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Abstract

The Image Difference Captioning (IDC) task aims to describe
the visual differences between two similar images with natu-
ral language. The major challenges of this task lie in two as-
pects: 1) fine-grained visual differences that require learning
stronger vision and language association and 2) high-cost of
manual annotations that leads to limited supervised data. To
address these challenges, we propose a new modeling frame-
work following the pre-training-finetuning paradigm. Specif-
ically, we design three self-supervised tasks and contrastive
learning strategies to align visual differences and text de-
scriptions at a fine-grained level. Moreover, we propose a
data expansion strategy to utilize extra cross-task supervision
information, such as data for fine-grained image classifica-
tion, to alleviate the limitation of available supervised IDC
data. Extensive experiments on two IDC benchmark datasets,
CLEVR-Change and Birds-to-Words, demonstrate the effec-
tiveness of the proposed modeling framework. The codes and
models will be released at https://github.com/yaolinli/IDC.

Introduction
Endowing machines with the ability to automatically per-
ceive and understand visual information and express in nat-
ural language is a goal that researchers have long aspired
to achieve. Image captioning (Vinyals et al. 2015; Xu et al.
2015; Rennie et al. 2017), which aims at generating natural
language description of a given image, has been one of the
classic research tasks. Image Difference Captioning (IDC),
which generates natural descriptions of the differences be-
tween two similar images, is a further extension of the gen-
eral image captioning task, and it is more challenging (Jham-
tani and Berg-Kirkpatrick 2018; Park, Darrell, and Rohrbach
2019; Tan et al. 2019). IDC has rich potential in real world
applications, such as assisting ornithologists to distinguish
species with similar appearances, detecting and describing
lesions automatically, and reporting salient changes in me-
dia assets and surveillance etc.

Intuitively, image difference captioning involves the steps
of first perception, then comparison, and finally description,
which is more complex and challenging than the general
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" Animal1 is covered in yellow , green and orange feathers , while 
animal2 is covered in greenish grey feathers with dark orange 
feathers on abdomen and chest ."

" The brown matte cube changed to green. "

（a）

（b）

Figure 1: Image difference captioning examples. (a) an ex-
ample from CLEVR-Change that involves an object change;
(b) an example from Birds-to-Words that involves detailed
appearance differences of two birds.

image captioning task. The key challenges of image differ-
ence captioning task relate to two aspects. First, the IDC
task requires fine-grained semantic comprehension. Differ-
ent from general image captioning that describes a single im-
age, IDC needs to perceive the fine-grained contents of two
similar images to identify the usually subtle differences. As
shown in Figure 1 (b), the focused differences lie in the tiny
body parts of bird species (i.e.“feather” and “abdomen”).
Moreover, the fine-grained visual differences can be very
diverse in different scenarios. In case (a), we focus on the
change of geometry objects in the scene, while in case (b),
we only attend to the appearance of bird species regardless
of the complex natural environment. Second, the annotation
for the IDC task is particularly high-cost. Compared with
general image caption annotation, it requires higher cogni-
tion load from annotators, including first observing two im-
ages, then comparing the differences, and then using natu-
ral language to annotate these differences in order to pro-
duce the annotation in a triplet format (img1, img2, de-
scription). Therefore, existing manually annotated bench-
mark datasets are limited in data size (Jhamtani and Berg-
Kirkpatrick 2018; Forbes et al. 2019; Tan et al. 2019).
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There have been previous endeavors to address the above-
mentioned challenges, which mainly focus on designing
various attention mechanisms or improving the image fea-
tures to better capture the subtle image difference based
on the typical encoder-decoder structure (Park, Darrell, and
Rohrbach 2019; Tan et al. 2019; Shi et al. 2020). However,
these works have not paid sufficient attention on fully in-
teracting cross-modal fine-grained representations. Inspired
by the recent vision-language pre-training works (Li et al.
2020a; Chen et al. 2020; Li et al. 2020d), in this paper, we
propose a new training schema for image difference caption-
ing, which uses self-supervised learning to learn stronger as-
sociations between visual differences and language.

Our proposed training schema follows the pre-training
and fine-tuning paradigm to align the visual differences
with textual semantics at a fine-grained level. In the pre-
training stage, we design three self-supervised tasks includ-
ing Masked Language Modeling (MLM), Masked Visual
Contrastive Learning (MVCL) and Fine-grained Difference
Aligning (FDA). In MLM and MVCL tasks, we mask some
parts of one modality and recover it by the other, thereby
promoting the semantic interaction between visual differ-
ences and language. We replace the common feature re-
gression objective (Qi et al. 2020) on the visual side with a
Noise Contrastive Estimation (NCE) loss. In the FDA task,
we introduce contrastive learning strategies and construct
negative contrasts to further enhance the fine-grained cross-
modal association. Specifically, we carefully design three
hard negatives construction strategies, namely Retrieve, Re-
place, and Confuse. Considering the high annotation cost,
we leverage extra cross-task data in our framework to learn
additional background knowledge. To be specific, we uti-
lize datasets from general image captioning (GIC) and fine-
grained visual classification (FGVC) (Ge, Lin, and Yu 2019;
Liu et al. 2020; Dubey et al. 2018). The GIC task provides
image-text pairs and can benefit learning the alignment be-
tween images and textual descriptions. In the FGVC task,
the fine-grained image labels can drive the model to learn
more discriminative visual representations. Our model ar-
chitecture is flexible to handle the different-form cross-task
data with an image difference encoder and a multi-layer
cross-modal transformer.

Extensive experiments are carried out on two bench-
mark datasets from different scenarios: CLEVR-Change and
Birds-to-Words. Our model significantly outperforms the
state-of-the-art methods on the main metrics on both bench-
mark datasets.The major contributions of this work are as
follows:

• We propose a new training schema with the pre-training-
finetuning paradigm for the IDC task to better align the
visual difference and language by three self-supervised
tasks with contrastive learning.
• The proposed model has a flexible structure that can uti-

lize extra cross-task data to alleviate the limitation of su-
pervised data due to high annotation cost.
• The proposed model achieves the state-of-the-art per-

formances on the CLEVR-Change and Birds-to-Words
benchmark datasets.

Method
In this section, we introduce our proposed pre-training and
fine-tuning paradigm for the image difference captioning
task. The overall modeling framework is illustrated in Fig-
ure 2. It consists of an image difference encoder to cap-
ture subtle visual differences and a multi-layer cross-modal
transformer to align cross-modal representations. Three
pre-training tasks including Masked Language Modeling
(MLM), Masked Visual Contrastive Learning (MVCL) and
Fine-grained Difference Aligning (FDA) are designed to
take most advantage of the given data. To handle the prob-
lem of limited supervised IDC data, we expand cross-task
data in our flexible framework.

Model Architecture
Input Representation We define the input of the IDC task,
which contains a pair of images and a text description, as
{V (1), V (2), T}. For the text description, we tokenize each
word in the sentence and convert it to word embedding
trained from scratch, denoted as:

T = {[CLS], [BOS], w0, . . . , wM , [EOS]} (1)

where the special token [CLS] is added to capture the global
semantics of the sentence. Following previous works (Park,
Darrell, and Rohrbach 2019; Tan et al. 2019; Forbes et al.
2019), we use pre-trained ResNet101 (He et al. 2016) to ex-
tract grid features for the two images, denoted as:

V (1) = {[IMG1], v(1)0 , . . . , v
(1)
i , . . . , v

(1)
N } (2)

V (2) = {[IMG2], v(2)0 , . . . , v
(2)
i , . . . , v

(2)
N } (3)

Similar to text representations, we also add two special to-
kens [IMG1] and [IMG2] to extract global image semantics
respectively. A linear layer is applied to keep the visual fea-
ture dimension the same as the word embedding.

To explicitly indicate the positions of tokens inside each
modality, we add fixed positional embeddings (Vaswani
et al. 2017) to each token as well. In addition, we employ
type embeddings to distinguish whether a token belongs to
V (1), V (2), or T .
Image Difference Encoder Based on the intuitive cogni-
tion process of image difference captioning, observing two
images and then comparing them, we design an image dif-
ference encoder, which consists of a single-image encoder
and a pair-image encoder. The single-image encoder Fsing
takes visual tokens from an image as input to embed the se-
mantics of different regions in the image. Then embeddings
of the two images are fed into the pair-image encoder Fpair,
which can interact the visual semantics between two images
and implicitly learn to locate image differences. We use the
transformer architecture for both Fsing and Fpair.

Ṽ (1), Ṽ (2) = Fpair

(
Fsing(V

(1)),Fsing(V
(2))
)

(4)

Cross-modal Transformer We utilize self-attention based
multi-layer transformer for the cross-modal encoder to align
context between visual and textual modalities.

V̂ (1), V̂ (2), T̂ = Fcross

(
Ṽ (1), Ṽ (2), T

)
(5)
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Figure 2: Overview of our proposed framework with an image difference encoder and a multi-layer cross-modal transformer
(best viewed in color). Given the input in triplet format (img1, img2, description), the image pair is first fed into the image
difference encoder to capture the fine-grained image differences. It consists of a single-image encoder and a pair-image encoder,
which enhances the intra-image and inter-image visual representations respectively. Then the enhanced visual representations
are aligned with the textual representations in the cross-modal transformer through three pre-training tasks: Masked Language
Modeling (MLM), Masked Visual Contrastive Learning (MVCL) and Fine-grained Difference Aligning (FDA).

Pre-training Tasks
We design three pre-training tasks to enhance the fine-
grained alignment between image differences and captions
so that to learn better feature representations.

Masked Language Modeling (MLM) For textual side,
we apply Masked Language Modeling to promote the con-
text mapping from vision to language, following existing
VLP works (Chen et al. 2020; Huang et al. 2021b). The ob-
jective of the MLM task is to predict the masked word wm
based on the surrounding unmasked words w\m and visual
difference context {Ṽ (1), Ṽ (2)}. Similar to BERT, we mask
15% of the input word tokens in which 80% are replaced
with a special token [MASK], 10% with random words and
10% unchanged. The masked hidden output of cross-modal
transformer are fed into a classifier to predict the original
words. We formulate the training objective of MLM task as:

LMLM = EV,T∈D
[
− logPθ

(
wm | w\m, Ṽ (1), Ṽ (2)

)]
(6)

where D denotes the entire training set and θ is the model
parameters to be learned.

Masked Visual Contrastive Learning (MVCL) Simi-
lar to the MLM task, we also apply masking and recover-
ing strategy on the visual side. Since visual representation
is continuous and high-dimensional, the goal of the MVCL
task is to reconstruct the masked image features according
to the difference caption and the remaining visual seman-
tics. Specifically, we mask 15% input image features and
replace the masked features with zero vectors. Note that we
only mask features from one image each time to ensure the

masked content can be recovered by the other two in triplet
{V (1), V (2), T}. The general objective of MVCL task is:

LMVCL = EV,T∈Dfθ
(
vm | v\m, T

)
(7)

where V = {V (1), V (2)}. Inspired by the video language
pre-training work (Luo et al. 2020; Li et al. 2020b), we in-
troduce contrastive learning and use a NCE loss (Sun et al.
2019) to define fθ

(
vm | v\m, T

)
as:

− log
exp

(
d(vm, v

+
m)/τ1

)
exp

(
d(vm, v

+
m)/τ1

)
+
∑
v′∈N (vm) exp (d(vm, v

′)/τ1)

(8)
where d(.) denotes the cosine similarity, τ1 is the tempera-

ture hyper-parameter and v+m denotes the original image fea-
ture of vm before masking. We define the unmasked image
features in the batch as negative samples N (vm). The con-
trastive loss pushes the model to identify the positive sample
v+m of vm from negative samplesN (vm) in the batch, which
enforces the reconstructed image representations of vm to be
more discriminative.

Fine-grained Difference Aligning (FDA) To explicitly
bridge visual and textual modalities in a more fine-grained
way, we introduce contrastive learning and construct hard
negative samples. To be specific, we rewrite the original dif-
ference caption in three ways, as illustrated in Figure 3:

• Retrieve For each triplet sample {V (1), V (2), T}, we use
TF-IDF similarity to retrieve the most similar difference
descriptions {T−} from other samples for T and con-
sider them as hard negative samples.
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Original animal1 is brown with white tuft while animal2 is orange

Retrieve   animal1 is brown with white tuft while animal2 is dark brown with grey tuft

Replace   selected words  [ tuft, orange, brown ]
animal1 is stocky with white spotting while animal2 is greenish

Confuse   animal2 is brown with white tuft while animal1 is orange

Figure 3: An example of constructed negative sentences in
FDA task on Birds-to-Words Dataset.

• Replace We replace the most important difference-
related words in the caption to facilitate fine-grained
alignment. Empirically, we observe that the attribute
words in the caption are more related to the differ-
ence (e.g. “grey”, “beak”). Therefore, we first annotate
adjectives and nouns in each sentence using Stanford
CoreNLP tool. Then we sort the annotated words by TF-
IDF score to measure their importance. Top K (50%) an-
notated words are selected and replaced by other words
with the same POS-Tags that are randomly sampled from
pre-defined vocabularies.
• Confuse If we change the subject in the difference

description, the semantics of the sentence will totally
change while the structure remains similar. For example,
changing “animal1 has a longer tail than animal2” to
“animal2 has a longer tail than animal1”. We achieve
this by changing the subjects between sentences or
switching the subject and object within a sentence.

Based on the positive sample (V, T+) and con-
structed negative samples (V, T−), we employ a con-
trastive loss to define the training objective LFDA =
EV,T∈D [− logNCE(V, T )], in which NCE(V, T ) is:

exp
(
d
(
V, T+

)
/τ2
)

exp (d (V, T+) /τ2) +
∑
T−∈NT

exp (d (V, T−) /τ2)
(9)

where d(.) denotes the cosine similarity, τ2 is a hyperpa-
rameter and NT is the negative text set. We take the aver-
age of special token [IMG1] and [IMG2] from the output as
the global visual representation, and the special token [CLS]
from the output as the textual representation.

In the pre-training stage, we use bi-directional attention
mask, thus the special tokens [IMG1], [IMG2], [CLS] can
learn global joint representations from images and text. We
train different pre-training tasks by alternating batch with
different ratio.

Finetuning and Inference
After pre-training, we fine-tune our model to generate dif-
ference captions based on effective visual semantics across
two similar images. Similar to (Li et al. 2020d), we adapt the
MLM task in the fine-tuning stage. Different from the pre-
training stage, we employ a uni-directional attention mask to

restrict the attention on the text side, which means that each
word can only attend to its previous words. While the atten-
tion on the visual side does not change and each word can at-
tend to all visual tokens. In this way, we can keep fine-tuning
and pre-training as consistent as possible while adapting the
model to sentence generation as much as possible.

During the inference stage, the model generates the dif-
ference caption word by word based on visual difference se-
mantics. The embeddings of all visual features {V (1), V (1)}
and the special token [CLS] are used as input. The start to-
ken [BOS] with a [MASK] token are then fed to the model to
trigger the sentence generation. The model samples a word
w0 from the vocabulary based on the likelihood output of the
[MASK] token. At step t, the [BOS] token, previous gener-
ated words w<t and a new [MASK] token are fed to the
model to generate next word wt. The model can thus gener-
ate the whole sentence until [EOS] is sampled.

Expansion of Cross-task Data
To alleviate the limitation of available IDC triplet data, we
propose a data expansion strategy to utilize extra cross-task
data. Specifically, we expand data from general image cap-
tioning and fine-grained visual classification tasks.

General image captioning(GIC) task aims to describe a
single image with sentences. The GIC data is in the (im-
age, text) format, which can facilitate the model to learn
preliminary cross-modal alignment. In order to adapt to the
triplet data format of the IDC task, we pad an empty image
with zero vectors to form the pseudo triplet. In cross-modal
transformer, the padded vectors will not be involved in self-
attention calculation by a special attention mask. The pseudo
triplet input can naturally adapt to three pre-training tasks.
Note that in the MVCL task, we only mask tokens from the
real image.

Fine-grained visual classification(FGVC) is a challeng-
ing task to classify images with subtle inter-class differ-
ences. The slightly different images with different class la-
bels can enhance our image difference encoder to learn more
discriminative visual representations. Specifically, we con-
struct image pairs (img1, img2) by random sampling, half
of which are from the same class label, and the other half
are not. Each single image (i.e. img1 or img2) in the ob-
tained pairs is used to refine the single-image encoder Fsing
with a fine-grained classification objective and a contrastive
loss (He et al. 2021). Then the dual visual representations
are fed to the pair-image encoder Fpair to optimize it with a
matching loss which verifies whether the two images (img1,
img2) are from the same class. The matching loss enhances
the ability of the difference encoder to compare two similar
images. Note that we select cross-task datasets with simi-
lar semantic domain as the IDC benchmark dataset, so they
can provide more similar background knowledge for multi-
modal representation learning and cross-modal alignment.

Experiments
We evaluate our model on two IDC benchmark datasets from
different domains including CLEVR-Change (Park, Darrell,
and Rohrbach 2019) and Birds-to-words (Tan et al. 2019).
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Model B4 M C(D) R

Neural Naturalist (2019) 22.0 - 25.0 43.0
Relational Speaker (2019) 21.5 22.4 5.8 43.4
DUDA (2019) 23.9 21.9 4.6 44.3
L2C (2021) 31.3 - 15.1 45.3
L2C(+CUB) (2021) 31.8 - 16.3 45.6

Ours 28.0 23.1 18.6 48.4
Ours(+Extra Data) 31.0 23.4 25.3 49.1

Table 1: Comparison with state-of-the-art models on Birds-
to-Words dataset. B4, M, R, and C(D) are short for BLEU-
4, METEOR, ROUGE-L and CIDEr(D). The main metric
ROUGE-L on this dataset is highlighted.

Experimental Settings
Benchmark Datasets CLEVR-Change dataset (Park,
Darrell, and Rohrbach 2019) is automatically built via the
CLEVR engine and describes scene changes of geometry
objects with clean background. It has 67,660, 3,976 and
7,970 image pairs for training, validation and test split re-
spectively. Each image pair is annotated with 6.2 captions on
average. Birds-to-Words dataset (Tan et al. 2019) describes
the fine-grained difference of various bird species collected
in the wild. It has 4,860 image pairs and each pair corre-
sponds to 3.31 annotated captions on average.

Cross-task Datasets CUB (Wah et al. 2011) serves as
a single image captioning dataset. It contains 11,788 im-
ages of 200 bird species and each image is annotated with
10 captions. We use the split of 8855 training images
and 2933 validation images following (Yan et al. 2021).
NABirds (Van Horn et al. 2015) is a fine-grained visual clas-
sification dataset which contains 48,562 images of North
American birds with 555 categories.

Metrics We report results on the standard image caption-
ing metrics including BLEU (Papineni et al. 2002), ME-
TEOR (Denkowski and Lavie 2014), ROUGE-L (Lin 2004)
and CIDEr(CIDEr-D) (Vedantam, Lawrence Zitnick, and
Parikh 2015) following previous works. In addition, we par-
ticularly emphasize the main metric that has been commonly
recognized in previous works, which refers to: CIDEr for
CLEVR-Change and ROUGE-L for Birds-to-Words.

Implementation Details We extract grid image features in
the shape of (7,7,2048) using the pre-trained ResNet101 (He
et al. 2016) and flatten it to a feature sequence in the shape
of (49, 2048). The word embedding is learned from scratch
and its dimension is 512. For the cross-modal transformer,
the hidden size is 512, the attention head is 8, and the
layer number is 2 for Birds-to-Words and 3 for CLEVR-
Change. We set τ1, τ2 in contrastive learning to 1. In FDA
task, we rewrite 6 negative sentences for each image pair,
among which retrieve:replace:confuse=2:2:2. For CLEVR-
Change, we sample the batch from the three pre-training
tasks with ratio of MLM:MVCL:FDA=8:1:2. We pre-train
the model with 8K warm-up steps and 250K iterations in
total. For Birds-to-words, the ratio of pre-training tasks is

Model B4 M R C

Capt-Dual-Att (2019) 43.5 32.7 - 108.5
DUDA (2019) 47.3 33.9 - 112.0
VAM (2020) 50.3 37.0 69.7 114.9
VAM+ (2020) 51.3 37.8 70.4 115.8
IFDC (2021a) 49.2 32.5 69.1 118.7
DUDA+Aux (2021) 51.2 37.7 70.5 115.4

Ours 51.2 36.2 71.7 128.9

Table 2: Comparison with state-of-the-art models on
CLEVR-Change dataset. B4, M, R, and C are short for
BLEU-4, METEOR, ROUGE-L and CIDEr. The main met-
ric CIDEr on this dataset is highlighted.

MLM:MVCL:FDA=9:1:2. The warm-up steps are 4K and
total training steps are 50K. In the pre-training stage, we
apply Adam (Kingma and Ba 2014) optimizer with learn-
ing rate 1e-4. In the finetuning stage, the learning rate is set
as 3e-5. Early-stop is applied on the main metric to avoid
overfitting. The sentence is generated with greedy search in
inference. More details can be found in the supplementary
material.

For CLEVR-Change, we notice that half of the data sam-
ples belong to a distractor type, which means that there are
only non-semantic differences between the images, e.g. an-
gle, zoom, or illumination changes. Accurately distinguish-
ing semantic changes from distractors has great impact on
model performance. We therefore jointly train a distractor
judging task in the finetuing stage. Specifically, we concate-
nate the representation of special token [IMG1] and [IMG2]
and feed it to a binary classifier to judge whether the visual
change is a distractor or not.

Comparison with the State-of-the-Arts
Results on Birds-to-Words We evaluate our method on
Birds-to-Words compared with other state-of-the-art mod-
els, including Neural Naturalist (Forbes et al. 2019), Rela-
tional Speaker (Tan et al. 2019), DUDA (Park, Darrell, and
Rohrbach 2019) and L2C/L2C(+CUB) (Yan et al. 2021).
As shown in Table 1, our model without extra cross-task
data has achieved significant improvement on the main met-
ric ROUGE-L (from 45.6 to 48.4), even outperforming L2C
with extra CUB data. The extra cross-task data further im-
proves the model performance on all metrics, which demon-
strates that more data from similar domain can provide ben-
eficial background knowledge. Our model with extra data
achieves the new state-of-the-art performance on METEOR,
CIDEr-D and ROUGE-L.

Results on CLEVR-Change We compare the proposed
model with other state-of-the-art models with typical
encoder-decoder structure, including Capt-Dual-Att (Park,
Darrell, and Rohrbach 2019), DUDA (Park, Darrell,
and Rohrbach 2019), VAM/VAM+ (Shi et al. 2020),
IFDC (Huang et al. 2021a) and DUDA+Aux (Hosseinzadeh
and Wang 2021). Table 2 shows that our proposed model
significantly outperforms all previous models on the main

3112



Model C T M A D DI

DUDA 120.4 86.7 56.4 108.2 103.4 110.8
VAM+ 122.1 98.7 82.0 126.3 115.8 122.6
IFDC 133.2 99.1 82.1 128.2 118.5 114.2

Ours 131.2 101.1 81.7 133.3 116.5 145.0

Table 3: Breakdown CIDEr performance on different type of
changes of CLEVR-Change Dataset: C(Color), T(Texture),
M(Move), A(Add), D(Drop) and DI(Distractor).

Pre-training Tasks DE B4 M R C

1 None X 32.7 27.7 57.2 89.8
2 MLM X 36.7 28.2 60.9 94.9
3 MLM + MVCL X 50.3 37.6 70.6 119.7
4 MLM + MVCL + FDA X 51.2 36.2 71.7 128.9
5 MLM + MVCL + FDA % 49.2 35.8 68.8 107.9

6 w/o Distractor Judging X 49.8 36.9 69.2 123.5

Table 4: Ablation study results on CLEVR-Change dataset.
DE is short for Image Difference Encoder module in our
model. B4, M, R, and C are short for BLEU-4, METEOR,
ROUGE-L and CIDEr. The main metric CIDEr on this
dataset is highlighted.

metric CIDEr, boosting previous best CIDEr score of 118.7
to 128.9. Compared with models employing well-designed
attention mechanism or visual encoder, our architecture is
more straightforward and flexible which achieves improved
performance via effective self-supervised tasks. We also
evaluate results on breakdown change types as shown in
Table 3. Our model achieves better CIDEr scores on three
types including Texture, Add and Distractor due to the fine-
grained alignment across modalities in pre-training.

Since CLEVR-Change and Birds-to-Words are from en-
tirely different domains, the experiment results indicate that
our model can robustly capture diverse visual differences.

Results and Analysis
Pre-training for IDC We first validate the effectiveness
of three self-supervised tasks on CLEVR-Change dataset
in Table 4. Line 1 shows the result from the baseline
without pre-training, which can be considered as perform-
ing the finetuning stage only. The CIDEr score is obvi-
ously low in this case without any further interaction across
modalities. When more self-supervised tasks are added in
the pre-training stage (Line 2∼4), the model performance
increases accordingly, which proves the effectiveness of
our pretraining-finetuning paradigm. It is worth noting that
adding MVCL task brings large performance improvement
(CIDEr from 94.9 to 119.7), which benefits from the mask-
recover schema on the visual side. The FDA task further
improves the CIDEr score from 119.7 to 128.9, which indi-
cates that contrastive learning with well-designed hard nega-
tive samples helps fine-grained cross-modal alignment. Fur-
thermore, we analyze the impact of the image difference en-

Model B2W CUB NAB B4 M C(D) R

L2C X 31.3 - 15.1 45.3
X X 31.8 - 16.3 45.6

Ours

X 28.0 23.1 18.6 48.4
X X 29.3 23.1 23.8 48.5
X X 27.5 23.3 21.9 48.5
X X X 31.0 23.4 25.3 49.1

Table 5: Model performance on Birds-to-Words(B2W)
dataset using two cross-task dataset including CUB and
NABirds(NAB). B4, M, R, and C(D) are short for BLEU-
4, METEOR, ROUGE-L and CIDEr-D. The main metric
ROUGE-L on this dataset is highlighted.

coder module in Line 5, where the results show that the per-
formance drops significantly without the image difference
encoder. It indicates that the image difference encoder can
effectively learn to capture subtle visual differences. Com-
pared to Line 4, Line 6 is the result without distractor judg-
ing task in the finetuning stage, which proves that this task
can help model distinguish semantic changes from distrac-
tors and improve the model performance.

Cross-task Data Usage We evaluate the effectiveness of
cross-task data usage on Birds-to-Words in Table 5. CUB is
a general image captioning (GIC) dataset that describes bird
species, and NABirds is a fine-grained bird image classifi-
cation dataset. The experiment results show that leveraging
CUB can bring more performance improvement because it
promotes learning the alignment between images and text
descriptions, while NABirds only enhances the visual side.
A combination of both cross-task datasets provides more
background knowledge and thus achieves the best result.

Qualitative Results We visualize some cases in Figure 4.
The top two cases are from CLEVR-Change. (a) The at-
tention maps show that our proposed model can correctly
capture the fine-grained semantic changes. (b) Our model
can accurately identify the distractor scenario. The bottom
cases (c) are from Birds-to-Words, which demonstrate that
our model can capture the fine-grained bird appearance dif-
ference regardless of the complex background. We also ob-
serve that the proposed model tends to repeat the same dif-
ferences or ignore the conflicts in the generated sentences,
which could be further addressed in our future work. More
visualizations and analysis are available in the supplemen-
tary material.

Related Works
Image Difference Captioning More challenging than gen-
eral image captioning (Vinyals et al. 2015; Xu et al. 2015;
Jiang et al. 2018; Gu et al. 2018; Zhao, Wu, and Zhang
2020; Fei 2021), the image difference captioning task pro-
motes the research of vision and language to achieve a
more fine-grained understanding. Recently, several bench-
mark datasets of IDC have emerged (Jhamtani and Berg-
Kirkpatrick 2018; Park, Darrell, and Rohrbach 2019; Tan
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Ours： the scene is the same as before
DUDA： the scene is the same as before
GT： the two scenes seem identical

Ours： the small blue metal cylinder that is to the 
right of the small yellow thing became gray 
DUDA： the small green metal cylinder that is 
behind the small brown matte cylinder is missing
GT： the blue metallic thing became gray

Semantic Change Distractors

Ours:  animal1 has red feathers on its head , and wings and tail . 
animal2 has a brown head . animal2 has a brown and white breast .

Neural Naturalist:  animal1 has a red head . animal2 has a brown head .

GT: animal1 has a red beak , while animal2 has a pale grey beak . 
animal1 ' s vivid coloring includes red , violet , tan , rust , blue , and 
brown . in contrast , animal2 ' s coloring is mostly yellow and dark 
brown . animal1 has black legs , while animal2 has red legs .

(a) (b)

(c)

Figure 4: Visualization of generated cases (best viewed in color). The first block illustrates two cases from CLEVR-Change.
Case (a) involves semantic changes while case (b) is a distractor with only viewpoint shift. For each case, the first row is the
original image pair and the second row is the corresponding attention maps. When the attention score is higher, the region is
brighter. Case (c) is from Birds-to-Words and it involves fine-grained bird appearance difference with complex background.
Orange bold words are correct generated difference-related words while blue words are wrong.

et al. 2019; Forbes et al. 2019), which are collected from
different domains with different focus. However, most of the
datasets are limited in scale due to the high annotation cost.
Prior works mainly focus on employing well-designed at-
tention mechanisms (Park, Darrell, and Rohrbach 2019; Tan
et al. 2019; Shi et al. 2020) or improving visual features (Yan
et al. 2021; Huang et al. 2021a) to better capture the subtle
visual difference. Besides, (Hosseinzadeh and Wang 2021)
use the composed query image retrieval as an auxiliary task
to enhance the training process, which can be seen as a self-
supervised method. (Yan et al. 2021) employ extra general
image captioning data to improve semantic understanding.
However, none of these works attend to fully explore the in-
teraction across modalities and take most advantage of the
given data. Instead, we propose a new pre-training and fine-
tuning schema to align visual and textual representations at
a fine-grained level.
Vision-Language Pre-training Recently, Vision and Lan-
guage Pre-training (VLP) methods (Lu et al. 2019; Chen
et al. 2020; Li et al. 2020a,d; Zhou et al. 2020; Kim, Son, and
Kim 2021; Huang et al. 2021b; Hu et al. 2021) have shown
their success on multi-modal tasks by learning cross-modal
representations. However, these pre-trained models are not
applicable to the IDC task as they lack the ability of com-
paring, and the learned representations are too coarse. We
follow these works to tailor self-supervised tasks for IDC to
enhance the cross-modal alignment and make best use of the

given data. Moreover, several VLP related works (Radford
et al. 2021; Li et al. 2020c; Huo et al. 2021; Lee et al. 2021)
introduce contrastive learning to unify different modal rep-
resentations. The major idea is to pull closer the distances
between positive image-text pairs and push away negative
pairs. Motivated by these works, we introduce Contrastive
Learning to our pre-training tasks and construct negative
samples in different granularity, which enhances more fine-
grained cross-modal alignment.

Conclusions
In this paper, we propose a new pretraining-finetuning
paradigm for image difference captioning (IDC), which can
align visual differences and textual semantics at a fine-
grained level. We specifically design three self-supervised
tasks with contrastive learning strategies to learn stronger
association across modalities. Experiments on CLEVR-
Change and Birds-to-Words demonstrate the effectiveness
of our proposed pre-training tasks. To address the limitation
of supervised IDC data, we explore to utilize two cross-task
datasets on Birds-to-Words and prove that they can provide
more background knowledge. Our proposed model archi-
tecture is flexible to accommodate more data of different
forms. In the future work, we will further explore automatic
construction of large-scale feasible data to enhance the pre-
training stage and improve model generalization ability.
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