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Abstract
Weakly-supervised temporal action localization (WTAL) in
untrimmed videos has emerged as a practical but challeng-
ing task since only video-level labels are available. Existing
approaches typically leverage off-the-shelf segment-level fea-
tures, which suffer from spatial incompleteness and temporal
incoherence, thus limiting their performance. In this paper,
we tackle this problem from a new perspective by enhanc-
ing segment-level representations with a simple yet effec-
tive graph convolutional network, namely action complement
graph network (ACGNet). It facilitates the current video seg-
ment to perceive spatial-temporal dependencies from others
that potentially convey complementary clues, implicitly mit-
igating the negative effects caused by the two issues above.
By this means, the segment-level features are more discrimi-
native and robust to spatial-temporal variations, contributing
to higher localization accuracies. More importantly, the pro-
posed ACGNet works as a universal module that can be flex-
ibly plugged into different WTAL frameworks, while main-
taining the end-to-end training fashion. Extensive experi-
ments are conducted on the THUMOS’14 and ActivityNet1.2
benchmarks, where the state-of-the-art results clearly demon-
strate the superiority of the proposed approach.

Introduction
Understanding human actions in videos is an important re-
search direction and has been actively studied in the com-
puter vision community (Wu et al. 2019; Wang et al. 2020;
Zolfaghari, Singh, and Brox 2018; Qin et al. 2017; Li et al.
2020; Qi et al. 2020; Liu et al. 2020; Feichtenhofer et al.
2019; Kong et al. 2020; Yang et al. 2021; Ni, Qin, and
Huang 2021). The fundamental step is to build meaning-
ful spatial-temporal representations, which involve not only
static features from each frame, but also dynamic depen-
dencies across consecutive frames. Among the main tasks
in action understanding, temporal action localization (Wu
et al. 2020; Lin et al. 2018, 2019) has received tremendous
efforts in the past several years, with a wide range of ap-
plications (e.g., intelligent surveillance, video retrieval, and
human-computer interaction).

To achieve accurate localization results, conventional
(fully-supervised) temporal action localization (FTAL)
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Figure 1: Intuition behind the proposed action complement
graph network (ACGNet). By exploiting complementary in-
formation across different segments, more discriminative
segment-level action representations are learned, leading to
more accurate localization results. The blue/green dashed
lines indicate the classification hyperplanes.

methods (Shou et al. 2017; Lin et al. 2018, 2019; Zhao
et al. 2017; Yang et al. 2019) often make use of deep
convolutional neural networks (CNNs) trained on video
datasets with frame-level annotations. Unfortunately, as the
dataset size grows rapidly and the total video length even
reaches several decades (Abu-El-Haija et al. 2016), it is
obviously unrealistic to acquire such fine-grained annota-
tions. To this end, weakly-supervised temporal action lo-
calization (WTAL) (Wang et al. 2017), where only video-
level action categories are annotated, has recently emerged
as a more practical task. To tackle WTAL, a common prac-
tice is to uniformly sample short segments of equal length,
for which classifiers are trained (usually through multiple
instance learning (Paul, Roy, and Roy-Chowdhury 2018))
with video-level labels, and localization results are gener-
ated based on the classification/activation scores of each seg-
ment with regard to action categories.

However, in this paradigm, the evenly sampling strategy
incurs two critical issues that greatly limit localization per-
formance. On the one hand, the action segments often suf-
fer from occlusion, blurring, out of field, etc., thus lack of
certain spatial details. On the other hand, a complete action
usually spans a long temporal window and a short action
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segment is insufficient to observe the full dynamics of that
action. We respectively identify the two issues as ‘spatial in-
completeness’ and ‘temporal incoherence’ of an action seg-
ment, both of which make predictions in WTAL unreliable.

In this work, we implicitly address the two issues by a
simple yet effective graph convolutional network. The pro-
posed action complement graph network (ACGNet) facili-
tates an action segment to exploit complementary clues from
other segments across the entire untrimmed long video. As
shown in Figure 1, after applying our ACGNet, those hard
examples can be more easily classified based on the en-
hanced features. Specifically, we not only consider segment-
level similarities but also mitigate negative influences of
temporally close segments when constructing the initial ac-
tion complement graph (ACG). Besides, we make this graph
sparse enough to preserve the most informative connec-
tions. Through graph convolutions, the complementary in-
formation from high-quality segments is propagated to low-
quality ones, leading to the enhanced action representation
for each segment. In other words, the complementary infor-
mation provided by other segments is regarded as supervi-
sion to learn more discriminative features in the WTAL sce-
nario. Most importantly, owing to the delicately-designed
loss function, our ACGNet works as a generic plug-in mod-
ule and can be flexibly embedded into different WTAL
frameworks, further remarkably strengthening the state-of-
the-art performance.

In summary, our main contributions are three-fold:
• We propose a novel graph convolutional network for

WTAL, namely ACGNet, which greatly enhances the
discriminability of segment-level action representations
by implicitly exploiting the complementary information
and jointly addressing the issues of spatial incomplete-
ness and temporal incoherence.
• We consider multiple vital factors (i.e., segment sim-

ilarity, temporal diffusion, and graph sparsity) to con-
struct the initial ACG. Moreover, we make the training
of our graph network feasible and practical by propos-
ing a novel ‘easy positive mining’ loss, endowing our
ACGNet with the flexibility to be injected into existing
frameworks without bells and whistles.
• We equip several recent WTAL methods with the pro-

posed ACGNet. Extensive experiments on two challeng-
ing datasets demonstrate its capability to further push the
state of the art in WTAL to a large extent.

Related Work
Fully-supervised Temporal Action Localization. Action
localization has recently attracted numerous research inter-
ests (Zhang et al. 2019; Escorcia et al. 2016; Lin, Zhao,
and Shou 2017; Lin et al. 2018; Li et al. 2019). A typical
pipeline is to first generate temporal action proposals and
then classify pre-defined actions based on the proposals. For
example, (Shou et al. 2017) proposes a Convolutional-De-
Convolutional filter through temporal upsampling and spa-
tial downsampling to precisely detect segment boundaries.
(Zhao et al. 2017) presents the Structured Segment Network
to model the temporal structure of each action segment via a

structured temporal pyramid. (Yang et al. 2019) provides an
end-to-end progressive optimization framework (STEP) for
more effective spatial-temporal modeling.
Weakly-supervised Temporal Action Localization. Re-
garding WTAL, only category labels for whole videos are
available, without any fine-grained annotation for each ac-
tion instance. To tackle this challenge, existing methods usu-
ally segment the video at equal temporal intervals, and then
classify each segment by multiple instance learning. Specifi-
cally, the activation score of a segment to each category, i.e.,
class activation sequence (CAS), is calculated to classify the
action segment. (Wang et al. 2017) formally proposes the
tasks of ‘weakly supervised action recognition and temporal
localization’ and used attention weights to exclude the video
clips that do not contain actions. (Lee, Uh, and Byun 2020)
presents BaS-Net by introducing a background class to as-
sist training, inhibiting the activation of background frames
to improve the positioning performance. (Shi et al. 2020)
deliver a frame-level probability distribution model (i.e.,
DGAM) based on frame-level attention to distinguish action
frames from background frames. BaM (Lee et al. 2021) is
an improved variant of BaS-Net, which employs multiple
instance learning to estimate the uncertainty of video frame
classification and model the background frames.
Graph-based Temporal Action Localization. Recently,
some works investigate graph learning to fuse the informa-
tion among related categories, multiple proposals or multi-
ple sub-actions to infer the possible actions of a certain seg-
ment. For example, P-GCN (Zeng et al. 2019) constructs a
graph according to the distances and IoUs between propos-
als, aiming to adjust the category and boundary of each pro-
posal by using context information. G-TAD (Xu et al. 2020)
attempts to make use of not only temporal context, but also
semantic context captured through graph convolutional net-
works (GCN), and then temporal action detection is cast as
a sub-graph localization problem. GTRM (Huang, Sugano,
and Sato 2020) employs GCN to integrate all the action seg-
ments within a certain period of time in the action segmen-
tation task. All such efforts are made in the fully-supervised
setting.

In WTAL, (Rashid, Kjellstrm, and Yong 2020) establishes
a similarity graph to understand how an action appears as
well as the sub-actions that comprise the action’s full ex-
tent. Notably, this is essentially different from our purpose to
complement and enhance features by fully mining the com-
plementary information across segments. Moreover, they de-
sign a fixed WTAL network, while our ACGNet works as
a universal module to improve various WTAL frameworks.
In addition, we propose different graph designs and a novel
loss function that enables the joint training of ACGNet and
WTAL frameworks.

Action Complement Graph Network
As mentioned above, an input video is uniformly divided
into multiple temporal segments, based on which WTAL is
performed. The localization accuracy highly depends on the
discriminability of segment-level action representations, es-
pecially in our weakly-supervised setting. To this end, we
aim to enhance segment-level representations, by exploiting
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Figure 2: Overall framework of the proposed ACGNet, which takes the segment-level features as input and generates enhanced,
more discriminative features by exploiting complementary clues between different segments. More importantly, our ACGNet
can be flexibly plugged into various existing WTAL frameworks without bells and whistles.

the complementary information among different segments.
Since our ACGNet is essentially designed for feature en-
hancement, it can be flexibly plugged into various existing
WTAL frameworks, such as (Lee, Uh, and Byun 2020; Lee
et al. 2021; Shi et al. 2020) used in our experiments. In
the following, we first give a brief introduction of the entire
proposed network. Subsequently, we elaborate how to con-
struct the action complement graph (ACG) in a principled
way, and how to enhance features based on graph convolu-
tion, respectively. Finally, a novel loss is presented to make
the training of our graph network feasible. After embedding
the ACGNet into existing WTAL frameworks, we follow the
standard pipeline provided in (Lee, Uh, and Byun 2020; Lee
et al. 2021; Shi et al. 2020) to generate the final localization
results.

Method Overview
Figure 2 illustrates the overall framework of the proposed
ACGNet. Given an input video V , we first evenly divide it
into a fixed number of T short temporal segments {St}Tt=1,
to handle large variations in video lengths. Then, we extract
the features of these segments by using a widely-adopted
video feature extraction network, e.g., the I3D network (Car-
reira and Zisserman 2017). The extracted segment-level fea-
tures are denoted by the D-dimensional feature vectors ft ∈
RD, which can be concatenated to form the video-level rep-
resentation F = [f1, f2, · · · , fT ] ∈ RT×D.

The proposed ACGNet receives the original features F
as input and generates the enhanced features F′ based on a
graph convolutional network. The action complement graph
(ACG) is constructed for each video in a principled way
to exchange complementary information between its nodes
(i.e., segments). After constructing the ACG, node-level fea-
tures are propagated and fused by using graph convolution
operations. The output graph features can be regarded an en-
hanced and complementary counterpart of the original fea-
tures. Finally, the original and the enhanced features are
combined as the ultimate discriminative features F′, which
can be used as the input to any WTAL methods to improve

their localization performance to a large extent. In addition,
a novel loss is proposed to facilitate the joint training of our
ACGNet and existing WTAL frameworks.

Action Complement Graph
Due to the lack of frame-level annotations, it is difficult to
classify individual short segments. However, multiple seg-
ments (among which there usually exist easy-to-classify
action instances) in a video can complement each other.
Thereby, the ACG is to capture the complementary relation-
ships and enhance the representation for each segment.

Formally, the ACG is defined as G = (V, E). V de-
notes a set of nodes {vt}Tt=1, corresponding to T segment-
level features {ft}Tt=1, while E refers to the edge set where
eij = (vi, vj) is the edge between the nodes vi and vj . In ad-
dition, we define A ∈ RT×T as the adjacency matrix associ-
ated with the graph G. The weight of an edge, i.e.Aij , repre-
sents the strength of the relationship between two connected
nodes, and a larger weight indicates that two segments are
more associated to each other.

In the subsequent, we introduce how to construct ACG by
taking multiple factors into consideration at the same time.
Segment Similarity Graph. An untrimmed, long video
may contain multiple action instances with large variances
due to different scenes, illumination conditions, shooting an-
gles, occlusions, etc. However, there are always similar mo-
tion patterns among multiple instances of the same action
category, where some high-quality or easy-to-classify seg-
ments recording more complete action instances with less
interference provide relatively stable information and low-
quality segments can also be complementary to each other.
For instance, two temporal segments belonging to the same
action class may be occluded in different regions. In this
case, one can facilitate the other to perceive the regions that
are visible in its own segment. As a result, it is desirable
to propagate various kinds of complementary information
across all the segments. To this end, we first construct a seg-
ment similarity graph by considering the similarities among
segment-level features.
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Here, we employ the Cosine distance between two orig-
inal segment-level features to measure their similarity, and
construct the similarity graph Gs by setting the edge weights
(i.e., As

ij) between the i-th and j-th nodes as follows:

As
ij =

fi · fj
||fi|| ||fj ||

, (1)

where (·) is the inner product and || · || is the magnitude.
Temporal Diffusion Graph. Since there exist high temporal
dependencies across consecutive segments, we also consider
the temporal information when constructing the graph. In
nature, temporally close segments usually have a high prob-
ability of belonging to the same action and tend to have high
similarities, i.e., the corresponding edge weights should be
relatively large. Moreover, in practice, the temporal convo-
lution in the feature extraction network (i.e., I3D in our ex-
periments) can fuse the temporal information between ad-
jacent segments in a short temporal window. This leads to
even higher feature similarities between temporally close
segments (i.e.,As

ij tends to be large when i→ j). Therefore,
if we construct the temporal graph based on the above facts
and add it directly to the segment similarity graph, the prop-
agation of the complementary information is likely to be re-
stricted in a short temporal window and cannot be success-
fully shared between segments that are far apart. For exam-
ple, the i-th segment Si containing a high-quality discrimi-
native action instance cannot complement the other inferior
instances (belonging to the same action) which are tempo-
rally located far away from Si.

Therefore, we attempt to spread out the complementary
information as far as possible so that the discriminability
of more segments can be enhanced in the untrimmed, long
video, leading to improved localization performance. To this
end, we construct a temporal diffusion graph by imposing
larger edge weights between farther nodes. Specifically, we
construct the temporal diffusion graph G t as follows:

At
ij = 1− max(Z − |i− j|, 0)

Z
, (2)

whereZ is a hyper-parameter to control the diffusion degree.
Overall Sparse Graph. By simply combining the two sub-
graphs Gs and G t, we can obtain our final action complement
graph G, of which the adjacency matrix is defined as follows:

A =
As + αAt

2
, (3)

where the two matrices As and At include As
ij and At

ij
as their (i, j)-th entries, respectively, and α is the hyper-
parameter for a better trade-off between the two sub-graphs.

Due to that the edge weights of the two sub-graphs are
mostly above zero, simply combining them to form the ACG
results in a very dense graph. If we directly learn the en-
hanced features based on this dense graph, we may obtain
similar global video-level features for each node/segment
since each node is expected to perceive the features of all
the rest nodes. This implicitly hinders the discriminability of
segment-level features, leading to less accurate localization
results. Therefore, it is necessary to make the graph sparse

enough to only preserve those most informative nodes. In
particular, we set our sparsification criterion based on both a
threshold λ and a top-K ranking list. The final sparse ACG
is constructed as:

A′ij =

{
sgn(Aij − λ) ·Aij , ranki(j) ≤ K
0, ranki(j) > K

(4)

where sgn(·) is an indicator, i.e., sgn(x) = 1 if x > 0;
otherwise sgn(x) = 0. ranki(j) is the ranking number of
the j-th node w.r.t. the edge weights among all the adjacent
nodes of the i-th node in the dense graph w.r.t. A. Note that
we adopt these two criteria regarding λ and K to make the
graph sparse, because simply adopting the threshold cannot
discard those ambiguous segments in similar scenes but be-
longing to different action classes. This intuition is also sup-
ported by the ablation study in our experiments.

Graph Inference
Graph Average. After constructing the final sparse ACG,
a straightforward way to aggregating all the node-level fea-
tures is to compute the average features by considering the
edge weights as follows:

fAVG
i =

T∑
j=1

Âijfj , (5)

where Âij is the (i, j)-th entry of the matrix Â, which is the
row-wise normalized adjacency matrix w.r.t. A′. In practice,
we find the averaged feature fAVG

i can exchange complemen-
tary information to some extent, achieving satisfactory per-
formance as shown in the subsequent experiments.
Graph Convolution. In addition to the above average fea-
tures, we incorporate graph convolutions into our ACGNet
to better aggregate node-level features. For a graph convolu-
tional network (GCN) with M layers, the graph convolution
operation w.r.t. the m-th (1 ≤ m ≤M) layer is as follows:

F(m) = σ(ÂF(m−1)W(m)), (6)

where F(m) is the feature generated by the m-th graph con-
volutional layer, F(0) = F is the original feature, FGCN =
F(M) is the final output of the last graph convolutional layer,
W(m) ∈ RD×D is the trainable parameters of the m-th
layer, and σ(·) is the ReLU (Nair and Hinton 2010) acti-
vation function.

Finally, the original features are combined with the graph
averaged features and the output features of the GCN to ob-
tain the enhanced discriminative features:

F′ = F+ FAVG + FGCN. (7)

Since F′ is the enhanced counterpart of the original feature,
different WTAL methods can replace their original input by
F′, further performing the subsequent localization task.

Training Objective
To discover the easy-to-classify segments to enhance the
features of other similar ones, making more segments easier
to be classified, we propose a novel loss based on an ‘easy
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mAP (%) @ IoUMethods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Average
STPN (Nguyen et al. 2018) 52.0 44.7 35.5 25.8 16.9 9.9 4.3 27.0
W-TALC (Paul, Roy, and Roy-Chowdhury 2018) 55.2 49.6 40.1 31.1 22.8 - 7.6 -
MAAN (Yuan et al. 2019) 59.8 50.8 41.1 30.6 20.3 12.0 6.9 31.6
Liu et al. (Liu, Jiang, and Wang 2019) 57.4 50.8 41.2 32.1 23.1 15.0 7.0 32.4
TSM (Yu et al. 2019) - - 39.5 - 24.5 - 7.1 -
Nguyen et al. (Nguyen, Ramanan, and Fowlkes 2019) 60.4 56.0 46.6 37.5 26.8 17.6 9.0 36.3
RPN (Huang et al. 2020) 62.3 57.0 48.2 37.2 27.9 16.7 8.1 36.8
Gong et al. (Gong et al. 2020) - - 46.9 38.9 30.1 19.8 10.4 -
ActionBytes (Jain, Ghodrati, and Snoek 2020) - - 43.0 35.8 29.0 - 9.5 -
EM-MIL (Luo et al. 2020) 59.1 52.7 45.5 36.8 30.5 22.7 16.4 37.7
A2CL-PT (Min and Corso 2020) 61.2 56.1 48.1 39.0 30.1 19.2 10.6 37.8
TSCN (Zhai et al. 2020) 63.4 57.6 47.8 37.7 28.7 19.4 10.2 37.8
BaS-Net 58.2 52.3 44.6 36.0 27.0 18.6 10.4 35.3
BaS-Net* 57.5 51.6 44.3 35.5 26.8 18.6 10.2 34.9

+ACGNet 58.8 53.3 46.4 38.3 29.8 20.9 11.2 37.0
DGAM 60.0 54.2 46.8 38.2 28.8 19.8 11.4 37.0
DGAM* 59.4 53.4 46.1 37.0 27.8 19.5 11.0 36.3

+ACGNet 62.5 55.9 48.2 39.5 29.6 20.4 11.2 38.2
BaM 67.5 61.2 52.3 43.4 33.7 22.9 12.1 41.9
BaM* 66.6 59.8 51.3 43.0 33.4 22.4 12.1 41.2

+ACGNet 68.1 62.6 53.1 44.6 34.7 22.6 12.0 42.5

Table 1: Comparison results on THUMOS’14. * indicates the results based on our implementations.

positive mining’ (EPM) strategy for sufficiently training the
joint WTAL network with our ACGNet embedded:

LEPM =
1

N

N∑
n=1

T∑
i,j=1

(pn,j ||f ′n,i − fn,j ||2), s.t. A′n,ij > 0,

(8)
where f ′n,i is the output feature of the ACGNet w.r.t. the i-th
segment in the n-th video, and fn,j and pn,j are the origi-
nal feature and the maximum activation score among all the
classes in terms of the j-th segment in the same video, re-
spectively.

Based on Eq. (8), the output features of the ACGNet are
encouraged to be consistent with the original features of sim-
ilar segments, especially those ‘easy positive’ examples that
can be successfully classified with the highest confidence
scores. In other words, the ‘easy positive’ segments can be
regarded as the class centroids in the feature space, and we
aim to push other similar segments closer to them. Conse-
quently, more action segments become easier to distinguish,
finally achieving more accurate location results.

Experiments
Experimental Setup
Datasets. THUMOS’14 (Idrees et al. 2017) contains over
20 hours of videos from 20 sports classes. Following (Lee,
Uh, and Byun 2020; Shi et al. 2020; Lee et al. 2021), we
conduct training on the validation set and perform evaluation
on the test set. ActivityNet1.2 (Caba Heilbron et al. 2015)
consists of 100 categories of actions. We follow the general
practice in (Lee, Uh, and Byun 2020; Shi et al. 2020; Lee

et al. 2021) by employing the training set for training and
the validation set for testing.

Baselines. The proposed ACGNet works as a univer-
sal module that can be incorporated into different WTAL
frameworks. The integration into other frameworks is rather
straightforward, and we only need to replace the original
features by the enhanced ones obtained by the ACGNet. In
our experiments, we adopt three recently proposed WTAL
methods, including BaS-Net (Lee, Uh, and Byun 2020),
DGAM (Shi et al. 2020), and BaM (Lee et al. 2021).
Evaluation Metrics. We adopt the standard metrics for per-
formance evaluation of different methods, i.e., mean Aver-
age Precisions (mAPs) under different Intersection of Union
(IoU) thresholds. In practice, we adopt the official evaluation
code provided by ActivityNet.
Implementation Details. The proposed framework is im-
plemented using the PyTorch library. Our ACGNet and the
subsequent action localization network are jointly trained in
an end-to-end manner. The action localization networks re-
tain the parameter settings in their original papers, and we
apply the stochastic gradient descent (SGD) to simultane-
ously optimize the joint network on an NVIDIA Tesla V100
GPU. For fair comparison with other WTAL methods, we
exploit I3D (Carreira and Zisserman 2017) to extract the ini-
tial segment-level features. The hyper-parameters adopted to
construct the ACG are empirically set as follows: Z = 10,
α = 1, and λ = 0.85. When taking BaS-Net as the action
localization network, we set K to 50 and T = 750 is a fixed
value. We set T = 400 (consistent with the original paper)
and K = T/10 = 40 when employing the other two local-
ization frameworks. We utilize a 2-layer graph convolutional
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mAP (%) @ IoUMethods 0.5 0.75 0.95 Avg
UNet (Wang et al. 2017) 7.4 3.2 0.7 3.6
AutoLoc (Shou et al. 2018) 27.3 15.1 3.3 16.0
CleanNet (Liu et al. 2019) 37.1 20.3 5.0 21.6
TSM (Yu et al. 2019) 28.3 17.0 3.5 17.1
RPN (Huang et al. 2020) 37.6 23.9 5.4 23.3
TCAM (Gong et al. 2020) 40.0 25.0 4.6 24.6
EM-MIL (Luo et al. 2020) 37.4 - - 20.3
TSCN (Zhai et al. 2020) 37.6 23.7 5.7 23.6
BaS-Net 38.5 24.2 5.6 24.3
BaS-Net* 36.9 23.3 5.1 22.4

+ACGNet 40.8 25.3 5.6 25.1
DGAM 41.0 23.5 5.3 24.4
DGAM* 40.3 23.2 5.0 24.0

+ACGNet 41.4 24.2 5.5 24.9
BaM 41.2 25.6 6.0 25.9
BaM* 40.8 24.9 5.8 25.6

+ACGNet 41.8 26.0 5.9 26.1

Table 2: Comparison results on ActivityNet1.2. * indicates
the results based on our implementations.

network in all the experiments.

Comparison to State-of-the-Art Methods
Results on THUMOS’14. Table 1 shows the localization
performance of different methods on THUMOS’14. For fair
comparison, we also report the results of the three adopted
WTAL frameworks based on our implementations. From
the table, we can see that after integrating the proposed
ACGNet, the results of the three localization networks are
significantly and consistently improved in terms of most IoU
thresholds. Notably, when the IoU threshold is set to 0.5,
BaS-Net, DGAM, and BaM respectively gain absolute im-
provements of 3.0%, 1.8%, and 1.3% in mAP. The gain on
BaM is not so remarkable, probably due to that BaM greatly
improves the discriminability of segment features through
background modeling. Such facts indicate the effectiveness
of exploiting complementary clues between temporal seg-
ments in the weakly-supervised setting. In all, we push the
state of the art in WTAL to a large extent, which is even
on par with the performance of some fully-supervised ap-
proaches.
Results on ActivityNet1.2. Table 2 shows the comparison
results on ActivityNet1.2. Similar to the observations on
THUMOS’14, our ACGNet greatly strengthens the existing
WTAL frameworks with regard to all the IoU thresholds,
and the improvement on BaS-Net is particularly encourag-
ing. Specifically, when adopting 0.5 as the IoU threshold, the
mAPs of BaS-Net, DGAM, and BaM are improved by 3.9%,
1.1%, and 1.0%, respectively. This again demonstrates the
superiority of the proposed feature enhancement network.

Ablation Study
We perform ablation study on BaS-Net as it is the most flexi-
ble and efficient among the three baselines. It is worth noting

mAP (%) @ IoU=0.5
K G1 = Gs G2 = Gs − G t G3 = Gs + G t

1 19.3 19.7 22.2
5 21.8 21.6 24.3
20 26.8 25.9 28.1
50 28.0 27.2 29.8

200 27.5 26.6 28.6
750* 25.9 25.1 25.3

Table 3: Results of different graph designs on THUMOS’14.
* indicates the dense graph without sparsification.

that the number of parameters increases from 26.3 M to 34.6
M when plugging ACGNet into BaS-Net. This complexity is
expected as ACGNet includes several processing steps and
is not fully optimized. However, considering the flexibility
of such a universal module and the consistent performance
gains, the increase in complexity is acceptable.
Effects of Graph Design. We first study the (dis)advantages
of different graph designs. Table 3 shows the results with
various degrees of sparsity (K). G1 indicates directly using
the segment similarity graph Gs; G2 is a variant of our ACG
by subtracting the temporal diffusion graph G t from Gs; G3
is the proposed ACG. Specifically, whenK=50, G3 achieves
the highest mAP among the three. However, when the graphs
become denser, the results tend to decrease gradually. This
aligns well with our previous assumption that dense graphs
cannot exploit the most discriminative features across all the
segments. Finally, we test the performance by using only
Gt. In this case, most edges in Gt are weighted by one and
no meaningful feature enhancement can be guaranteed. Con-
sequently, we only obtain an inferior mAP of 22.1% when
K=50.
Effects of Sparsity. As discussed above, Table 3 includes
some results when adopting different sparsity levels w.r.t.K.
Here, we additionally evaluate how the threshold λ affects
the final performance. As shown in Figure 4, the best results
are always achieved by considering both factors (i.e., λ and
K) for graph sparsification. This indicates that simply using
a threshold is not enough to maintain the most discriminative
nodes. This may be because the scenes remain unchanged in
some videos, i.e., the similarity between different segments
is always high even if the segments contain different kinds of
action instances. In such cases, simply adopting a threshold
preserves those irrelevant nodes belonging to distinct cate-
gories. By further imposing the top-K constraint, we can re-
move the ambiguous nodes and keep the most relevant ones,
obtaining more discriminative segment-level features.
Component Validation. Table 4 shows the results based on
different components in our ACGNet. Concretely, we test
the performance when adopting different features and dis-
tinct ways of feature combinations.We can see that combin-
ing the original features with either the weighted average or
the graph convolutional ones can significantly improve the
overall accuracy. By fusing all the features, we can achieve
the best performance. It is also noteworthy that inferior per-
formance is observed if the EPM loss is discarded during

3095



Baseline

Ours

GT

ProposalProposal

Activation Score Activation Score

Figure 3: Qualitative visualization of two typical video examples on THUMOS’14. The results of BaS-Net (Baseline), BaS-
Net+ACGNet (Ours), and ground truth (GT) are shown in blue, red, and green, respectively. The yellow boxes include some
difficult cases that Bas-Net fails to detect but can be successfully localized by our method.
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Figure 4: Comparison results of ACGNet (with BaS-Net) by
using different levels of sparsity w.r.t. λ on THUMOS’14.

graph training. As mentioned previously, this is because the
graph convolutional layers cannot be trained sufficiently. In-
terestingly, when only using the enhanced graph-based fea-
tures, the accuracy drops a lot, indicating that taking them as
the supplements to the original features shows an effective
way to make the potential of the graph features unleashed. In
addition, only using FAVG performs the worst, as the average
features along the whole video cannot represent the distinct
temporal dynamics of different action instances.

Qualitative Analysis
Figure 3 visualizes some qualitative results. The curves rep-
resent the detection activation scores, while the blocks de-
note the localization results with the IoU threshold at 0.5.
It can be observed that most of our scores are higher than
the ones delivered by Bas-Net, indicating that our enhanced
features are more discriminative for classification. Mean-
while, the scores of other non-action segments remain rela-
tively low, revealing that our method can successfully distin-
guish action-related segments from irrelevant background.
We also note that our detected proposals are more complete,
while Bas-Net tends to split one proposal into several indi-
vidual shorter proposals, leading to degraded accuracy. The
difficult cases in the yellow boxes further demonstrate the

Feature Fusion mAP (%)
I3D AVG GCN LEPM sum concat IoU=0.5√

26.8√
19.7√ √ √
28.5√ √ √
29.1√ √ √
26.2√ √ √
27.3√ √
22.4√ √ √ √
22.2√ √ √ √
29.0√ √ √ √
29.1√ √ √ √
28.2√ √ √ √ √
29.8√ √ √ √ √
28.7

Table 4: Results of different components of ACGNet (with
BaS-Net) on THUMOS’14.

superiority of our ACGNet.

Conclusion
This paper presents the ACGNet aiming to enhance the dis-
criminability of segment-level representations of videos for
WTAL. The complementary clues from other segments in
the same video, particularly the easy-to-classify ones, pro-
vides certain supervision to learn more discriminative fea-
tures. Our ACGNet works as a general module that is flexi-
bly embedded into various existing WTAL frameworks, re-
markably boosting the state of the art performance on two
challenging benchmarks.
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