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Abstract

Generally, humans are more skilled at perceiving differences
between high-quality (HQ) and low-quality (LQ) images than
directly judging the quality of a single LQ image. This sit-
uation also applies to image quality assessment (IQA). Al-
though recent no-reference (NR-IQA) methods have made
great progress to predict image quality free from the refer-
ence image, they still have the potential to achieve better per-
formance since HQ image information is not fully exploited.
In contrast, full-reference (FR-IQA) methods tend to provide
more reliable quality evaluation, but its practicability is af-
fected by the requirement for pixel-level aligned reference
images. To address this, we firstly propose the content-variant
reference method via knowledge distillation (CVRKD-IQA).
Specifically, we use non-aligned reference (NAR) images to
introduce various prior distributions of high-quality images.
The comparisons of distribution differences between HQ and
LQ images can help our model better assess the image qual-
ity. Further, the knowledge distillation transfers more HQ-LQ
distribution difference information from the FR-teacher to
the NAR-student and stabilizing CVRKD-IQA performance.
Moreover, to fully mine the local-global combined informa-
tion, while achieving faster inference speed, our model di-
rectly processes multiple image patches from the input with
the MLP-mixer. Cross-dataset experiments verify that our
model can outperform all NAR/NR-IQA SOTAs, even reach
comparable performance with FR-IQA methods on some oc-
casions. Since the content-variant and non-aligned reference
HQ images are easy to obtain, our model can support more
IQA applications with its relative robustness to content vari-
ations. Our code and more detail elaborations of supplement
are available: https://github.com/guanghaoyin/CVRKD-IQA.

Introduction
The target of objective image quality assessment (IQA) is
to quantify the visual distortion and produce the perceptive
quality score of the image. The accurate IQA method is quite
important to guide many downstream tasks of image pro-

*This work was performed while Guanghao Yin worked as an
intern at ByteDance.

†Equal Contribution.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(c) NAR-IQA (content-similar)

(a) NR-IQA (b) FR/RR-IQA

Our CVRKD-IQA

KD

Teacher

Student

(d) NAR-IQA (content-variant)

LQ NAR with

LQ LQ FR

LQ NAR with 
similar content variant content

Figure 1: Based on the way of using HQ reference images,
previous IQA methods are divided into (a) NR-IQA, (b)
FR/RR-IQA, (c) NAR-IQA (content-similar). We propose
the CVRKD-IQA method, which firstly uses the knowledge
distillation to transfer HQ-LQ distribution difference infor-
mation from (b) FR-IQA to (d) NAR-IQA (content-variant).

cessing, such as image restoration (Banham and Katsagge-
los 1997), super-resolution (Dong et al. 2015), etc.

Recent studies on the human visual system (Sheikh and
Bovik 2006; Ponomarenko et al. 2009) have shown that hu-
mans tend to compare images than directly judging an im-
age. Provided with a high-quality (HQ) reference image, hu-
mans can make a more accurate and consistent evaluation
about the quality of the distorted image (Ponomarenko et al.
2009). Based on the way of using HQ reference images,
IQA methods are generally divided into three types: no-
reference (NR) IQA, reduced-reference (RR) IQA, and full-
reference (FR) IQA. Specifically, NR-IQA methods (Bosse
et al. 2017; Su et al. 2020) (Fig. 1(a)) only use LQ im-
ages as input to directly measure image quality. FR/RR-
IQA methods (Rehman and Wang 2012; Cheon et al. 2021)
(Fig. 1(b)) utilize the complete or partial information of
the pixel-aligned HQ reference images. Moreover, previous
DCNN (Liang et al. 2016) uses the non-aligned image for
IQA reference (NAR-IQA), which have similar contents but
are not pixel-aligned with the LQ image (Fig. 1(c)).

Recently, there are several different attempts for NR-IQA
methods to achieve promising performance, such as involv-
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ing a larger-scale database (Lin, Hosu, and Saupe 2019) or
using a pretrained feature extractor (Su et al. 2020). Those
NR-IQA methods still have the potential for better perfor-
mance, because they focus more on mining the quality fea-
tures of LQ image to better fit the labeled scores, but ac-
cess little HQ image information. Humans can directly judge
the quality of one image because they have learned various
prior knowledge of HQ-LQ distribution differences before.
Hence, we consider involving more explicit HQ prior dis-
tribution in the training and inference phases. As proved
by previous works (Ponomarenko et al. 2009; Liang et al.
2016), the IQA scores predicted by reference-based IQA
methods tend to be more consist with humans than those
of NR-IQA methods. However, one strong requirement lim-
its the application of previous FR/NAR-IQA models: their
reference images must be pixel-wise aligned or have simi-
lar contents with LQ image, which are often unavailable in
real scenarios. Thus, on the one hand, we attempt to loose
this strong restriction and use content-variant HQ images for
reference, since HQ images are available anywhere. On the
other hand, inspired by the recent success of cross-modal
knowledge distillation (KD) (Lan, Zhu, and Gong 2018;
Porrello, Bergamini, and Calderara 2020), we consider to
transfer more HQ-LQ difference information from FR-IQA
model to NAR-IQA model via KD, which helps NAR-IQA
model achieve more accurate and stable performance.

In this paper, we propose the first content-variant refer-
ence method via knowledge distillation (CVRKD-IQA) to
assess image quality. The structure of our CVRKD-IQA is
shown in Fig. 2. It consists of two parts: the FR-teacher and
NAR-student. They have the same network structure while
using different HQ reference images, i.e., the pixel-aligned
FR images and content-variant NAR images. For each net-
work branch, the dual-path encoder separately extracts dis-
criminative vectors from the LQ image itself and the HQ-
LQ distribution difference. To transfer distribution differ-
ence knowledge from FR-teacher to NAR-student, we ap-
ply the offline knowledge distillation. The knowledge dis-
tillation can also constrain the NAR-student to focus more
on useful HQ-LQ distribution difference representation by
learning from FR-teacher, and reduce the impact of refer-
ence image changes to stabilize the NAR-IQA performance.
Specifically, we first train the FR-teacher and fix its parame-
ters, then the layers of the FR-teacher are employed to guide
the training of NAR-student. Moreover, to effectively mine
the global and local information of the image, our model di-
rectly processes a fixed number of image patches sampled
from the full image with the classic MLP-mixer (Tolstikhin
et al. 2021), which also keeps faster network inference. It
should be noted that the FR-teacher is only for training and
the NAR-student is applied for testing.

We have conducted extensive comparisons between our
model and FR/NR/NAR-IQA SOTAs. Experimental results
show that not only our FR-teacher can produce accurate
IQA scores, but also our NAR-student can significantly out-
perform existing NR/NAR-IQA methods, especially on the
large-scale real IQA dataset. On some occasions, our NAR-
student can reach comparable performance with some com-
mon FR-IQA methods, such as PSNR and LPIPS. It fur-

ther demonstrates that the proposed strategy transfers HQ-
LQ difference prior knowledge from FR-teacher to NAR-
student. Moreover, when using different content-variant HQ
images, our NAR-student can still keep the relatively stable
performance, which proves the robustness of our method.

In summary, our overall contribution is summarized as:

• We propose the first content-variant reference method via
knowledge distillation (CVRKD-IQA), which introduces
more HQ-LQ distribution difference knowledge.

• With the guidance of non-aligned reference image and
knowledge distillation, our model significantly outper-
forms existing NR/NAR-IQA methods on synthetic and
authentic IQA datasets. On some occasions, our model
even reaches comparable results with FR-IQA metrics.

• Our model can directly use content-variant HQ images
for reference, which can loose the restrictions of previous
pixel-aligned or content-similar reference images.

Related Work
Image Quality Assessment. The target of objective IQA
is to accurately acquire the consistent quality of one im-
age with human views. According to the involvement of ref-
erence images, the objective IQA can be generally classi-
fied into three types: full-reference (FR), reduced-reference
(RR), and no-reference (NR) IQA methods.

In general, FR/RR-IQA simulates the sensitivity of the
human visual system to different image signals (Sheikh
and Bovik 2006), including information-theoretic crite-
rion (Wang et al. 2004), structural information (Zhang et al.
2011), etc. The FR-IQA methods perform their quality mea-
surements based on point-by-point comparisons between
pixels. And FR-IQA has been widely applied as the percep-
tual metric for downstream tasks of image proceeding. The
most commonly and widely used FR metrics are the PSNR
and SSIM (Wang et al. 2004), which are convenient for opti-
mization. Recently, learning-based FR-IQA methods (Prash-
nani et al. 2018; Ding et al. 2021) have achieved signif-
icant improvement. The most current IQT model (Cheon
et al. 2021) involves the visual transformer with extra qual-
ity and position embeddings to achieve the best performance
for the FR-IQA task. Different from FR-IQA, the RR-IQA
method (Rehman and Wang 2012) utilizes only parts of the
FR image information. Since RR-IQA has the advantages of
lower calculation expense and faster speed, it’s commonly
applied in the image transmission system.

For NR-IQA, CNN-based methods (Bosse et al. 2017; Wu
et al. 2020; Su et al. 2020) have significantly outperformed
handcrafted statistic-based approaches (Xu et al. 2016) by
directly extracting discriminative features from LQ images.
Due to distortion diversity and content changes, the recent
trend of NR-IQA (Li, Jiang, and Jiang 2020) is to involve se-
mantic prior information by using pretrained models on clas-
sification databases, i.e., ImageNet (Deng et al. 2009). And
Su et al. (Su et al. 2020) propose a dynamic hyper-network
to adaptively adjust the quality prediction parameters based
on image content. Recently, You et al. (You and Korhonen
2021) introduce the visual transformer for the NR-IQA task.
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Figure 2: Model overview of our CVRKD-IQA. It consists of FR-teacher and NAR-student with the same structure. For better
conducting local-global quality description, we use the multi-patches randomly cropped from LQ and reference images as
inputs. Note that the FR-teacher is pretrained and fixed only for distillation and the trained NAR-student is applied for testing.

However, FR-IQA methods tend to provide more reliable
quality evaluation than NR-IQA models (Zhang et al. 2011).

Since pixel-aligned FR images are not always available,
DCNN (Liang et al. 2016) defines a new task named Non-
aligned Reference IQA (NAR-IQA), which uses a reference
image with similar scene but is not well aligned with the LQ
image. Nevertheless, the images with similar scenes are still
not always easy to get. Recently, Ma et al. (Ma et al. 2017)
form the quality-discriminable image pairs to help rank the
IQA scores, and Guo et al. (Guo et al. 2021b) introduces the
pseudo images for reference. However, those methods still
need to manually form their reference images. In this paper,
we attempt to use content-variant HQ images for reference.
Knowledge Transfer via Distillation. Transferring knowl-
edge from one model to another has been a long line of
research. Ba and Caruana (Ba and Caruana 2014) success-
fully increase the accuracy of a shallow neural network by
training it to mimic a deeper one and penalize the difference
of logits between them. Hinton et al. (Hinton, Vinyals, and
Dean 2015) revive this idea under the name of knowledge
distillation (KD) that trains a student model to match the dis-
tribution of a teacher model. Although the KD strategy was
primarily proposed for model compression (Lan, Zhu, and
Gong 2018), many recent works have extended the cross-
modal distillation to multi-modal visual tasks, such as action
recognition (Garcia, Morerio, and Murino 2018), person re-
identification (Porrello, Bergamini, and Calderara 2020) or
depth estimation (Gupta, Hoffman, and Malik 2016), where
the knowledge of different modals are transferred between
different network branches. In this paper, we make the first
attempt to transfer more HQ-LQ difference prior informa-
tion from the FR-IQA to the NAR-IQA via KD. Experiments
prove that distillation operation can further help our NAR-
student achieve more accurate and stable performance.

Proposed Method
In this section, we will introduce the structure of CVRKD-
IQA and explain how to transfer the distribution difference
knowledge from FR-teacher to NAR-student.

Network Architecture
Overall Architecture. As shown in Fig. 2, our model con-
sists of two parts: FR-teacher NT and NAR-student NS .
Both of them use two types of images: the distorted LQ
image ILQ for assessment and the HQ image IHQ for ref-
erence. The FR-teacher NT and NAR-student NS have the
same structure. The only difference between them is IHQ,
where FR-teacher NT uses pixel-aligned IFR and NAR-
student NS uses random non-aligned content-variant INAR.

Image quality is perceived by both local degradation
and global information. Recently, some representative IQA
methods (Su et al. 2020; Cheon et al. 2021) usually use one
local image patch as input, and average or reweight the pre-
dicted scores of each local patch to get final results. How-
ever, this operation does not make full and effective use of
local-global combined information. Compared with single
image patch input, multiple patches input can more effec-
tively provide information on both local fine-grained distor-
tion from the single patch and global coarse-grained com-
position cross patches at one time. Hence, our model uses 2
sets of m multi-patches as inputs, i.e., PLQ = {pLQi

}(i =
1, ...m) and PHQ = {pHQi

}(i = 1, ...m), which are ran-
domly cropped from ILQ and IHQ. It should be noted that
{PLQ, PFR} are still pixel-aligned for the FR-teacher.

To combined the advantages of NR-IQA and FR-IQA
methods, our model attempts to mine the local-global com-
bined features from the LQ image itself and HQ-LQ distri-
bution difference. Moreover, the multi-scale feature extrac-
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tion should also be conducted to better describe the local dis-
tortion. To achieve those, we design three modules for our
model: (1) the multi-scale local feature extractor; (2) dual
cross-patch mixing encoders; (3) a full-connected regressor;
Multi-scale Local Feature Extractor. First, following (Li,
Jiang, and Jiang 2020; Cheon et al. 2021), the pretrained
CNN backbone on the image classification task is applied
as the perceptual feature extractor. Thus, we use the pre-
trained ResNet50 (He et al. 2016) on ImageNet (Deng et al.
2009) to process input patches {PLQ, PHQ}. Since features
from different scale layers are important to capture local
distortions (Su et al. 2020; Guo et al. 2021a), we design
a multi-scale feature extractor. Specifically, four scale fea-
tures from conv2 9, conv3 12, conv4 18, conv5 9 layers of
ResNet50 are processed by 1 × 1 convolution and global
average pooling. Those four feature maps with the same
size ([m, 64, 7, 7]) are concatenated as fm in channel-wise
([m, 256, 7, 7]) to describe local distortions.
Dual Cross-patch Mixing Encoder. Then, we use cross-
patch mixing encoders to extract the self-perceived feature
fLQ and the HQ-LQ difference-aware features fHQ−LQ, re-
spectively. To effectively explore local-global combined in-
formation from multi-patches input, we build our encoders
with the classic MLP-mixer (Tolstikhin et al. 2021), which
has a simpler architecture and faster speed than the vi-
sual transformer (Vaswani et al. 2017). Different from the
original MLP-mixer (Tolstikhin et al. 2021) for classifica-
tion tasks fed with spatial image tokens, our encoders op-
erate on the multi-scale features fm extracted from multi-
patches input. Each MLP module consists of two blocks: the
first one is patch-mixing MLP block, which exchanges in-
ner information between transposed local features of multi-
patches; the next one is channel-mixing MLP block, which
allows global information communication between multi-
patches and multi-scales. Since mining the distribution dif-
ference between ILQ and IHQ is much more difficult than
ILQ perceive feature extraction, we design deeper encoder
EHQ−LQ with 18 stacked MLP modules and the encoder
ELQ uses only 9 stacked MLP modules. The final layer nor-
malization and global average pooling convert feature maps
to vectors. Two cross-patch vectors ([256, 1]) from the dual-
path encoder are concatenated as ([512, 1]) for quality re-
gression prediction.
Regressor for Quality Prediction. Since the regressor is
simply mapping the output vectors of the dual-path encoder
to labeled quality scores, we design a small network for
faster quality prediction. The regressor consists of two fully-
connected layers with 512-256, 256-1 channels to predict the
final quality score of the input LQ image.

Knowledge Distillation from FR-IQA to NAR-IQA
Considering that our goal is to transfer more HQ-LQ dis-
tribution knowledge, and better constrain NAR-student for
useful HQ-LQ distribution difference representation, we
perform the distillation operation between the difference-
aware encoders EHQ−LQ of FR-teacher and NAR-student.

To obtain a well-performed FR-teacher, we do not jointly
train FR-teacher and NAR-student, but apply an offline dis-
tillation scheme. First, we randomly crop two multi-patch

sets {PLQ, PFR} from the LQ-FR image pair {ILQ, IFR}
as the input. The FR-teacher NT (·; θ1) is optimized by L1

loss between predicted score ŷt and ground-truth y as:

LTl
=

1

N

N∑
i=1

||yi −NT (P
(i)
LQ, P

(i)
FR; θ1)||1. (1)

Then, we fix the parameters of the trained FR-teacher. The
NAR-student is supervised by the guide of FR-teacher and
human labeled scores in the second step of training. Except
the paired {PLQ, PFR} for FR-teacher input, NAR-student
should also be fed with the non-aligned {PLQ, PNAR},
where PNAR consists of m randomly cropped patches from
another non-aligned reference HQ image. We attempt to
transfer more prior knowledge of HQ-LQ distribution dif-
ference from FR-teacher to NAR-student. Hence, all 18 in-
ner features FT = {fTj

}(j = 1, 2, ...18) of the difference-
aware encoder of FR-teacher are applied to guide the train-
ing of NAR-student. The L2 loss is used as the distillation
loss LSd

to transfer knowledge to corresponding layer fea-
tures FS = {fSj}(j = 1, 2, ...18) of NAR-student:

LSd
=

1

N

N∑
i=1

K=18∑
j=1

||f (i)Tj
− f (i)Sj

||2. (2)

Except distillation loss, the label loss LSl
between predicted

results ŷs and labeled ground-truth y is also applied to opti-
mize the NAR-student NS(·; θ2):

LSl
=

1

N

N∑
i=1

||yi −NS(P
(i)
LQ, P

(i)
NAR; θ2)||1. (3)

And the final loss LS for NAR-student is combined by the
distillation loss LSd

in Eq. 2 and label loss Eq. 3 as:

LS = LSd
+ LSl

. (4)

With the guidance of knowledge distillation, our NAR-
student effectively learns more HQ-LQ difference knowl-
edge and keeps the stability with different NAR images. In
real scenarios, when the pixel-aligned FR image is unavail-
able but HQ images are easy to get, our NAR-student can
directly use any non-aligned HQ image for reference.

Experiments
Experimental Setting
In this paper, all comparisons of FR/NR/NAR-IQA methods
and ablation studies follow this setting.
Datasets. For IQA training datasets, we follow (Cheon
et al. 2021) to choose the commonly used synthetic Kaddid-
10K (Lin, Hosu, and Saupe 2019), which contains 10125
LQ-FR pairs. The cross-dataset evaluations are conducted
on 3 synthetic datasets, i.e., LIVE (Sheikh, Sabir, and Bovik
2006), CSIQ (Larson and Chandler 2010), TID2013 (Pono-
marenko et al. 2015), which separately contains 779, 886
and 3000 LQ-FR pairs with traditional distortions. More-
over, we also evaluate on large-scale authentic KonIQ-10K
dataset (Hosu et al. 2020), containing 10073 real-distorted
LQ images without FR images. Except for IQA datasets, our
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IQA Type Method LIVE CSIQ TID2013 KonIQ-10K
SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC

FR-IQA

PSNR 0.873 0.865 0.680 0.810 0.819 0.601 0.687 0.677 0.496 - - -
MAD (Larson and Chandler 2010) 0.967 0.968 0.842 0.947 0.950 0.797 0.781 0.827 0.604 - - -
WaDIQaM-FR (Bosse et al. 2017) 0.947 0.940 0.791 0.909 0.901 0.732 0.831 0.834 0.631 - - -
PieAPP (Prashnani et al. 2018) 0.919 0.908 0.750 0.892 0.877 0.715 0.876 0.859 0.683 - - -
LPIPS (Zhang et al. 2018) 0.932 0.934 0.765 0.876 0.896 0.689 0.670 0.749 0.497 - - -
DISTS (Ding et al. 2021) 0.954 0.954 0.811 0.929 0.928 0.767 0.830 0.855 0.639 - - -
IQT (Cheon et al. 2021) 0.970 - 0.849 0.943 - 0.799 0.899 - 0.717 - - -
Our FR-teacher 0.973 0.969 0.853 0.964 0.964 0.829 0.890 0.886 0.698 - - -

NR-IQA

CNNIQA (Kang et al. 2014) 0.653 0.656 0.485 0.649 0.660 0.482 0.476 0.404 0.283 0.278 0.285 0.183
WaDIQaM-NR (Bosse et al. 2017) 0.855 0.855 0.656 0.716 0.750 0.527 0.585 0.610 0.416 0.382 0.386 0.261
HyperIQA (Su et al. 2020) 0.908 0.903 0.730 0.802 0.858 0.611 0.686 0.721 0.490 0.332 0.338 0.233
TRIQ (You and Korhonen 2021) 0.909 0.910 0.729 0.807 0.862 0.615 0.684 0.731 0.500 0.371 0.371 0.259
LinearityIQA (Li, Jiang, and Jiang 2020) 0.910 0.906 0.738 0.815 0.873 0.629 0.688 0.694 0.491 0.361 0.361 0.254

NAR-IQA

DCNN (Liang et al. 2016) 0.752 0.756 0.594 0.721 0.716 0.583 0.473 0.492 0.346 0.258 0.256 0.147
WaDIQaM (Bosse et al. 2017)-NAR w/ KD 0.897 0.894 0.707 0.799 0.851 0.613 0.670 0.694 0.493 0.362 0.364 0.258
IQT (Cheon et al. 2021)-NAR w/ KD 0.908 0.906 0.728 0.802 0.860 0.624 0.680 0.707 0.499 0.372 0.372 0.269
Our NAR-student 0.913 0.917 0.748 0.829 0.872 0.655 0.691 0.733 0.501 0.416 0.413 0.287

Table 1: Model comparisons on synthetic LIVE, CSIQ, TID2013, and authentic KonIQ-10K when training on synthetic Kaddid-
10K. We also extend two FR-IQA methods (WaDIQaM, IQT) to NAR-IQA via knowledge distillation (KD). It’s clear that our
NAR-student can outperform all NR/NAR-IQA methods, especially on the large-scale authentic KonIQ-10K with real unknown
distortions. On TID2013, our NAR-student reaches comparable and even better performance than PSNR and LPIPS.

NAR-student still need non-aligned HQ reference images.
The 900 training and 100 testing HQ images of DIV2K HR
dataset (Agustsson and Timofte 2017) are randomly sam-
pled at the training and testing stages of NAR-student.
Evaluation Criterias. The Spearman’s rank order correla-
tion coefficient (SRCC), Pearson’s linear correlation coeffi-
cient (PLCC) and Kendall rank order correlation coefficient
(KRCC) are employed to measure prediction monotonicity
and prediction accuracy. The higher value indicates better
performance. For PLCC, the logistic regression correction
is also applied according to (Cheon et al. 2021).
Implementation Details. Data augmentation including hor-
izontal flip and random rotation is applied during the train-
ing. All patches are randomly cropped from the RGB image.
The batch size b is set as 32. The input patch number m is
set as 10 and the patch size is set as 224× 224× 3 to cover
more local-global combined information. The number k of
distilled layers in the encoder EHQ−LQ is set to 18. More-
over, the initial learning rate α is 2 × 10−5 and the ADAM
optimizer with weight decay 5×10−4 is applied. All the ex-
periments were conducted on NVIDIA Tesla-V100 GPUs.

Comparisons with the State-of-the-Art Methods
Here, we will present the accuracy and generalization com-
parisons between our model and existing FR/NR/NAR-IQA
methods. Specifically, our FR-teacher and NAR-student
are separately compared with FR-IQA SOTAs i.e., (Ding
et al. 2021; Cheon et al. 2021) and recent best performed
NAR/NR-IQA SOTAs i.e., (Liang et al. 2016; Li, Jiang,
and Jiang 2020). Moreover, we also extend two FR-IQA
methods (WaDIQaM (Bosse et al. 2017), IQT (Cheon et al.
2021)) to NAR-IQA via knowledge distillation. Specifically,
we use the pretrained WaDIQaM and IQT as teachers un-
der FR-IQA settings. And we obtain the corresponding stu-

dent models by changing the reference input from FR im-
ages to NAR images. Following our strategy, the knowl-
edge distillation is also applied in those models and we get
the WaDIQaM-NAR and IQT-NAR w/ KD. Since we fol-
low the commonly used experimental settings of FR-IQA
methods (Ding et al. 2021; Cheon et al. 2021), we directly
use those published FR-IQA results. For fair comparisons
between FR/NR/NAR methods, we retrain those NR/NAR-
IQA SOTAs with the same experimental setting as ours.

The results of the four datasets are shown in Table 1.
For the FR-IQA setting, since the authentic Kaddid-10K
doesn’t provide FR images, the FR-IQA comparisons are
only conducted in 3 synthetic datasets. It can be seen that
our FR-teacher outperforms all FR-IQA methods on LIVE
and CSIQ, and it is also ranked in the top two in all bench-
marks with the marginal gap on larger TID2013. Hence, the
trained FR-teacher is good enough as the distillation teacher.
When pixel-aligned FR images are not provided, our NAR-
student outperforms existing NR/NAR-IQA models on all
4 testsets, which shows that the proposed strategy can im-
prove the IQA performance. What’s more, the comparisons
about distilled WaDIQaM-NAR and IQT-NAR further prove
this point. It should be noted that although trained on the
synthetic Kaddid-10K, our NAR-student achieves signifi-
cant improvement than NR/NAR-IQA SOTAs on the au-
thentic KonIQ-10K. Moreover, on the synthetic TID2013,
our NAR-student reaches comparable and even better per-
formance than the commonly used FR-IQA methods, such
as PSNR and LPIPS (Zhang et al. 2018).

Runtime vs. Performance
To compare the efficiency of our NAR-IQA model with
other NR/NAR methods in the inference stage, we report the
average runtime of IQA for a distorted image with the num-
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Figure 3: Runtime vs. performance of NR/NAR-IQAs on the
real-distorted KonIQ-10k dataset with the Tesla-V100 GPU.

ber of patches m = 10 in Fig. 3. On real-distorted KonIQ-
10K, our CVRKD-IQA significantly outperforms NR/NAR-
IQA SOTAs and satisfies the real-time requirement (about
24 images per second), while transformer-based TRIQ (You
and Korhonen 2021) and IQT-NAR (Cheon et al. 2021) cost
much more inference time. All experiments were conducted
on NVIDIA Tesla-V100 GPU.

Ablation Study
Effect of Knowledge Distillation (KD) and Non-aligned
Reference Images (NAR). First, we separately analyze the
effects of knowledge distillation (KD) and non-aligned ref-
erence (NAR) images in Table 2. It should be noted that
NAR is the pre-condition of KD. If the NAR image is not
provided, the NAR-student cannot mine the HQ-LQ distri-
bution difference, thus cannot learn the transferred knowl-
edge from the FR-teacher. Hence, we evaluate 3 types of
KD and NAR configurations. Except SRCC metrics, we also
present the standard deviations (Std) of 10 SRCC results
tested with different misaligned reference images. From re-
sults in Table 2, we can make the following analyses:
- We first remove the difference-aware encoder to train

NR-student baseline under NR-IQA setting without NAR
or KD. It’s clear the NR-student baseline achieves worse
performance, especially in real-distorted KonIQ-10K.

- When NAR images are available, the NAR-student w/o
KD benefits from the HQ-LQ distribution difference to
outperform the NR-student baseline. However, the per-
formance of NAR-student w/o KD is the most unstable
with the highest Std values. It means various contents of
different NAR images increase the training difficulty.

- When provided with more HQ-LQ difference knowl-
edge from the FR-teacher by KD, our final NAR-student
achieves the best performance, especially the 33% SRCC
improvements than NR-student baseline in KonIQ-10K.
Moreover, Std results of our final NAR-student decreased
to 0.004, which proves the great importance of KD to sta-
bilize the NAR-IQA performance.

Effectiveness of Multi-patches. To make full and effective
use of local-global combined information, our method di-
rectly processes multi-patches and fuses the cross-patch fea-
tures via the MLP-mixer. As shown in Fig. 4, we gradually
increase the patch number (1, 3, 5, 10, 15) and the patch
size (56, 112, 224, 256) to analyze the effects of multi-
patches. It’s clear that both FR-teacher and NAR-student

Model Configs TID2013 KonIQ-10K
NAR KD SRCC ± Std SRCC ± Std

NR-student baseline × × 0.631 ± 0.002 0.317 ± 0.003

NAR-student w/o KD X × 0.679 ± 0.056 0.352 ± 0.072
NAR-student w/ KD X X 0.691 ± 0.003 0.416 ± 0.004

Table 2: SRCCs and the standard deviations (Std) of our stu-
dent with different configurations of knowledge distillation
(KD) and non-aligned reference (NAR) images.

Our settings Our settings

multi-patch number
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R
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C
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C

(a)SRCCs of FR-teacher on TID2013 (b)SRCCs of NAR-student on TID2013

multi-patch number

Figure 4: SRCC results with different multi-patch numbers
and sizes on TID2013. It’s clear that larger patch number
and size can capture more local-global information.

benefit from larger patch number and size, because they can
capture more local-global information to better describe the
full-image quality. Considering the trade-off between infer-
ence efficiency and performance, the patch number is set to
10 and the patch size is set to 224× 224.
Stability about Non-aligned Reference HQ Images. To
further demonstrate the stability of our model when us-
ing content-variant HQ images for reference, we evaluate
our NAR-student with more various HQ images. Specif-
ically, not only DIV2K, we involve 2650 HQ images of
Flikr2K (Timofte et al. 2017) as another non-aligned ref-
erence dataset. Since we randomly sample the HQ reference
image for each LQ assessment, HQ images of each round are
shuffled. Therefore, we also present results across 10 times.
As shown in Fig. 5, we can make the following analyses:

- As shown in Fig. 5(a)(b), our NAR-student achieves rel-
atively stable performance when using shuffled NAR im-
ages across 10 times on both DIV2K and Flikr2K.

- As shown in the comparisons between Fig. 5(a) and (b),
our NAR-student also produces relatively similar SRCC
results between DIV2K and Flikr2K.

- Those observations demonstrate that our NAR-student is
stable and robust to content-variant NAR images.

Evaluation on Reference Image with Different Content.
Now, there are 3 types of reference images: the pixel-aligned
FR image, the NAR image with similar content and the
random content-variant NAR image. How can we choose
them properly based on content? Hence, we evaluate the
distilled NAR-student with different types of HQ reference
contents. Note that we follow (Liang et al. 2016) to synthe-
size the content-similar NAR image by applying affine trans-
form to FR images (random scaling factor s and rotation θ

3139



(a) Run times with shuffled
DIV2K references

S
R

C
C

S
R

C
C

(b) Run times with shuffled 
Flirk2K references

Figure 5: Stability evaluation of our NAR-student. (a)(b)
show SRCC results of 10 times tests using randomly shuf-
fled NAR images from DIV2K and Flikr2K, respectively.

MOS: 70.46 73.74 (↑15.79)61.23 (↑8.84)
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Figure 6: Real-data examples on KonIQ-10K, where the
NAR-student uses reference images with different contents
(1st row) and different qualities (2nd row). All scores are
rescaled in [0, 100]. The red numbers are the decrease of the
MOS error compared to the no-reference baseline.

from [0.95, 1.05] and [−5◦, 5◦]). From results in Table 3 and
Fig. 6(a), we can make the following analyses:
- As shown in the first two lines of Table 3, although the

NAR-student is trained with NAR settings, it reaches
comparable results with FR-teacher when using pixel-
aligned FR images. This proves the NAR-student has
learned transferred knowledge from the FR-teacher.

- As shown in the last two lines of Table 3, the perfor-
mance of content-variant NAR images is slightly lower
than content-similar NAR images. Since the stable and
promising performance of our method has been proved
in Fig. 6(a) and Fig. 5, we can use random HQ images for
reference when content-similar images are unavailable.

- In real scenarios, we should choose the HQ reference im-
age with aligned content as much as possible.

Evaluation on Reference Image with Different Quality.
Although the HQ images are easy to obtain, we should still
evaluate our NAR-student on NAR images with different
qualities. Specifically, we first use various distorted refer-
ence images of synthetic TID2013 and authentic KonIQ-
10K. Moreover, we choose 3 typical distortions to generate
distorted reference images from DIV2K HQ, e.g.,×2 down-
sample, random Gaussian noise with levels: [0,10], random
JPEG compression with qualities: [0,10]. From results in Ta-
ble 4 and Fig. 6(b), we can make the following analyses:
- As shown in Table 4 and Fig. 6(b), using reference im-

ages with higher quality can produce better results.

Model + Input Reference Image LIVE CSIQ TID2013
SRCC SRCC SRCC

FR-teacher + Pixel-aligned FR 0.973 0.964 0.890

NAR-student + Pixel-aligned FR 0.958 0.937 0.846
NAR-student + Content-similar NAR 0.931 0.862 0.720
NAR-student + Content-variant NAR 0.913 0.829 0.691

Table 3: SRCC results using HQ reference images with
different contents. For clear comparisons, we add the FR-
teacher with pixel-aligned FR image as the upper-bound. It’s
clear that more aligned HQ images produce better results.

Reference Distortion Type TID2013 KonIQ-10K
SRCC PLCC SRCC PLCC

KonIQ-10K Authentic Distortions 0.671 0.711 0.392 0.393
TID2013 Synthetic Distortions 0.683 0.722 0.394 0.395

DIV2K
Gauss. Noise: [0, 10] 0.665 0.704 0.392 0.390
JPEG Level: [0, 10] 0.668 0.702 0.401 0.401
Downsample: ×2 0.687 0.721 0.408 0.407

DIV2K HQ 0.691 0.733 0.416 0.413

Table 4: The SRCC and PLCC results of our NAR-student
with different qualities NAR images. The NAR-student are
fixed, and we only change the types of reference images. It’s
clear NAR images with higher quality produce better results.

- As shown in the first two examples of Fig. 6(b), using
severely distorted LQ images for reference just brings
marginal improvements than the no-reference baseline.

- In real scenarios, we should choose the NAR image with
high-quality as much as possible. Since the HQ images
are easy to get, our NAR-student can directly use random
obtainable HQ images for reference.

Conclusion
In this paper, we investigate the image quality assessment
(IQA) problem with non-aligned reference (NAR) images.
We propose the first content-variant NAR-IQA method via
knowledge distillation, namely CVRKD-IQA. Our model
uses various NAR images to introduce prior distributions
of HQ images. The knowledge distillation further transfers
more HQ-LQ distribution difference knowledge from the
FR-teacher to the NAR-student and stabilizes IQA perfor-
mance. We also use the multiple patches input to fully and
effectively mine the multi-scale and local-global combined
features. Extensive experiments have demonstrated that our
CVRKD-IQA significantly outperforms existing NR/NAR-
IQA methods, even reaches comparable performance with
commonly used FR-IQA metrics. Evaluations with different
NAR images also prove the relative robustness of our model,
which can support more IQA applications with randomly
obtainable HQ images. Moreover, the reference images with
higher-quality and more aligned content produce better re-
sults. In future work, we will further explore more novel
NAR-IQA architecture and knowledge distillation strategy.
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