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Abstract

Knowledge-based visual question answering (VQA) involves
answering questions that require external knowledge not
present in the image. Existing methods first retrieve knowl-
edge from external resources, then reason over the selected
knowledge, the input image, and question for answer pre-
diction. However, this two-step approach could lead to mis-
matches that potentially limit the VQA performance. For ex-
ample, the retrieved knowledge might be noisy and irrelevant
to the question, and the re-embedded knowledge features dur-
ing reasoning might deviate from their original meanings in
the knowledge base (KB). To address this challenge, we pro-
pose PICa, a simple yet effective method that Prompts GPT-
3 via the use of Image Captions, for knowledge-based VQA.
Inspired by GPT-3’s power in knowledge retrieval and ques-
tion answering, instead of using structured KBs as in previous
work, we treat GPT-3 as an implicit and unstructured KB that
can jointly acquire and process relevant knowledge. Specif-
ically, we first convert the image into captions (or tags) that
GPT-3 can understand, then adapt GPT-3 to solve the VQA
task in a few-shot manner by just providing a few in-context
VQA examples. We further boost performance by carefully
investigating: (¢) what text formats best describe the image
content, and (¢¢) how in-context examples can be better se-
lected and used. PICa unlocks the first use of GPT-3 for mul-
timodal tasks. By using only 16 examples, PICa surpasses
the supervised state of the art by an absolute +8.6 points on
the OK-VQA dataset. We also benchmark PICa on VQAvV2,
where PICa also shows a decent few-shot performance.

Introduction

The problem of knowledge-based visual question answer-
ing (VQA) (Marino et al. 2019) extends the standard VQA
task (Antol et al. 2015) by asking questions that require
outside knowledge beyond the image content to answer. To
obtain such knowledge, existing methods (Zhu et al. 2020;
Garderes et al. 2020; Marino et al. 2021; Wu et al. 2021) first
retrieve external knowledge from multiple resources, such as
Wikipedia articles and ConceptNet concepts (Speer, Chin,
and Havasi 2017). Based on this, joint reasoning over the re-
trieved knowledge and the image-question pair is performed
to predict the answer, as shown in Figure 1(a).
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Figure 1: Comparison between previous methods and PICa.
(a) Previous methods adopt a two-step approach, which first
retrieves the external knowledge, then reasons over the se-
lected knowledge, the input image, and question for answer
prediction. (b) Alternatively, PICa directly prompts GPT-3
to jointly acquire and reason over the relevant knowledge.
We convert images into textual descriptions that GPT-3 can
understand, and adapt GPT-3 to solve the task by providing
only a few in-context VQA examples during inference time.

However, this two-step approach could be sub-optimal.
For example, the image-question feature used for knowledge
retrieval in the first step may not match their representations
in the second reasoning step, which leads to noisy or even ir-
relevant retrieved knowledge. The re-embedded textual fea-
ture of the retrieved knowledge might also deviate from its
original meaning in the knowledge source. Such mismatches
potentially limit the VQA performance. Furthermore, learn-
ing a good joint knowledge-image-question representation
requires sufficient training data, thus making it difficult to
transfer to new types of questions. In this study, we ex-
plore an alternative approach inspired by the intriguing prop-
erties of recent language models. Specifically, large-scale
language models such as GPT-3 (Brown et al. 2020) have
shown powerful abilities in NLP tasks, such as knowledge
retrieval (Wang, Liu, and Song 2020) and question answer-
ing (Brown et al. 2020). More impressively, they are also



strong few-shot learners, i.e., the model can quickly adapt to
new tasks by using only a few in-context examples.

Inspired by this, we propose PICa,! a simple yet effec-
tive method that unifies the above knowledge retrieval and
reasoning steps with the help of GPT-3. Instead of using ex-
plicit and structured knowledge bases (KBs) as in previous
work, PICa treats GPT-3 as an implicit and unstructured
KB (Petroni et al. 2019) via prompt engineering. Specifi-
cally, we convert images into textual descriptions (i.e., cap-
tions or tags) that GPT-3 can understand, and then query
GPT-3 to directly predict the answer based on the question
and textual descriptions, as shown in Figure 1(b). Instead
of supervised fine-tuning, PICa inherits the few-shot learn-
ing ability from GPT-3, and adapts to the VQA task with
only a few in-context examples during inference time. Em-
pirically, we show that GPT-3 can implicitly retrieve rele-
vant knowledge, and effectively reason over the question and
context for answer prediction. To further boost performance,
we have carefully investigated: (z) how image contexts can
be effectively represented as textual descriptions, and (¢7)
how to better select in-context examples and use multi-query
ensemble to further unleash the power of GPT-3.

We conduct comprehensive experiments on the OK-VQA
dataset (Marino et al. 2019). With a pre-trained captioning
model (VinVL) (Zhang et al. 2021), PICa achieves an ac-
curacy of 46.9% in a few-shot manner, an absolute improve-
ment of 7.5 points when compared with supervised state of
the art (Wu et al. 2021). When enhanced with predicted im-
age tags, the performance can be further boosted to 48.0. We
also provide detailed ablation study and qualitative analysis
to understand the effectiveness of PICa.

Our main contributions are summarized as follows. (7) We
present PICa, a simple yet effective method to use GPT-3
for knowledge-based VQA, demonstrating the first use of
GPT-3 for multimodal tasks. (¢¢) PICa represents images as
textual descriptions, and enhances the performance of GPT-
3 via in-context example selection and multi-query ensem-
ble. (#i7) PICa achieves 48.0% accuracy on OK-VQA in a
few-shot manner, lifting up the state of the art of 39.4% by
a significant margin. It also achieves a decent few-shot per-
formance on VQAV2 (Goyal et al. 2017).

Related Work

Knowledge-based VQA. Knowledge-based VQA requires
external knowledge in addition to the image content to an-
swer a question. Early explorations include KB-VQA (Wang
et al. 2015) and F-VQA (Wang et al. 2017). The more recent
OK-VQA dataset (Marino et al. 2019) is built on COCO im-
ages (Lin et al. 2014), and the input questions cover a wide
range of knowledge categories. Previous studies (Wang et al.
2015; Narasimhan and Schwing 2018; Wang et al. 2017;
Narasimhan, Lazebnik, and Schwing 2018; Zhu et al. 2020;
Li, Wang, and Zhu 2020; Marino et al. 2021; Wu et al. 2021)
proposed various ways of retrieving and using the knowl-
edge, and considered it necessary to use multiple knowledge
resources, such as Wikipedia, ConceptNet (Speer, Chin, and
Havasi 2017), Google images, and the implicit knowledge
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from language models (Devlin et al. 2018; Zhu et al. 2015),
to cover the relevant knowledge in questions. After exter-
nal knowledge retrieval, studies have focused on reasoning
over the knowledge acquired and the input image-question
pair for answer prediction, where graph convolution network
has been shown to be an effective way for multimodal fu-
sion (Narasimhan, Lazebnik, and Schwing 2018; Zhu et al.
2020). More recently, KRISP (Marino et al. 2021) proposed
to retrieve the implicit knowledge stored in pre-trained lan-
guage models as a supplementary knowledge resource to the
structured knowledge base. MAVEx (Wu et al. 2021) pre-
sented an answer validation approach to make better use
of the noisy retrieved knowledge. The above two-step ap-
proaches may not get the most relevant knowledge in the re-
trieval step, and fail to best encode the knowledge for QA in
the reasoning step. In this study, we combine the two steps,
and present a model that jointly acquires and processes the
knowledge for VQA by prompting GPT-3.

Multimodal few-shot learning. GPT-3 (Brown et al. 2020)
has shown astonishing in-context few-shot learning capabili-
ties. Recently, Frozen (Tsimpoukelli et al. 2021) is proposed
to extend such few-shot abilities to vision-and-language
tasks by reusing a pre-trained language model. Specifically,
Frozen starts with a GPT-like language model with 7 billion
parameters pre-trained on a large text corpus. Then, Frozen
freezes the language model, and trains a visual encoder to
project input images to visual features that the language
model can understand. The visual encoder is trained with
the image captioning task (Sharma et al. 2018), with gradi-
ents being back-propagated from the frozen language model.
Frozen presents the first ever multimodal few-shot learner,
and performs much better than random guess on tasks such
as VQA. Despite interesting observations, the performance
is far from satisfactory compared to the state of the art. For
example, Frozen only achieves an accuracy of 12.6% on the
OK-VQA dataset (Marino et al. 2019). Our idea of utilizing
the pre-trained language model is closely related to Frozen.
However, we push the limit, and investigate a much stronger
language model, with a focus on the knowledge-based VQA
task. To this end, we present the first few-shot approach that
surpasses the supervised state of the art.

Approach
GPT-3 for In-context Learning

GPT-3 (Brown et al. 2020) has shown powerful in-context
few-shot learning abilities. Instead of fine-tuning a pre-
trained model to adapt it to a downstream task, in-context
few-shot learners quickly adapt to new tasks with just a few
examples at inference time, and require no parameter up-
dates. Concretely, during inference, the target of the new
task y is directly predicted conditioned on the given context
C and the new task’s input x, as a text sequence generation
task. Note that all the C, x, y are text sequences. For exam-
ple,y = (y', - ,yT). Therefore, at each decoding step t,

yt = arg H’;%XPLM(yt‘C7 m7y<t) )

where LM represents the weights of the pre-trained lan-
guage model, which are frozen for all new tasks. The context
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Figure 2: Inference-time interface of PICa for n-shot VQA. The input prompt to GPT-3 consists of a prompt head h (blue box),
n in-context examples ({x;, y, }7,) (red boxes), and the VQA input & (green box). The answer y is produced in an open-ended
text generation manner. PICa supports zero-/few-shot VQA by including different numbers of in-context examples in prompt.

C={h,z1,yq,  * ,Tn, Yy, } consists of an optional prompt
head h and n in-context examples ({z;, y;}? ;) from the
new task. Inspired by GPT-3’s strong few-shot ability and
the diverse knowledge it contains, we present below the use
of GPT-3 for few-shot knowledge-based VQA in detail.

GPT-3 for VQA

One challenge with using GPT-3 for VQA is that GPT-3
does not inherently understand image input. Empirically, we
show that converting image context into textual descriptions
leads to a strong baseline for VQA. Figure 2 shows the
inference-time interface of PICa, which approaches the
VQA task by prompting GPT-3 with a constructed input
prompt. The prompt is a word sequence that consists of
context C (with a prompt head h and n in-context examples
{z;,y;}_ ;) and VQA input . Specifically, we first adopt
state-of-the-art captioning (or tagging) models to translate
the VQA image into captions (or a list of tags). As shown
in the green box, the VQA input x is the concatenation of
the translated image context string (“Context: People
are standing in a parking lot with some
umbrellas as it snows.”) and the question string
(“Q: What is the warmest temperature at
which this weather can happen? A:”). The
target y is the output answer (“32 degrees”). The an-
swer is produced in an open-ended text generation manner,
i.e., the answer could contain an arbitrary number of words
selected from the entire vocabulary of GPT-3. The context
C starts with a prompt head h, which is a fixed string
(“Please answer the question according

to the above context.”) for all samples, as shown
in the blue box. The remaining part of C is the concatenation
of n in-context example strings ({x;,y;}_;) like in the
red boxes. We then concatenate C with the VQA input x
shown in the green box to generate the prompt. GPT-3 takes
the constructed prompt text as input, implicitly retrieving
and reasoning the knowledge from the language model, and
predicts the answer y as an open-ended text generation task.
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In-context Examples

Empirically, feeding more in-context examples leads to bet-
ter few-shot performance (Brown et al. 2020; Tsimpoukelli
et al. 2021). However, the number of available examples in
the new task and the model’s max input length jointly con-
strain the max number of examples 7 in the prompt. In prac-
tice, we observe that the max input length more often limits
the max n we can take, i.e., there are usually more available
examples than the ones that a language model can take (e.g.,
n = 16). To better use these available examples, below, we
explore two approaches: (7) improving the example quality
by careful in-context example selection (Liu et al. 2021), and
(47) using more examples via multi-query ensemble.
In-context example selection. In-context example selec-
tion (Liu et al. 2021) tries to search for the best examples
for each inference-time input & among all available exam-
ples. We consider an in-context example x; a good one if it
has a similar question feature as x. Specifically, we leverage
the CLIP model (ViT-B/16 variant) (Radford et al. 2021) for
similarity calculation. Given an inference-time question, we
obtain its textual feature with the text encoder of CLIP (Rad-
ford et al. 2021), and compute its cosine similarity with the
questions in all available in-context examples. We then av-
erage the question text similarity with the image visual sim-
ilarity to guide the example selection. We select the top n
questions with the highest similarities, and use the corre-
sponding examples as the in-context examples.
Multi-query ensemble. An alternative approach to better
use available examples is multi-query ensemble. Given an
inference-time example &, we use n * k in-context examples
to generate k prompts. By prompting GPT-3 for £ times, we
obtain k answer predictions instead of 1, where £ is the num-
ber of queries to ensemble. Among the k answer predictions,
we select the one with the highest sum of log-probability
>, log prm(y?) as the final answer (Chen et al. 2021). The
multi-query ensemble can be seamlessly used together with
the in-context example selection. By selecting the top n * k
examples and distributing them into k& prompts, we combine



Method Image Repr. Knowledge Resources Few-shot || Accuracy
MUTAN+AN (Ben-Younes et al. 2017)  Feature Emb.  Wikipedia X 27.8
Mucko (Zhu et al. 2020) Feature Emb.  Dense Captions X 29.2
ConceptBert (Garderes et al. 2020) Feature Emb.  ConceptNet X 33.7
VIiLBERT (Lu et al. 2019) Feature Emb.  None X 35.2
KRISP (Marino et al. 2021) Feature Emb. ~ Wikipedia + ConceptNet X 38.9
MAVEX (Wu et al. 2021) Feature Emb.  Wikipedia + ConceptNet + Google Images X 39.4
Frozen (Tsimpoukelli et al. 2021) Feature Emb.  Language Model (7B) v 12.6
PICa-Base Caption GPT-3 (175B) v 42.0
PICa-Base Caption+Tags  GPT-3 (175B) v 433
PICa-Full Caption GPT-3 (175B) v 46.9
PICa-Full Caption+Tags  GPT-3 (175B) v 48.0

Table 1: Results on the OK-VQA test set (Marino et al. 2019). The upper part shows the supervised state of the art, and the
bottom part includes the few-shot performance of Frozen (Tsimpoukelli et al. 2021) and the proposed PICa method.

Method Image Repr. n=0 n=1 n=4 n=8 n=16 | Example engineering
(a)  Frozen (Tsimpoukelli et al. 2021)  Feature Emb. 5.9 9.7 12.6 - - X
(b) PICa-Base Caption 175 324 376 39.6 420 X
(c) PICa-Base Caption+Tags || 16.4 340 39.7 41.8 433 X
(d) PICa-Full Caption 17.7 403 448 46.1 469 v
(¢) PICa-Full Caption+Tags || 17.1 408 454 46.8 48.0 4

Table 2: The few-shot in-context learning results on OK-VQA. The “Example engineering” column indicates whether the
method needs the access to an in-context example pool that contains more than n in-context examples from the new task.

the two methods and obtain the gains from both approaches.

Experiments on OK-VQA
Dataset and Setup

Dataset. OK-VQA (Marino et al. 2019) is currently the
largest knowledge-based VQA dataset, with 14,055 image-
question pairs. Questions are manually filtered to ensure that
outside knowledge is required to answer the question. Each
question has 5 ground-truth answers. The soft accuracy from
VQAV2 (Goyal et al. 2017) is used for evaluation.

Setup. We compare two variants of our method.

* PICa-Base. This method uses prompts shown in Fig-
ure 2. We represent images either as captions with
VinVL (Zhang et al. 2021), or enhance captions with tags
predicted by the public Microsoft Azure tagging API.
In-context examples are randomly selected.

e PICa-Full. This is the full model that includes in-
context example selection and multi-query ensemble.

Comparison with State-of-the-art

Table 1 summarizes the results on the OK-VQA dataset. The
upper part of the table contains models that are trained on
the complete OK-VQA training set in a supervised man-
ner. The lower part lists the few-shot results. The column
“Image Repr.” indicates how the image is represented for
VQA. “Feature Emb.” refers to the conventional approach
that encodes the image as feature vectors with a trainable
network. Due to the high cost of end-to-end fine-tuning
GPT-3, we convert images into text sequences that GPT-
3 can understand. “Caption” means the caption generated

Public Azure Tagging & Captioning API: https://westus.dev.
cognitive.microsoft.com/docs/services/computer-vision-v3-2
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by the VinVL-base model fine-tuned on the COCO-train14
split. “Tags” indicates the tags predicted by the tagging API.
The column “Knowledge Resource” includes the external
knowledge resources used. Most previous methods involve
explicit knowledge retrieval from external knowledge re-
sources, e.g., “Wikipedia” and “ConceptNet.” Alternatively,
few-shot methods directly use pre-trained language models
to acquire and process the knowledge. We summarize our
observations as follows.

* Our method surpasses the state of the art (Wu et al.
2021) with no model fine-tuning. PICa—-Full achieves
an accuracy of 48.0% with 16 in-context VQA examples,
compared with the supervised state-of-the-art accuracy
of 39.4% trained on the entire OK-VQA training set. The
superior performance shows the power of implicit knowl-
edge retrieval and reasoning with GPT-3, in contrast to
retrieving the external knowledge explicitly.

* Compared with PICa—-Base that uses randomly se-
lected in-context examples, PICa—Full achieves bet-
ter performance by more effectively using the avail-
able in-context examples. PICa—Full improves over
PICa-Base from 42.0% to 46.9% with captions, and
from 43.3% to 48.0% with both captions and tags. De-
tailed ablation studies are provided in Table 5.

Few-shot Ability

In this section, we zoom in the lower part of Table 1, and an-
alyze the model’s few-shot abilities on the OK-VQA dataset
in Table 2. The upper part of the table contains results with
in-context examples randomly selected from an example
pool, i.e., the strict few-shot setting. In practice, we often
have more than n examples at hand, and selecting better in-
context examples leads to better few-shot performance. The



Image Repr. Base Full
(a) Blind 24.2 30.1
(b) Tags 39.3 44.6
(¢)  VinVL-Caption-CC 37.0 44.0
(d) API-Caption 39.1 45.2
(e) VinVL-Caption-COCO 42.0 46.9
(f) GT-Caption-17 42.1 487
(g) GT-Caption-5' 480 533
(h)  VinVL-Caption-CC+Tags 41.5 46.0
(i)  API-Caption+Tags 41.9 47.4
(G)  VinVL-Caption-COCO+Tags 43.3 48.0

Table 3: Ablation study on different textual representations
for images on OK-VQA. (}) is the oracle performance.

lower part of the table shows the results of the methods with
in-context example selection and multi-query ensemble. n
is the number of in-context examples, and is also known as
“the number of shots”. We experiment with n ranging from
0 to 16. n = 16 is roughly the max number of examples that
GPT-3 can take, with a max input length of 2049. We re-
select in-context examples of shorter lengths if any prompt
exceeds the max input length limit, which rarely happens
with n = 16.

We observe that more shots generally lead to better per-
formance, e.g., 40.8% when n = 1 to 48.0% when n = 16
in row (e). This observation supports our motivation of
using more examples whenever possible. Compared with
PICa-Base, PICa-Full yields consistent 5% accuracy
improvements across all cases.

Textual Representation for Images

We provide ablation study on how to best represent images
in the textual format for GPT-3. Specifically, we compare
the following methods.

¢ Blind. Blind is the baseline that uses an empty string to
represent the image, which indicates the VQA perfor-
mance without looking at the image. We also use the
question similarity alone for in-context example selec-
tion to enforce the blind setting.

» Tags. We represent the image as a list of tags predicted
by an automatic tagging model. All tags are concatenated
as a string with a comma separator.

¢ VinVL-Caption-COCO. This is the caption used for the
results in Tables 1 and 2. We fine-tune the VinVL-base
pre-trained checkpoint with the COCO 2014 training set
to obtain the image captions on the OK-VQA test set,
which contains images from COCO 2014 validation set.

¢ VinVL-Caption-CC. To follow a more strict few-shot
setting and avoid seeing images from the same COCO
dataset, we train a VinVL-base captioning model with
the Conceptual Captions dataset (Sharma et al. 2018).

* API-Caption. This indicates the caption generated from
the public Azure API in Footnote 2.

¢ GT-Caption. We include the ground-truth COCO cap-
tions as the oracle with ideal image descriptions. We use
either 1 randomly sampled ground truth or the concate-
nation of all 5 captions as the image description.
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Selection Methods || CLIP RoBERTa
(a) Random 433
(b)  Question 45.8 454
(¢)  Questionpissimilar 40.1 40.9
(d) QA Sequence! 49.1 484
(e) Image only 441 -
(f)  Image & Question 46.5 -

Table 4: Ablation study on in-context example selection
methods on OK-VQA with n = 16 examples.

» Caption+Tags. We represent the image as the concate-
nation of the caption string and tag list string.

Table 3 shows the OK-VQA accuracies with different for-
mats of textual representations. We summarize our findings
as follows. (7) All formats of textual descriptions in rows (b-
j) provide a good image representation, as all methods sig-
nificantly outperform the blind baseline in row (a), which
only takes the question-answer pair as input. (¢2) Despite
never seeing COCO images, the VinVL-Caption-CC method
in row (c) achieves a decent accuracy of 37.0% with n = 16.
The performance can be further improved to 44.0% when
including in-context example selection and multi-query en-
semble, which surpasses the supervised state of the art. (¢4%)
When comparing different predicted captions being used,
VinVL-Caption-COCO in row (e) achieves the best perfor-
mance. In general, we find that detailed and thorough de-
scriptions lead to better VQA performance. (¢v) The ground-
truth COCO caption (row (f)) provides a more accurate de-
scription of the image, thus leading to an oracle accuracy
of 48.7%. Concatenating all the ground-truth captions as
shown in row (g) provides a more thorough description of
the image content, thus further improving the accuracy to
53.3%. (v) Inspired by the effectiveness of concatenating
multiple captions, we also experiment with combining mul-
tiple formats of textual descriptions, as shown in the bottom
part of the table. We observe that combining captions with
tags provides complementary information and helps VQA.
For example, in row (j), combining VinVL captions and tags
results in a 16-shot accuracy of 48.0%, compared with the
accuracy in rows (b,e) of 44.6% and 46.9%, respectively.
Similar improvements are observed in other combinations
as shown in rows (h,i).

Example Selection and Multi-query Ensemble

In-context example selection. Results are summarized in
Table 4. Row (a) shows the PICa—-Base performance
where examples are randomly selected. Row (b) selects ex-
amples based on the similarity of the question textual fea-
tures. We experiment with choosing the most dissimilar ex-
amples in row (c), and observe that “bad” examples indeed
lead to worse performance. Row (d) shows an oracle num-
ber that includes the answer similarity in example selection.
This serves as an upper bound, and shows that properly se-
lecting examples can significantly improve the VQA accu-
racy. Rows (e,f) include image visual features for example
selection. Specifically, row (e) selects examples based on
image feature similarity computed by CLIP (Radford et al.
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Answer: shark

GT Answer: ['shark’,
'shark’, 'shark’, 'wave',
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Acc.: 1.0
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This is because:
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Figure 3: Qualitative examples of our proposed PICa method on the OK-VQA dataset. The upper part shows GPT-3 predicted
answers, and the bottom part includes the answer rationales generated in a zero-shot manner.

2021). Row (f) presents the approach in PICa-Full that
jointly considers the question and image similarities.

The improvement of row (b) over row (a) shows that in-

context example selection indeed helps few-shot VQA. Row
(c) presents an expected low accuracy of 40.1% with dis-
similar examples, indicating the effectiveness of using ques-
tion similarity to guide the in-context example selection.
By selecting the “ideal” examples in row (d), the oracle
accuracy reaches 49.1%. We observe a slightly better per-
formance when computing the feature with the CLIP text
encoder (Radford et al. 2021) than a pure language model
RoBERTa (Liu et al. 2019). Example selection with im-
age similarity alone also improves the random baseline, as
shown in row (e). The improvement is smaller than using
question similarity alone in row (b), as question similarity
is more informative in the VQA task. PICa-Full jointly
considers the question and image similarities, and further
improves the accuracy to 46.5%, as in row (f).
Multi-query ensemble. Multi-query ensemble allows the
model to use more in-context examples at inference time,
thus potentially further improving the performance. Multi-
query ensemble can be seamlessly used together with in-
context example selection. Table 5 shows the results of com-
bining them together. Rows (a,b) are the baseline results
without multi-query ensemble. Rows (c-d) show that by in-
creasing the number of prompts k, the OK-VQA accuracy
can be consistently improved on all shot numbers n.

Qualitative Analysis

Representative cases. The upper part of Figure 3 shows
some qualitative examples of our PICa predictions. We
observe that PICa works well on questions that require
different kinds of external knowledge. For example, in
Figure 3(a), GPT-3 understands that “this type of
transportation” in the question refers to the “t rain”
in the image, and provides the correct answer that “train
was invented in 1804”. Similarly, in Figure 3(b),
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# of ensembles n=l n=4 n=16
(a) k=1 wloselection || 34.0 39.7 433
(b) k=1 364 43.0 46.5
(¢) k=3 40.0 452 477
(d) k=5 40.8 454 48.0

Table 5: The multi-query ensemble performance on OK-
VQA. Experiments perform in-context example. k is the
number of prompts to ensemble. Rows (a,d) are the
PICa-Base and PICa-Full.

the model knows that “motorcycle was invented
in 1885”. Other than factual or encyclopedia knowledge,
PICa also works well on questions that need common-
sense knowledge. For example, in Figure 3(c), the model un-
derstands that people can get bananas from grocery stores.
The disagreement among ground-truth answers in this ex-
ample also shows that the open-ended answer generation
could produce different formats of the correct answer, mak-
ing the evaluation challenging. Similarly, in Figures 3(d,e),
the model correctly answers the question with the im-
plicit knowledge of “train stops at the train
station” and “there could be sharks in the
sea when surfacing”.
Answer rationale. One may wonder how GPT-3 correctly
answers the knowledge-based questions in an open-ended
manner without being fine-tuned for the task. The inaccessi-
bility of the GPT-3 raw model makes it difficult to conduct
an in-depth analysis of the language model’s behavior. Al-
ternatively, we perform answer rationale prediction (Li et al.
2018; Park et al. 2018; Zellers et al. 2019) in a zero-shot
manner, and generate answer rationale as an open-ended text
generation task. Specifically, we construct a prompt that is
the concatenation of question string x, predicted answer v,
and a prompt head “This is because”. We then take
GPT-3’s generated text as the answer rationale.

The bottom part of Figure 3 shows the rationales for the



(a) What kind of sign is
above the doorway?
Context: A computer
monitor sitting on top of a
desk.

Answer: exit

GT Answer: [exit 'exit, 'exit,
exit, 'exit, 'exit’, 'neon’, 'exit’, 'exit',
exit]

Acc.: 1.0 \/

(b) Why is the cow laying
down?

Context: A group of cows
in a barn with one standing
and one laying down.
Answer: tired

GT Answer: [tired, tired', '4',
‘resting’, 'tired", 'tired", 'resting’,
‘tired', "it's tired", 'tired’]

Acc.: 1.0 \/

(c) What color is the
fridge?
Context: A silver

inside of a kitchen.
Answer: silver

steel (gray)', ‘gray, 'silver’]

Acc.: 1.0

refrigerator freezer sitting

GT Answer: [gray or silver',
‘brushed steel', 'silver’, 'steel gray',
'stainless’, ‘gray’, 'silver’, 'stainless

(d) What color are the
walls?

Context: A bedroom with
a desk, chair, computer
and pictures on the wall.
Answer: white

GT Answer: [white', 'off
white', 'off white', 'white', 'white",
‘beige’, 'white, 'white', 'white’,

‘white']
Acc.: 1.0 \/

1 (e) What color is the

| man's jacket?

1 Context: A man flying
through the air while riding
a snowboard.

Answer: black

I GT Answer: [red' red, 'red',

| ‘orange’, 'red’, 'red’, 'red, 'red’,
‘red', 'red]

1 Acc.: 0.0 X

(f) How many giraffes are

there?

Context: A herd of giraffe

standing next to a wooden
fence.

Answer: 3

GT Answer: [¢,'6','8",'6", '8,
'6,'6,'7",'8",'7]

Acc.: 0.0 X

Figure 4: Representative success (left four examples) and failure (right two examples) cases of PICa on the VQAv2 dataset.

Method Image Repr. Few-shot || Acc.
Oscar (Li et al. 2020)  Feature Emb. X 73.8
Frozen Feature Emb. v 38.2
PICa-Base Caption v 53.2
PICa-Base Caption+Tags 4 54.3
PICa-Full Caption 4 55.9
PICa-Full Caption+Tags 4 56.1
PICa-Fullf GT-Caption-5 v 59.7

Table 6: Results on the VQAv?2 validation set. The upper part
shows the supervised state of the art. The bottom part shows
the few-shot accuracy. (t) indicates the oracle performance.

predicted answers. We observe that GPT-3 generates rea-
sonable rationales for questions that need different types
of knowledge. For example, in Figure 3(a), the rationale
is the core encyclopedia knowledge that “the first
locomotive was invented in 1804”. Figure 3(c)
shows an example that the model provides the common-
sense knowledge of “grocery store is a common
place to get food”.

Experiments on VQAv2

Despite the good performance on knowledge-based VQA,
one limitation of our method is that the image is abstracted
as text. Captions or tags only provide a partial description
of the image, and might miss important visual details nec-
essary for question answering, such as questions on de-
tailed visual attribute prediction. In this section, we bench-
mark PICa on the VQAvV2 dataset (Goyal et al. 2017) that
contains questions focusing on the detailed image contents.
Dataset and setup. The VQAv2 dataset (Goyal et al. 2017)
annotates question-answer pairs based on the COCO image
corpus (Lin et al. 2014). VQAV2 questions are designed to
be highly relevant to the image content. It reports the human
performance of 40.8% with questions only, and 57.5% with
questions and captions, compared with 83.3% with both
questions and images. We follow Frozen (Tsimpoukelli et al.
2021), and report the accuracy on the validation set. Instead
of treating VQA as a classification task over a pre-selected
answer vocabulary (Goyal et al. 2017; Li et al. 2020), we
predict the answer in an open-ended text generation manner.
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Results. Table 6 summarizes our results on VQAv2.
PICa-Full achieves an accuracy of 56.1%, surpassing
the previous few-shot accuracy of 38.2% by a significant
margin (Tsimpoukelli et al. 2021). The proposed in-context
example selection and multi-query ensemble methods also
work well on the VQAv?2 dataset (¢f., PICa-Base: 54.3%,
PICa-Full: 56.1%). Compared with the supervised per-
formance of 73.8% by Oscar (Li et al. 2020), the proposed
method is still around 17% lower in accuracy with failure
cases discussed in Figure 4. Nonetheless, the promising few-
shot results show that the proposed approach is one strong
baseline in approaching few-shot vision-language tasks.

Limitations. Figures 4(a-d) and (e,f) show qualitative ex-
amples of the success and failure cases of PICa-Full,
respectively. A subset of VQAvV2 questions can be an-
swered with commonsense knowledge, where PICa gen-
erally performs well. For example, the implicit knowl-
edge of “the sign above doorway can be the
exit sign” in Figure 4(a) and “cow laying down
because of being tired” in Figure 4(b). A large
portion of VQAV2 questions is about detailed image con-
tents, such as the object color in Figures 4(c-e). In the
success cases, PICa answers such questions with relevant
textual descriptions if available, or by guessing via ob-
ject properties. For example, the description “a sliver
refrigerator” in Figure 4(c) and the guess “bedroom
walls are usually white” in Figure 4(d). How-
ever, by only looking at the incomplete textual description
of the image, PICa does fail on many questions. For exam-
ple, it fails to predict the correct color in Figure 4(e) and the
number of giraffes in Figure 4(f). We expect an end-to-end
vision encoder tuning can help answer such questions better.

Conclusion

We present PICa, an approach that uses GPT-3 for few-shot
knowledge-based VQA. Instead of using explicit structured
knowledge bases to retrieve and reason external knowledge,
PICa jointly acquires and processes relevant knowledge by
prompting GPT-3. It inherits GPT-3’s strong few-shot abil-
ity, and surpasses the supervised state of the art on OK-VQA
by a significant margin. Analyses show that our method im-
plicitly acquires relevant knowledge to answer the question.
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