip-level action-background
interaction to obtain reliable confidence scores of proposals.
To do so, we first generate action features and background
features for each frame using self-attention and difference-
attention. Sliding windows are then used to generate multi-
scale anchors from action and background features. The
clip-level interaction then discovers the complex relation-
ships between action-anchors and background-anchors, and
outputs the action and background scores for these anchors.
We also propose a Boundary Prediction (BP) module for
precisely locating action boundaries. To capture the com-
plex long-term temporal relationships while avoiding the in-
fluence of global noise, we aggregate the original feature se-
quence using self-attention and cross-attention mechanisms.
The output representation is then used as the global repre-
sentation for the boundary prediction task. Finally, we feed
the boundary probabilities, action scores and background
scores into the post processing module to get the final pro-
posal set.

Experimental results show the superiority of our system
on two popular datasets, i.e., ActivityNet (Caba Heilbron
et al. 2015b) and THUMOS14 (?). Our BCNet achieves sig-
nificant performance and outperforms existing state-of-the-
art methods on both datasets. Our contributions are summa-
rized as follows:

• We introduce a Background Constraint concept, which
can be integrated easily with existing TAPG methods
(e.g., BMN, GTAD) and improve performance signifi-
cantly.

• We propose a Background Constraint Network, which
consists of multiple attention units, i.e., self-attention,
cross-attention and difference-attention, and generates
high-quality proposals by exploiting inconsistency be-
tween action and background.

• Extensive experiments demonstrate that our method
outperforms the existing state-of-the-art methods on
THUMOS14 and achieves comparable performance on
ActivityNet-1.3, in both temporal action proposal gener-
ation task and temporal action detection task.

Related Work
Video Action Recognition
Action recognition is a fundamental task in the video under-
standing area. Currently, there are two types of end-to-end
action recognition methods: 3D CNN-based methods and

2D CNN-based methods. 3D CNNs are natural extensions
of their 2D counterparts and are intuitive spatiotemporal net-
works that directly tackle 3D volumetric video data (Tran
et al. 2015; Carreira and Zisserman 2017) but have a high
computational cost. Other alternative efficient architectures,
such as TSM (Lin, Gan, and Han 2019), TEI (Liu et al.
2020), MVFNet (Wu et al. 2021a), DSANet (Wu et al.
2021b), etc, have been developed to capture temporal infor-
mation with reasonable training resources. These methods
aim to design efficient temporal modules to perform effi-
cient temporal modeling. There is also ongoing research into
dynamic inference (Wu et al. 2020), adaptive frame sam-
pling techniques (Wu et al. 2019; Korbar, Tran, and Torre-
sani 2019), which we believe can complement the end-to-
end video recognition approaches.

Temporal Action Proposal Generation
Temporal action proposal generation aims to detect ac-
tion instances with temporal boundaries and confidence in
untrimmed videos. Existing methods can be mainly di-
vided into Top-down and Bottom-up methods. The Top-
down methods (Gao et al. 2017; Gao, Chen, and Nevatia
2018; Gao et al. 2020; Chen et al. 2019) generate proposals
using sliding windows or pre-defined anchors. The Bottom-
up methods mainly focus on evaluating “actionness”, which
indicates the probability of a potential action, for each frame
or clip in a video. These works (Shou, Wang, and Chang
2016; Zhao et al. 2017) use snippet-wise probability to gen-
erate candidate proposals. BSN (Lin et al. 2018) first pro-
poses to predict start, end and actionness of each frame,
then proposals are generated by constructing start and end
points with high probabilities, with low confidence ones fur-
ther abandoned by an evaluation module. (Lin et al. 2019;
Su et al. 2020; Xu et al. 2020; Lin et al. 2020) generate
all possible combinations of temporal locations to evaluate
confidence of proposals. (Liu et al. 2019) generates coarse
segment proposals by perceiving the whole video sequence
and predicts the frame actionness by densely evaluating each
video frame. These methods evaluate action scores of pro-
posals with rich clip-level context. However, these methods
fail to take full advantage of background by focusing only
on the action score. In our work, we predict the extra back-
ground score for the confidence of proposals to reduce low-
quality proposals.

Transformer and Self-Attention Mechanism
Transformers (Vaswani et al. 2017) has achieved great suc-
cess in natural language processing. Transformer architec-
tures are based on a self-attention mechanism that summa-
rizes content from the source sequence and is capable of
modeling complex and arbitrary dependencies within a lim-
ited number of layers. Recently, many works (Dosovitskiy
et al. 2020; Carion et al. 2020; Liu et al. 2021b; Tan et al.
2021; Wang et al. 2021) have revealed the great potential of
Transformers in the computer vision task. Inspired by the
successful application of Transformers in various fields, we
intuitively take advantage of Transformers in modeling long-
range contextual information. In this paper, we utilize the
Transformer-alike structure to devise three attention units.
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Figure 2: Illustration of the proposed Background Constraint Network. First we apply the feature extractor to encode video
frames. Boundary Prediction (BP) module takes the feature sequence as input, and outputs boundary probability sequence.
Action-Background Interaction (ABI) module takes the feature sequence as input, and outputs features of action and background
at the frame level. Then, we set anchors on features of action and background, and feed them into clip-level interaction to
generate action and background scores of anchors. Finally, we construct proposals based on boundary probabilities sequence
and refine them using the corresponding anchor.

Background Modeling on Temporal Action
Localization
Background modeling in Temporal action localization has
received some attention. Several previous works (Shou,
Wang, and Chang 2016; Yuan et al. 2016) generate pro-
posals by sliding window and classify them into C + 1
classes for C action classes plus background class. Also,
several studies attempt to explicit background modeling
for weakly-supervised temporal action localization. Some
works (Nguyen, Ramanan, and Fowlkes 2019; Lee, Uh, and
Byun 2020) try to classify background frames as a separate
class. (Lee et al. 2020) formulates background frames as out-
of-distribution samples. Essentially, all the above works aim
to perform classification for these proposals. Unlike them,
in our work, we propose a Background Constraint concept
to predict an additional background score for proposal con-
fidence evaluation. To supervise the background score, we
use temporal Intersection-over-Anchor (tIoA) between the
proposal and the background. Our work concentrates on uti-
lizing the background prediction score to restrict the confi-
dence of proposals.

Background Constraint Network
As shown in Figure 2, we propose a Background Con-
straint Network (BCNet) to generate high-quality propos-
als, which mainly consists of two main modules: Action-
Background Interaction Module and Boundary Prediction
Module. Firstly, the Action-Background Interaction (ABI)
module is adopted to perform both frame-level and clip-level
action-background interaction to obtain reliable confidence
scores of proposals. The Boundary Prediction (BP) mod-
ule is then utilized to locate the boundaries of the proposals

by exploiting complex long-term temporal relationships for
boundary regression.

Problem Definition
An untrimmed video U can be denoted as a frame sequence
U = {ut}lvt=1 with lv frames, where ut denotes the t-th RGB
frame of video U . The temporal annotation set of U is made
up of a set of temporal action instances as Ψg = {ϕg

n}
Ng

n=1
and ϕg

n = (tsn , ten), where Ng is the number of ground-
truth action instances, tsn and ten are the starting and ending
time of the action instance φgn, respectively. During training
phase, the Ψg is provided. While in the testing phase, the
predicted proposal set Ψp should cover the Ψg with high
recall and high temporal overlapping.

Background Constraint
To evaluate the confidence of the proposal, existing methods
primarily use the temporal Intersection-over-Union (tIoU)
between the proposal and instance, called action score. The
temporal Intersection-over-Union (tIoU) is used to define
the label of action score, which can be computed by:

Alabel = max{
∣∣∣Gi∩P
Gi∪P

∣∣∣n
i=1
}, (1)

where Gi is the i-th ground truth and P is the proposal, n
is number of ground truth. In this paper, we propose a novel
Background Constraint concept to suppress low-quality pro-
posals (false positive proposal). Specifically, we predict a
extra background score for evaluating the confidence of the
proposal besides the action score. The label of the back-
ground score is generated using temporal Intersection-over-
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Anchor (tIoA), which can be computed by:

Blabel = 1−
n∑

i=1

Gi ∩ P
P

, (2)

where Gi is the i-th ground-truth and P is the proposal, n
is number of ground-truth. It is worth reminding that Alabel

plus Blabel is not equal to 1 in most circumstances.

Action-Background Interaction Module
In this section, we describe the Action-Background Inter-
action (ABI) module in our BCNet. The ABI module con-
ducts action-background interaction on two temporal gran-
ularities: frame-level and clip-level. Inspired by the Trans-
former (Vaswani et al. 2017), ABI module models the inter-
actions with two attention units, i.e., self-attention unit and
difference-attention unit. The details are described next.

Frame-level Interaction. We obtain the frame-wise fea-
ture sequence Fo ∈ RT×C via the feature encoder, where
T is the length of the feature sequence and C is the feature
dimension. First, we use the Self-attention Unit to learn the
relationships between frames and enhance the feature repre-
sentations. The structure of the Self-attention Unit is shown
in Figure 3(a). We utilize the Transformer-alike structure
to devise the self-attention unit, which consists of two sub-
layers: self-attention layer and feed-forward network (FFN).
Specifically, the input sequence Fo is projected onto three
learnable linear transformations to get queries QFo

, keys
KFo

, and values VFo
. Then the self-attention map can be

calculated as follows:

A(QFo
,KFo

) = Softmax

(
QFo

KFo

T

√
C

)
. (3)

We updates each component of the sequence by aggregating
global information from the complete frame sequence by

Fatt = ϕg (A(QFo
,KFo

)VFo
) , (4)

where ϕg is a linear projection function. Also, a residual
connection around each of the two sub-layers and layer nor-
malization is adopted to generate enhanced feature F , which
can be written as:

F
′

= LayerNorm (Fatt + Fo) ,

F = LayerNorm
(
F

′
+ FFN(F

′
)
)
.

(5)

Next, the enhanced features F are fed into the Difference-
attention Unit to aggregate features based on the inconsis-
tency between the action feature Fa and the background fea-
ture Fb under action and background supervision. The struc-
ture of the Difference-attention Unit is shown in Figure 3(c).

The action feature Fa is projected onto two learnable lin-
ear transformations to get queries QFa and values VFa .
Also, we transform the background features Fb to queries
KFb

and values VFb
. Then, we compute the difference map

A(QFa
,KFb

) as:

A(QFa
,KFb

) = Softmax

(
QFaKFb

T

√
C

)
. (6)

In this way,Ai,j represents the difference between the action
frame i and the background frame j. The smaller the value
of Ai,j , the bigger the difference between the background
features and action features. Then we use the difference map
to reweight VFa

, VFb
, and obtain enhanced feature F

′

a, F
′

b
respectively.

Finally, we append a prediction head which encode the
F

′

a,F
′

b with multi-layer perceptron (MLP) network and fol-
lowed by a Sigmoid layer to generate the action and back-
ground probability sequence.

Clip-level Interaction. We first use sliding window group
to generate the action anchors and background anchors with
different scales. Following BMN (Lin et al. 2019), we con-
struct weight term wi,j ∈ RN×T via uniformly sampling N
points between the temporal region for each anchor. First,
we conduct dot product in temporal dimension between wi,j

and F
′

a with the shape C ×N to generate the action anchor.
Then, we get action anchor sequence F c

a ∈ RL×S where L
is number of clip and S = C × N . Similarly, we generate
background anchors sequence F c

b in the same way.
Next, the anchor sequences F c

a and F c
b are fed into the

clip-level action-background interaction to generate action
score and background score. Specifically, we first utilize
two independent Self-attention Units to capture the relation-
ships among action/background anchors, respectively. The
two self-attention units output updated anchor sequence F c

a

′

and F c
b

′
. Similar to the frame-level interaction, F c

a

′
and F c

b

′

are then fed into the Difference-attention Unit to obtain dif-

ference map and reweighted anchor sequence F̃ c
a

′
and F̃ c

b

′
.

Note that the difference map Ai,j represents the feature dif-
ference between i-th action anchor and j-th background an-
chor.

Finally, we add a clip-level predictor which encodes

the F̃ c
a

′
and F̃ c

b

′
with multi-layer perceptron (MLP) and

a Sigmoid layer to predict action scores and background
scores.

Boundary Prediction Module
Long-term temporal modeling is a critical factor in proposal
boundary prediction. It is natural to use self-attention mech-
anism to model long dependencies. However, global mod-
eling is easy to introduce global noise then leads to the
over-smoothing. To this end, we propose a Boundary Pre-
diction (BP) module which introduces original features to
alleviate this phenomenon. This module is built using the
Transformer-alike structure which consist of multiple layers.
Each layer contains a Self-attention Unit, a Cross-attention
Unit and a feed-forward network. Specifically, we first ob-
tain the feature Fi (i represents the input features of layer i,
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if i = 1, Fi = Fo) and Fo. Then, we feed them to the Self-
attention Unit and generate augmented global features F g

i
and F g

o . As shown in Fig. 3(b), we use Cross-attention Unit
to generate the attention map A(F g

i , F
g
o ) which represents

the similarity between the aggregated feature F g
i and the

original aggregated feature F g
o , called the originality score.

To get Fi+1, we aggregate features which have high origi-
nality scores and discard features which have low originality
scores.

The final output representation is then used as the global
representation for the boundary prediction task. Specifically,
we utilize a boundary predictor which encode the output rep-
resentation with multi-layer perceptron (MLP) network and
followed by a Sigmoid layer to generate boundary probabil-
ity sequence.

Training
The overall objective of our framework is defined as:

L = L1 + L2, (7)

whereL1 andL2 are the objective functions of the ABI mod-
ule and the BP module respectively.

Objective of BP module. The BP module generates the
starting and ending probability sequence Ps, Pe. Thus, the
loss function consists of starting loss and ending loss:

L1 = Lbl(Ps, Gs) + Lbl(Pe, Ge), (8)

where Gs and Ge are the ground truth labels of boundary
sequence, and Lbl is the binary logistic regression loss.

Objective of ABI module. The ABI module generates
frame-level and clip-level scores: P f

a ,P f
b ,P̂ c

a ,P̃ c
a and P c

b . P f
a

and P f
b are frame-level action and background classifica-

tion scores. P c
b is clip-level background classification scores.

Following BMN, P̂ c
a is clip-level action classification scores

and P̃ c
a is regression action scores. The loss functionL2 con-

sists of frame-level loss and clip-level loss:

L2 = Lframe + Lclip. (9)

The frame-level loss is

Lframe = Lc(P
f
a , G

f
a) + Lc(P

f
b , G

f
b ), (10)

where Gf
a and Gf

b are the ground truth labels of action and
background probability at frame-level. The clip-level loss is
formulated as follows:

Lclip = Lc(P̂ c
a , G

c
a) + Lr(P̃ c

a , G
c
a) + Lc(P

c
b , G

c
b), (11)

where Gc
a and Gc

b are the ground truth labels of action and
background scores at clip-level. Lc denotes the binary logis-
tic regression loss function and Lr is a smooth L1 loss.

Inference
As mentioned above, the BP module generates boundary
probability and the ABI module generates the action and
background scores. Then we take the boundary probabil-
ity, action scores and background scores into the Post-
processing module. Firstly, we construct a proposals set
ψc
p based on boundary probabilities. Second, the proposal

is refined by a corresponding pre-set anchor. The proposal
ϕ = [t′s, t

′
e] ∈ ψc

p is taken as an example, we compute the
temporal Intersection over Union (tIoU) between proposal ϕ
and anchors, then select a matching anchor pm = [tms , t

m
e ]

to refine proposals. we refine the proposal as:

[ts, te] =

{
[
t′s+tms

2 ,
t′e+tme

2 ], if p̂am > α1 and p̃am > α2

[t′s, t
′
e], others

,

(12)
where p̂am is the anchor action classification score, p̃am
is the action regression score, α1 and α2 are the adjust-
ment thresholds. Finally, we get a proposal set ψp =

{φn = (ts, te, p
s
t′s
, pet′e , p̂

a
m, p̃

a
m, p

b
m)}Nn=1, where pst′s , p

e
t′e

are
the starting and ending probabilities and pbm is anchor back-
ground score.

Following the previous practices, we also perform score
fusion and redundant proposal suppression to further obtain
final results. Specifically, in order to make full use of various
predicted scores for each proposal ϕn, we fuse its bound-
ary probabilities and action-background scores of matching
anchor by multiplication. The confidence score pf can be
defined as :

pf = pst′s · p
e
t′e
· p̃am · p̂am · (1− pbm). (13)

Hence, the final proposal set as

ψ = {ϕn = (ts, te, p
f )}Nn=1. (14)

Moreover, we also use the Soft-NMS algorithm for post-
processing to remove the proposals which highly overlap
with each other.

Experiments
Datasets and Evaluation Metrics
ActivityNet-v1.3 is a large-scale video dataset for action
recognition and temporal action detection tasks. It contains
10K training, 5k validation, and 5k testing videos with 200
action categories, and the ratio of training, validation and
testing sets is 2:1:1.
THUMOS14 contains 200 validation untrimmed videos and
213 test untrimmed videos, including 200 action categories.
This dataset is challenging due to the large variations in the
frequency and duration of action instances across videos.
Evaluation Metrics. Temporal action proposal genera-
tion aims to produce high-quality proposals with high tIoU,
which have a high recall rate. To evaluate quality of pro-
posals, Average Recall (AR) is the average recall rate under
specified tIoU thresholds. Following the standard protocol,
we use thresholds set [0.5:0.05:0.95] on ActivityNetv1.3 and
[0.5:0.05:1.0] on THUMOS14. To evaluate the performance
of temporal action detection task, mean Average Precision
(mAP) under multiple tIoU is the widely-used evaluation
metric. On ActivityNet-v1.3, the tIoU thresholds are set to
{0.5, 0.75, 0.95}, and we also test the average mAP of tIoU
thresholds between 0.5 and 0.95 with step of 0.05. On THU-
MOS14, these tIoU thresholds are set to {0.3, 0.4, 0.5, 0.6,
0.7 }.
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Method @50 @100 @200 @500 @1000
TAG 18.6 29.0 39.6 - -

CTAP 32.5 42.6 52.0 - -
BSN 37.5 46.1 53.2 61.4 65.1
MGG 39.9 47.8 54.7 61.4 64.6
BMN 39.4 47.7 54.8 62.2 65.5

BSN++ 42.4 49.8 57.6 65.2 66.8
TCANet 42.1 50.5 57.1 63.61 66.9
RTD-Net 41.1 49.0 56.1 62.9 -

Ours 45.5 53.6 60.0 67.0 69.8

Table 1: Performance comparison with state-of-the-art pro-
posal generation methods on test set of THUMOS14 in
terms of AR@AN.

Method Feature 0.3 0.4 0.5 0.6 0.7
SST TSN - - 23.0 - -

TURN TSN 44.1 34.9 25.6 - -
SSN TSN 51.9 41.0 29.8 - -
BSN TSN 53.5 45.0 36.9 28.4 20.0
MGG TSN 53.9 46.8 37.4 29.5 21.3
DBG TSN 57.8 49.4 39.8 30.2 21.7
BMN TSN 56.0 47.4 38.8 29.7 20.5

G-TAD TSN 54.5 47.6 40.2 30.8 23.4
BSN++ TSN 59.9 49.5 41.3 31.9 22.8
TCANet TSN 60.6 53.2 44.6 36.8 26.7

Ours TSN 66.5 60.0 51.6 41.0 29.2
BU-TAL I3D 53.2 48.5 42.8 33.8 20.8
P-GCN I3D 63.6 57.8 49.1 - -
AFSD I3D 67.3 62.4 55.5 43.7 31.1

RTD-Net I3D 53.9 48.9 42.0 33.9 23.4
G-TAD+P-GCN I3D 66.4 60.4 51.6 37.6 22.9

RTD+P-GCN I3D 68.3 62.3 51.9 38.8 23.7
MUSES I3D 68.9 64.0 56.9 46.3 31.0

Ours+P-GCN I3D 69.8 62.9 52.0 39.8 24.0
Ours+MUSES I3D 71.5 67.0 60.0 48.9 33.0

Table 2: Performance comparison with state-of-the-art ac-
tion detection methods on test set of THUMOS14, in terms
of mAP (%) at different tIoU thresholds.

Implementation Details
Feature Encoding. Following previous works (Lin et al.
2019; Xu et al. 2020), we adopt the TSN (Wang et al. 2016)
and I3D (Simonyan and Zisserman 2014) for feature encod-
ing. For THUMOS14, the interval σ is set to 8 and 5 for I3D
and TSN respectively. We crop each video feature sequence
with overlapped windows of size T = 256 and stride 128.
As for ActivityNet-1.3, the sampling frame stride is 16, and
each video feature sequence is rescaled to T = 100 snippets
using linear interpolation.
Training and Inference. The number of layers in Bound-
ary Prediction module is 12. Due to the limit of computa-
tion resource, we apply 1D Conv for dimension reduction,
then take the features as the input to the Boundary Pre-
diction module and Action-Background Interaction module.
For each anchor, we use sampling points N = 32. For post-
processing module, we set adjustment thresholds α1 = 0.9
and α2 = 0.8. We train our model from scratch using the
Adam optimizer and the learning rate is set to 10−4 and de-
cayed by a factor of 0.1 after every 10 epoch.

Method AR@1 (val) AR@100 (val) AUC (val)
CTAP - 73.2 65.7
BSN 32.2 74.2 66.2
MGG - 75.5 66.4
BMN - 75.0 67.0

BSN++ 34.3 76.5 68.3
TCANet 34.6 76.1 68.1
RTD-Net 32.8 73.1 65.7

Ours 35.2 76.6 68.7

Table 3: Performance comparison with state-of-the-art pro-
posal generation methods on validation set of ActivityNet-
1.3 in terms of AUC and AR@AN.

Method 0.5 0.75 0.95 Average
Singh et al. 34.5 - - -

SCC 40.0 17.9 4.7 21.7
CDC 45.3 26.0 0.20 23.8

R-C3D 26.8 - - -
BSN 46.5 30.0 8.0 30.0
BMN 50.1 34.8 8.3 33.9
GTAD 50.4 34.6 9.0 35.1
BSN++ 51.3 35.7 8.3 34.9

TCANet w/ BSN 51.9 34.9 7.5 34.4
RTD-Net 46.4 30.5 8.6 30.5

Ours 53.2 36.2 10.6 35.5

Table 4: Performance comparison with state-of-the-art ac-
tion detection methods on validation set of ActivityNet-1.3,
in terms of mAP (%) at different tIoU thresholds and the
average mAP.

Comparison with State-Of-the-Arts
Here we compare our BCNet with the existing state-of-the-
art methods on ActivityNet-v1.3 and THUMOS14. For fair
comparisons, we adopt the same two-stream features used
by previous methods in our experiments.

Results on THUMOS14. BCNet is compared with state-
of-the-art methods in Table 1 and Table 2, where our method
improves the performance significantly for both temporal
action proposal generation and action detection. For the tem-
poral action proposal generation task, results are shown in
Table 1, which demonstrate that BCNet outperforms state-
of-the-art methods in terms of AR@AN with AN varying
from 50 to 1000.

For the temporal action detection task, the proposed BC-
Net also achieves superior results, as shown in Table 2. The
performance of our method exceeds state-of-the-art proposal
generation methods by a big margin at different tIoU thresh-
olds. Specially, BCNet based on TSN feature reaches an
mAP of 51.6 % at IoU 0.5. Besides, the performance of BC-
Net can be further boosted when it is combined with pro-
posal post-processing methods: P-GCN (Zeng et al. 2019)
and MUSES (Liu et al. 2021a). Now BCNet reaches 60.0%
at IoU 0.5, outperforming all the other methods. This sig-
nifies the advantage of BCNet proposals regardless of post-
processing.

Results on ActivityNet-v1.3. In Table 3 and Table 4,

3059



Method w/ BC 0.3 0.4 0.5 0.6 0.7
BMN* - 59.5 54.3 45.1 35.3 24.8
BMN* ! 62.5 (↑ 3.0) 56.3 (↑ 2.0) 47.6 (↑ 2.5) 37.2 (↑ 1.9) 26.3 (↑ 1.5)
GTAD* - 58.4 52.1 43.5 33.3 23.2
GTAD* ! 60.5 (↑ 2.1) 54.1 (↑ 2.0) 45.7 (↑ 2.2) 35.1 (↑ 1.8) 24.5 (↑ 1.3)

Ours - 63.2 58.7 51.2 39.9 28.3
Ours ! 66.5 (↑ 3.3) 60.0 (↑ 1.3) 51.6 (↑ 0.4) 41.0 (↑ 1.1) 29.2 (↑ 0.9)

Table 5: The effectiveness of the Background Constraint (BC). * indicates our implementation with the publicly available code.

we compare the proposed BCNet with other methods on
ActivityNet-v1.3. For the temporal action proposal gener-
ation task, as shown in Table 3, the performance of BCNet
again outperforms state-of-the-art proposal generation meth-
ods in terms of AR@AN with AN varying from 1 to 100 and
AUC. Especially when AN equals 1, we achieve 35.2% re-
garding the AR metric, which indicates that top-1 proposal
has high quality. For the temporal action detection task, as
summarized in Table 4, our method achieves notable im-
provements on mAP over other proposal generation methods
such as BMN (Lin et al. 2019) and G-TAD (Xu et al. 2020)
at all tIoU thresholds. When tIoU is 0.95, the mAP we ob-
tain is 10.6%, indicating that the confidence of the generated
proposals are more reliable.

Ablation Study
In this section, we conduct ablation studies on THUMOS14
to verify the effectiveness of each component in BCNet.

Multi-level ABI module. We perform ablation studies
to verify the effectiveness of multi-level interaction in ABI
module. Frame-level interaction is designed to generate fea-
tures of action and background. Here, the ablation experi-
ment demonstrates the necessity of frame-level interaction
as shown in Table 6. Compared with single-level ABI mod-
ule that only has a clip-level interaction, multi-level ABI
module is improved by 3.6% at tIou 0.3.

Frame Clip 0.3 0.4 0.5 0.6 0.7
- ! 62.9 57.9 49.6 40.4 28.6
! ! 66.5 60.0 51.6 41.0 29.2

Table 6: The effect of ABCNet in frame-level and clip-level.

The effectiveness of Background Constraint. We per-
form ablation studies to verify the effectiveness of the back-
ground constraint idea. To validate the generalizability of
our proposed background constraint idea, we add it to the
BMN, GTAD. The experimental results are shown in Table
5, which reveals that background constraint can also signifi-
cantly improve the performance of existed methods.

Architecture of ABI module. We perform ablation stud-
ies to verify the effectiveness of the architecture of ABI
module. To generate reliable confidence of proposal, ABI
module is designed by exploiting rich information of action
and background. Our proposed ABI module consists of two
key units: self-attention unit and difference-attention unit.
Results are shown in Table 7. The self-attention unit can

improve the performance by a large margin (almost 4.5%)
at tIoU 0.5. Difference-attention unit also brings significant
improvement at tIoU 0.3, as the inconsistency of action and
background is captured between action and background.

Self. Diff. 0.3 0.4 0.5 0.6 0.7
- - 59.3 55.8 46.7 36.6 25.2
! - 63.2 58.7 51.2 39.9 28.3
! ! 66.5 60.0 51.6 41.0 29.2

Table 7: The effectiveness of ABI module.

Analysis on Runtime
To verify the efficiency of our BCNet, we report the la-
tency of our method on THUMOS14. For the fair compar-
isons with other models, we measure the latency under the
same environment (a single NVIDIA 2080Ti GPU). We use
a batch size of 1 to measure the latency on the full testing
set and report the average time. As shown in Table 8, our
BCNet achieve the best mAP with smallest latency (141ms
v.s. 298ms, 330ms). The main reason is that our model gen-
erates fewer proposals than these methods, which helps our
model run faster.

Method 0.3 0.4 0.5 0.6 0.7 Latency
BMN 56.0 47.4 38.8 29.7 20.5 330ms
GTAD 54.5 47.6 40.2 30.8 23.4 298ms
Ours 66.5 60.0 51.6 41.0 29.2 141ms

Table 8: Quantitatively analysis on latency. The smaller la-
tency represent higher efficiency.

Conclusion
In this paper, we introduce a Background Constraint con-
cept, which can be integrated easily with existing TAPG
method. Based on this concept, we propose a Back-
ground Constraint Network, which consists of multiple at-
tention units i.e., self-attention unit, cross-attention unit,
and difference-attention unit, and generates high-quality
proposals by exploiting inconsistency between action and
background. Extensive experiments show that our model
achieves new state-of-the-art performance in temporal ac-
tion proposal generation and action detection on THU-
MOS14 and ActivityNet1.3 datasets.
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