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Abstract

Transformer models have demonstrated their promising po-
tential and achieved excellent performance on a series of
computer vision tasks. However, the huge computational cost
of vision transformers hinders their deployment and appli-
cation to edge devices. Recent works have proposed to find
and remove the unimportant units of vision transformers. De-
spite achieving remarkable results, these methods take one di-
mension of network width into consideration and ignore net-
work depth, which is another important dimension for prun-
ing vision transformers. Therefore, we propose a Width &
Depth Pruning (WDPruning) framework that reduces both
width and depth dimensions simultaneously. Specifically, for
width pruning, a set of learnable pruning-related parameters
is used to adaptively adjust the width of transformer. For
depth pruning, we introduce several shallow classifiers by us-
ing the intermediate information of the transformer blocks,
which allows images to be classified by shallow classifiers
instead of the deeper classifiers. In the inference period, all
of the blocks after shallow classifiers can be dropped so they
don’t bring additional parameters and computation. Exper-
imental results on benchmark datasets demonstrate that the
proposed method can significantly reduce the computational
costs of mainstream vision transformers such as DeiT and
Swin Transformer with a minor accuracy drop. In particular,
on ILSVRC-12, we achieve over 22% pruning ratio of FLOPs
by compressing DeiT-Base, even with an increase of 0.14%
Top-1 accuracy.

Introduction
The transformer architecture has been widely adopted in nat-
ural language processing (NLP) tasks and obtained supe-
rior results. Recently, Vision Transformer (ViT) (Dosovit-
skiy et al. 2020) and its follow-ups have demonstrated the
state-of-the-art results in image classification (Jiang et al.
2021; Meng 2021; Hassani et al. 2021), object detection
(Carion et al. 2020; Zhu et al. 2020) and instance segmen-
tation (Wang et al. 2021). However, the transformer variants
require intensive computation resources, run-time memory
and storage requirements, hindering their practical applica-
tions on the edge devices with limited storage and computa-
tion resources.
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There are emerging efforts to improve the efficiency of
transformers. A common approach to compress transform-
ers is known as weight pruning (Han et al. 2015). Though
theoretically plausible, the weight pruning results in unstruc-
tured sparse matrices that are difficult to support on com-
mon hardware, making it challenging to obtain inference
speedups despite a significant reduction in model size. In
contrast, another common practice for efficient transformers
is to prune the structures that are of less importance, such
as rows of weight matrix, token embeddings or whole self-
attentions matrices. The model pruned by structured pruning
is hardware-friendly and can be well supported by various
off-the-shelf computing platforms.

In this context, some structured pruning methods have
been proposed for transformer-like models. Designed for
NLP tasks, PoWER (Goyal et al. 2020) progressively elim-
inates the word tokens during the forward pass and acceler-
ates the BERT models (Devlin et al. 2018). Yao et al. pro-
posed MLPruning (Yao et al. 2021), a multilevel pruning
framework, to prune the structure of BERT-related trans-
former. Michel et al. proposed to prune self-attention head
(Michel, Levy, and Neubig 2019) and observe that pruning
a large percentages of attention heads in BERT model has
little impact on the performance. However, with the emer-
gence of vision transformers variants such as Swin Trans-
formers (Liu et al. 2021a) and VOLO (Yuan et al. 2021),
some novel attention mechanisms (e.g., shift-window atten-
tion, outlook attention) are proposed. The previous pruning
methods are not to be performed in such variant structures.
Designed for vision transformers, VTP (Zhu et al. 2021) ex-
tends network slimming (Liu et al. 2017) to reduce the out-
put dimension of the linear matrix by training, pruning and
fine-tuning. Specifically, the vision transformers need to be
learned by imposing the structured sparsity regularization on
soft mask scores. After training, VTP discards the small soft
mask scores with values below a manually chosen thresh-
old, and fine-tunes the injured models. In addition, the pre-
vious practices for pruning transformers take one dimension
of network width (e.g., linear matrix) into consideration and
ignore network depth (e.g., transformer block), which is an-
other important dimension for pruning model. In practice,
we found that depth pruning could achieve larger parallelism
efficiency than width pruning under the same pruning rate
because of the less synchronization and fragmentation.
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Figure 1: An illustration of width pruning. (a) The mask operation in multi-head self-attention. (b) Width pruning for linear
matrices (Wproj ,Wfc1 ,Wfc2 ). (c) Width pruning for attention heads (Wqkv). Blue colored cells represent the pruned weights.

In this work, we propose a width & depth pruning frame-
work (WDPruning) that directly learns a compact vision
transformer from scratch without fine-tuning. For reducing
width, we use the learnable saliency score and score thresh-
old to prune the multi-head self-attention (MSA) and lin-
ear matrix. To meet the predefined pruning ratio, the score
threshold dynamically updates the pruning ratio of differ-
ent layers by Augmented Lagrangian method during train-
ing. For reducing depth, we introduce several shallow clas-
sifiers by using the intermediate information of the trans-
former block, which allows images to be classified by shal-
low classifiers instead of the deeper classifiers. In the infer-
ence period, all of the blocks after shallow classifiers can be
dropped. Our contributions are summarized:

• We propose a parameter-learnable method for width
pruning via learning the saliency score and per-layer
threshold, thereby obtaining a better non-uniform spar-
sity budget across layers.

• We propose to use additional plug-in classifiers to prune
the transformer blocks in the tail of the transformer. It can
construct a sequential version of pruned model for drop-
ping blocks in one training pass, which have an easy con-
trol of the trade-off between network performance and
pruning rate.

• Extensive experiments demonstrate the effectiveness and
efficiency of our method. In particular, we improve the
throughput by over 15% while the drop of accuracy is
within 1% for DeiT-Base.

Related Works
Vision transformers. The powerful multi-head self-
attention mechanism (Vaswani et al. 2017) has motivated
the research of studying transformers on a variety of vision
tasks. Carion et al. proposed DETR (Carion et al. 2020) to
solve object detection prediction by transformer model in
an end-to-end manner, which is also the first work to ap-
ply transformer to vision tasks. Vision Transformer (ViT)
(Dosovitskiy et al. 2020) applied the transformer encoder
to realize image classification with non-overlapping image
patches. DeiT (Touvron et al. 2021) is proposed to improve

its performance by hard distillation. In (Jiang et al. 2021),
LV-ViT introduced the extra labels of patch tokens and fur-
ther improved the performance of ViT. Liu et al. proposed
a high-efficient Swin Transformer (Liu et al. 2021a) which
is compatible with a broad range of vision tasks. Yuan et
al. proposed Vision Outlooker (Yuan et al. 2021) which en-
code the fine-level features into the token representations
and achieved an accuracy of 87% on ILSVRC-12. Although
both ViT and its follow-ups achieved in state-of-the-art per-
formance in classification, their huge computation cost and
model size hinder their practical applications.
Structured pruning for transformers. In NLP tasks,
some works have proposed some structured pruning meth-
ods for transformer-like models. Michel et al. focus on re-
ducing the number of heads in Multi-head self-attention
module (Michel, Levy, and Neubig 2019) and accelerate the
BERT models (Devlin et al. 2018). Fan et al. proposed Lay-
erDrop method (Fan, Grave, and Joulin 2019) to randomly
drop out some layers in the training process, and predict
with some missing layers. However, all these works focus
on pruning transformers in NLP tasks, which is unable to di-
rectly support the visual transformers and variant structures,
such as shift-window attention (Liu et al. 2021a), outlook
attention (Yuan et al. 2021). Designed for vision transform-
ers, Patch Slimming (Tang et al. 2021) is proposed to discard
useless patch tokens by minimizing reconstruction error of
patch token. Similarly, DynamicViT (Rao et al. 2021) also
prunes the less informative tokens by training a prediction
module. However, although it can reduce the computation
amount of vision transformers, the extra prediction mod-
ule is time-consuming for transformer inference. VTP (Zhu
et al. 2021) introduces learnable coefficients to evaluate the
importance of output embedding dimensions of linear matrix
in training process, and the neurons with small coefficients
are removed according to a threshold. However, VTP needs
to manually try thresholds for all layers, and needs to fine-
tune the models after pruning. Different from the previous
works, we propose to prune vision transformers from wide
and depth dimensions, which is orthogonal with other prun-
ing approaches. For example, it can be combined with patch
pruning to realize higher compression and acceleration rate.
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Methodology
Formulation
Our method WDPruning aims to prune the entire regions of
pruning units in vision transformers (e.g., matrices in lin-
ear layers, attention heads in MSA and transformer blocks).
This process can be generalized in the form of layer-wise
pruning ratios like (r1, r2, ..., rL) for a vision transformer A
with L blocks:

(r1, r2, ..., rL)
∗ = argminL(A(r1, r2, ..., rL)),

s.t. P(A(r1, r2, ..., rL)
∗) < C (1)

where L is loss function and rl is a pruning ratio applied
to the l-th block. rl ∈ [0, 1) means width pruning and
rl = 1 means depth pruning for transformer blocks. P(·)
is an evaluation metric, where the parameters and compu-
tation cost of pruned transformer should follow predefined
constraints C such as inference latency, floating-point oper-
ations (FLOPs).

Width Pruning
To shrink the width of vision transformer, we add a binary
mask variable and its saliency score for linear or attention
layer, which is of the same size and shape as the layer’s
weight tensor. The mask determines which of the weights
participate in the forward pass. In the pruning stage, we ze-
roize the weights with score values below learnable thresh-
olds until a predefined compression ratio is reached. Figure 1
illustrates this process. We give quantitative analysis later in
this section to demonstrate the learning process of saliency
scores and thresholds.

Learnable saliency score We first consider how to prune
weight matrices in linear layer. Let us denote the weight ma-
trix by W ∈ Rm×n and its mask by M ∈ Rm×n with
m and n being the number of output and input dimension.
Here each element in M is a binary matrix {0, 1} indicat-
ing corresponding output in linear matrix is pruned or not.
Note that the input in linear matrix needs to be removed if
its corresponding mask value is 0 in the previous layer (see
Appendix A for details). The binary mask M can be deter-
mined by Eq. (2):

Mj =

{
0 Sj ≤ Φ(S|m× r)

1 otherwise
(2)

where S is the saliency score of M , and Φ(z|k) is a func-
tion, which returns the value of the k smallest entries in z.
The binary mask M means zeroing out entries in W with its
saliency score smaller than Φ(S|m × r) in absolute magni-
tude. In next subsection, we provide a detailed explanation
of how we get the layer-wise pruning ratio r according to a
learnable threshold parameter.

We perform element-wise (Hadamard) product between
linear matrix and mask in the forward pass. The j-th output
of linear layer is as follows:

aj =
m∑

k=1

Mj,kWj,kxk. (3)

For the backward pass, since the gradient of binary step
function of mask is 0 everywhere it is defined, the mask
can be seemed as straight-through estimator where the tech-
nique proposed by (Ramanujan et al. 2020). Thus the gradi-
ent of mask ∂aj

∂Mj
can be ignored in the backward pass. By

the chain rule, the gradient of loss L w.r.t. saliency score Sj

is calculated as follows, which indicates the learning process
of saliency score in linear matrix:

∂L
∂Sj

=
∂L
∂aj

· ∂aj
∂Mj

· ∂Mj

∂Sj
=

∂L
∂aj

m∑
k=1

Wj,kxj . (4)

We apply a similar idea to the self attention layer. The
masked MSA is formulated as:

MSA(x) = Wproj

H∑
h=1

MhAttnh(x), (5)

where H is the head number of self attention, Attn is self
attention mechanism, and Wproj is a linear transformation
matrix. The self attention consists of query Wq ∈ Rn×d,
key Wk ∈ Rn×d and value Wv ∈ Rn×d, where these three
matrices form a qkv matrix Wqkv ∈ Rn×3d. In particular,
the computation of self attention is:

Attnh(x) = αhWh,vx,

where αh =softmax(
xTWT

h,qWh,kx√
d

).
(6)

In Eq. (6), αh is the h-th attention map. A mask Mh ∈
R1×3d needs to cover the whole attention head (qkv matrix).
By the chain rule, we obtain the gradient of self-attention
with respect to the saliency score Sh ∈ R1:

∂L
∂Sh

=
∂L

∂MSA
· ∂MSA

∂Mh
· ∂Mh

∂Sh
=

∂L
∂MSA

Attnh(x).

(7)

Based on Eq. (4) and Eq. (7), we update the saliency
scores over dataset by AdamW optimizer with a learning
rate αs. The magnitude of saliency score illustrates the prod-
uct accumulation of activation and gradient of activation
w.r.t. a pruning unit. The units that obtain larger saliency
scores learn the more important inductive bias customized to
the learning task, thus being retained in the pruning process.
In Appendix B, we prove the stable convergence of pruning
by saliency score in the optimization.

Learnable threshold Learning a mask over the pruning
unit also presents problems, namely the difficulty of con-
verting this mask into binary decisions which would require
carefully handcrafted thresholds. We thus propose a differ-
entiable thresholding operation, making it adjustable in a su-
pervised learning framework. Inspired by MLPruning (Yao
et al. 2021), we use sigmoid function σ to generate a pruning
ratio rl for each layer l by bounding the threshold parameter
βl within (0, 1):

rl = σ(βl). (8)

To learn the layer-wise pruning ratio and control the size
of the pruned model, we utilize an Augmented Lagrangian
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Figure 2: An illustration of depth pruning. The additional
classifiers (denoted by blue cells) are connected to the
class tokens of intermediate embeddings, respectively. The
plugged-in classifiers are trained together with the whole
transformer. After training, we choose a classifier as final
output, and remove the all subsequent transformer blocks,
which reduce the depth of transformer.

method (Bastings, Aziz, and Titov 2019) to construct a reg-
ularization on the threshold parameter. Let R be the current
pruning ratio of parameters and Rt be the target pruning ra-
tio. The Augmented Lagrangian method imposes an equality
constraint R = Rt by introducing a violation penalty:

Lp =

{
λ1(Rt −R) + λ2(Rt −R)2, Rt > R,

0, otherwise,
(9)

where λ1, λ2 ∈ R1 are two Lagrangian multipliers. The R
is accumulated by all pruned layer:

R =

L∑
l=1

rl ∗ nl

N
(10)

where nl is the number of parameters in the l-th layer, N
is the total number of parameters in vision transformer. The
gradient of Lp w.r.t. βl in the l-th layer is:

∂Lp

∂βl
=

nlσ(βl)(1− σ(βl))

N
(−λ1 + 2λ2(Rt −R)). (11)

It can be learned from Eq. (11) that the magnitude of gra-
dient is larger when some layer have the larger nl, which
it is more inclined to be pruned. Moreover, the gradient of
threshold parameter is very small in the early stage because
of the sigmoid function. Hence, the scalar coefficient λ1, λ2

needs to be carefully tuned for both initial values and sched-
ules. To resolve this issue, we put λ1, λ2 in the training pro-
cess, which are jointly optimized with the network weights
and facilitate the learning process of score threshold.

Depth Pruning
In addition to pruning the width, WDPruning further reduces
the blocks of visual transformers. In Vision Transformer
(Dosovitskiy et al. 2020), the patch tokens and class token
are interacted with each other through transformer blocks.
The class tokens in the early stages of the transformer have

Algorithm 1: Width & Depth Pruning Framework
Input: Transformer W; Dataset D; Pruning ratio Rt;

Plug-in classifiers C; Epoch E;
1 Initialize e = 0, λ1 = 0, λ2 = 0, score S = 0 and

threshold parameter βi = 10 for each layer i;
2 while e < E do
3 for each iteration ∈ epoch e do

/* Forward pass */
4 Obtain the threshold of each layer by σ(β);
5 Obtain the masks via Eq. (2);
6 Obtain the masked weight matrices via

Eq. (3) and Eq. (5);
7 Count the current pruning ratio R;
8 Compute the loss function via Eq. (12);

/* Backward pass */
9 Update W and plug-in classifiers C;

10 Update saliency scores by Eq. (4) and Eq. (7);
11 Update threshold parameters by Eq. (11);
12 Update λ1 and λ2;
13 end
14 end
/* Width pruning */

15 Prune the attention heads and linear matrices whose
masks are 0;
/* Depth pruning */

16 Choose an optimal classifier as transformer output,
and remove all subsequent transformer blocks;

the ability of accurate classification. Motivated by this idea,
we further prune the redundant transformer blocks in the tail,
as shown in Fig. 2. Concretely, we connect additional clas-
sifiers to class tokens of several selected embeddings. The
plugged-in classifiers are trained together with the process
of width pruning. Thus, the whole loss function of training
objective is:

L = LCE + Lp +
K∑
i=1

Lci , (12)

where LCE is cross-entropy loss of the last classifier, Lc

is the cross-entropy loss of plugged-in classifier head and
K is the total number of plug-in classifiers. After training,
we obtain a transformer model with multiple depth versions
since each classifier has its own prediction ability to a
certain degree. We select a shallow classifier to achieve
an optimal trade-off between efficiency and accuracy by
evaluating on the validation set. In the inference period, all
of the blocks after the selected classifiers are dropped. This
shallower pruned transformer merits in both speedup and
accuracy.

A similar scheme is BranchyNet (Teerapittayanon,
McDanel, and Kung 2016) which proposed an early-exit
mechanism (Zhou et al. 2020; Xin et al. 2020) to exit the
inference process in the early stage of model based on a
higher entropy of output softmax than a threshold. However,
the additional control logic of BranchyNet is hard to make
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Idx Model width-depth Top-1 (%) Top-5 (%) FLOPs (G) #Param. (M) Throughput (im/s) CPU latency (ms)
1

DeiT-Tiny
0.0-12 (Base) 72.20 91.10 1.3 5.4 3403 332

2 0.3-12 71.10 (-1.10) 90.09 (-1.01) 0.9 (-30.8%) 3.8 (-29.6%) 3780 (+11.1%) 285 (-14.1%)
3 0.3-11 70.34 (-1.86) 89.82 (-1.28) 0.7 (-46.2%) 3.5 (-35.2%) 4082 (+20.0%) 265 (-20.2%)
4

DeiT-Small
0.0-12 (Base) 79.80 95.00 4.6 21.3 1547 410

5 0.3-12 78.55 (-1.25) 94.37 (-0.63) 3.1 (-32.6%) 15.0 (-29.6%) 1712 (+10.7%) 364 (-11.2%)
6 0.3-11 78.38 (-1.42) 94.05 (-0.95) 2.6 (-43.5%) 13.3 (-37.6%) 1830 (+18.3%) 338 (-17.5%)
7

DeiT-Base

0.0-12 (Base) 81.80 95.59 17.5 85.1 598 783
8 0.2-12 81.94 (+0.14) 95.62 (+0.03) 13.6 (-22.3%) 68.2 (-19.9%) 655 (+9.5%) 692 (-11.6%)
9 0.2-10 80.85 (-0.95) 95.39 (-0.20) 10.8 (-38.3%) 59.4 (-30.2%) 696 (+16.4%) 639 (-18.4%)
10 0.3-12 81.09 (-0.71) 95.54 (-0.05) 11.0 (-37.1%) 60.6 (-28.8%) 669 (+11.9%) 648 (-17.2%)
11 0.3-11 80.76 (-1.04) 95.36 (-0.23) 9.90 (-43.4%) 55.3 (-35.0%) 707 (+18.2%) 590 (-24.6%)
12 0.0-24 (Base) 83.00 96.50 8.7 47.3 609 847
13 Swin Trans- 0.1-24 82.41 (-0.59) 96.21 (-0.29) 7.6 (-12.6%) 42.7 (-9.7%) 640 (+5.1%) 809 (-4.5%)
14 Small 0.2-24 82.20 (-0.80) 96.12 (-0.38) 6.8 (-21.8%) 37.4 (-20.9%) 667 (+9.5%) 776 (-8.4%)
15 0.2-22 81.80 (-1.20) 96.01 (-0.49) 6.3 (-27.6%) 32.8 (-30.6%) 702 (+15.3%) 763 (-9.9%)

Table 1: Main results on ILSVRC-12. We count the FLOPs, parameters and inference throughput (images per second), latency
for 4 representative vision transformers. “width-depth” denotes the predefined pruning ratio for width and depth pruning, and
we choose the classifier at this depth and prune the subsequent blocks. “Base” denotes the unpruned baseline model.

the just-in-time deployment, e.g. TensorRT1. In contrast,
our depth pruning can obtain an end-to-end pruned model,
which is easy to be converted to ONNX2 format for edge
deployment.

Computational Complexity Analysis
In our method, additional parameters and computation in
training process mainly comes from element-wise product
between weights and masks, as well as the pruning-related
parameters (i.e., saliency scores, thresholds and plug-in clas-
sifiers), which are updated by AdamW optimizer. The addi-
tional time consumption of WDPruning is acceptable. The
detailed procedure is presented in Algorithm 1.

Experiment
In this section, we empirically investigate the effective-
ness of the proposed WDPruning on benchmark datasets:
CIFAR-10 and ILSVRC-12 (Russakovsky et al. 2015). To
understand our method, extensive ablation studies are con-
ducted on these datasets.

Datasets
CIFAR-10 contains 50k training images and 10k validat-
ing images, which are categorized into 10 classes for image
classification. Compared with CIFAR-10, ILSVRC-12 is a
larger scale image classification dataset, which comprises
1.28 million images from 1k categories for training and 50k
images for validation.

Implementation Details
We conduct experiments on the standard ViT models (Doso-
vitskiy et al. 2020) (DeiT (Touvron et al. 2021)), and an
improved variant Swin Transformer (Liu et al. 2021a). We
mainly prune the DeiT-Tiny, DeiT-Small and DeiT-Base

1https://developer.nvidia.com/tensorrt
2https://onnx.ai

which have 12 blocks, as well as Swin Transformer-Small
with 24 blocks. For pruning shift-window attention in Swin
Transformer, due to the deletion of attention leading to the
problem of dimension mismatch, we maintain the dimen-
sion alignment by padding zero. For all experiments, we use
the pre-trained vision transformer models to initialize the
backbone models. In the pruning procedure, the DeiT mod-
els are trained for 100 epochs and Swin Transformers are
trained for 60 epochs. The initial learning rate is 0.0005.
We use AdamW optimizer with a momentum of 0.9 for
optimization. We set the weight decay to 0.05. In the ex-
periments, we keep the same data augmentation strategy as
DeiT and Swin Transformer, including Random Augment
(Cubuk et al. 2020), Mixup (Zhang et al. 2017), and CutMix
(Yun et al. 2019). For the pruning setting, the initial value
of saliency score and threshold parameter are 0 and 10, re-
spectively. The learning rates of saliency scores and thresh-
old parameters are set by 0.025 initially, and they are fine-
tuned with AdamW with cosine learning rate decay strategy.
The initialization of λ1 and λ2 is 0, which are also added in
AdamW optimizer to train. As for the block pruning setting,
we insert two additional classifiers in the 10-th and 11-th
transformer blocks for DeiT, and insert two additional clas-
sifiers in 22-th and 23-th blocks for Swin Transformers.

Main Results
In Table 1, we summarize the main results on ILSVRC-
12 where we adjust the pruning ratio Rt for width pruning
and block selection for depth pruning. We report the top-
1/5 accuracy, the number of FLOPs and parameters, GPU
throughout and the latency on CPU. The GPU throughout
is obtained by measuring the forward time on a NVIDIA
RTX 3090 GPU with a batchsize of 1024, and the latency on
CPU is measured on AMD EPYC 7502 32-Core CPU with a
batchsize of 1. We observe that WDPruning exhibits favor-
able complexity/accuracy trade-offs at different complexity
levels, where our method can reduce the computational costs
by 10%-43% and accelerate the inference at runtime by 5%-

3147



Model Top-1 Accu.(%) Top-1 ↓(%) Top-5 Accu. (%) Top-5 ↓(%) GFLOPs GFLOPs↓(%)

DeiT-Tiny 72.20 0 91.10 0 1.3 0
SCOP (Tang et al. 2020) 68.90 3.30 89.00 2.10 0.8 38.5
PoWER∗ (Goyal et al. 2020) 69.40 2.80 89.20 1.90 0.8 38.5
HVT (Pan et al. 2021) 69.70 2.50 89.40 1.70 0.7 46.2
WDPruning-0.3-11 70.34 1.86 89.82 1.28 0.7 46.2
DeiT-Small 79.80 0 95.00 0 4.6 0
SCOP (Tang et al. 2020) 77.50 2.30 93.50 1.50 2.6 43.5
PoWER∗ (Goyal et al. 2020) 78.30 1.50 94.00 1.00 2.7 41.3
HVT (Pan et al. 2021) 78.00 1.80 93.83 1.17 2.4 47.8
WDPruning-0.3-11 78.38 1.42 94.05 0.95 2.6 43.5

DeiT-Base 81.80 0 95.59 0 17.5 0
SCOP (Tang et al. 2020) 79.70 2.10 94.50 1.09 10.2 41.7
PoWER∗(Goyal et al. 2020) 80.10 1.70 94.60 0.99 10.4 40.6
VTP (Zhu et al. 2021) 80.70 1.10 95.00 0.59 10.0 42.9
WDPruning-0.3-11 80.76 1.04 95.36 0.23 9.9 43.4

Table 2: Comparison with the state-of-the-art methods on ILSVRC-12. We compare our method with these methods with Top-
1/5 accuracy and FLOPs. “↓” represents the reduction rate. “∗” denotes that the results come from (Pan et al. 2021).
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Figure 3: Left: Accuracy for DeiT-Small on CIFAR-10 re-
garding pruning ratio. Solid line and shadow denote the
mean value and standard deviation, respectively. Right: The
pruning ratio varying epoch when Rt = 0.5.

25% with the neglectable influence on accuracy. Compared
to the base model DeiT-Base, the Top-1 accuracy of our
method (idx=8) even increases by 0.14% when leading to
a reduction of 19.9% in the number of parameters, and the
inference speed on CPU is accelerated by 11.6%. When 2
extra blocks are removed (idx=9) based on DeiT-Base with
width pruning (idx=8), the Top-1 accuracy only drops by
0.95%. It is worth noting that after pruning with different ra-
tio of width and depth, we obtain two models with the sim-
ilar FLOPs (idx=9, idx=10). Although the DeiT with depth
pruning (idx=9) has a greater accuracy drop, it gains more
GPU throughput. It indicates that depth pruning is more con-
ducive to parallel acceleration and demonstrates the limita-
tion of single-dimension width pruning. Compared to the
base model Swin Transformer-Small (idx=12), the pruned
counterpart (idx=15) achieves a 30.6% decrease in the num-
ber of parameters and a 15.3% increase in GPU throughput
with only an accuracy drop of 1.2%.

Comparison with Other Methods
We compare our method with state-of-the-art pruning meth-
ods on ILSVRC-12. The following state-of-the-art methods
are compared: SCOP (Tang et al. 2020), PoWER (Goyal
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Figure 4: The pruning ratio of units on each block when
pruning ratio is 0.3.

et al. 2020), HVT (Pan et al. 2021) and VTP (Zhu et al.
2021). SCOP is a channel pruning method and (Tang et al.
2021) re-implemented it to reduce the patches in vision
transformers. (Pan et al. 2021) re-implemented PoWER to
progressively eliminate patch tokens during the forward
pass. HVT progressively pooled the visual tokens to shrink
the sequence length and reduced the computational cost of
DeiT. VTP trained the DeiT for 100 epochs by imposing ℓ1
regularization on soft masks, pruned the soft masks whose
values are under a threshold, and finetuned for 100 epochs.

The experimental results are shown in Table 2. The pro-
posed WDPruning is competitive with the state-of-the-art
methods. Concretely, for pruning DeiT-Tiny, compared with
HVT, WDPruning achieves higher Top-1 accuracy (70.34%
vs. 69.70%) and Top-5 accuracy (89.82% vs. 89.40%) with
the same reduction in FLOPs of 46.2%. The results on
ILSVRC-12 demonstrate WDPruning can produce more
compact vision transformer with better performance com-
pared to other single-dimension pruning methods.

Ablation Study and Discussion
Effect of the predefined pruning ratio. The predefined
pruning ratio controls the targeted amount of pruned param-
eters in the width pruning process. To investigate its effect,
we train DeiT-Small on the CIFAR-10 with a range of prun-
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Method Top-1(%) Top-5(%) GFLOPs
DeiT-Small 79.80 95.00 4.6
uniform pruning-0.3 75.26 92.33 3.2
Ours-0.3 78.55 94.37 3.1

Table 3: Learnable pruning ratio vs. uniform pruning.

Model Layers Accu.(%) GFLOPs Param.(M)

DeiT-Small

12 98.50 4.24 21.95
10 98.35 3.54 18.40
8 98.11 2.84 14.86
6 96.55 2.15 11.30
4 92.81 1.45 7.77
2 74.08 0.75 4.22

Table 4: Results of depth pruning on CIFAR-10 regarding
inserting 5 classifiers in the intermediate class tokens.

ing ratio varying from 0% to 70%. As shown on the left of
Fig. 3, we report the accuracy under different pruning ratio.
When the pruning ratio is less than 20%, we observe that
the compressed transformers perform better than the uncom-
pressed one, which can be considered as the regularization
effect introduced. As we expect, increasing pruning ratio re-
sults in higher degree of transformer compression with more
impact on overall accuracy as well. On the right of Fig. 3, we
report the change in pruning ratio varying epochs when the
predefined pruning ratio is 0.5. The pruning ratio of model
was dynamically allocated and increased with epoch. The
overall pruning procedure is finished since epoch 32.
Learnable pruning ratio vs. uniform pruning. We fur-
ther compare the performance of learnable pruning ratio
with the uniform pruning. We prune the DeiT-Small on
ILSVRC-12 by learnable pruning ratio and uniform prun-
ing, respectively. We set the pruning ratio to 0.3 (Rt = 0.7),
and the other experimental settings are the same. From the
Table. 3, we learn that the accuracy of uniform pruning is
only 75.26%, which incurs a large accuracy drop (4.54%).
In Fig. 4, we visualize the pruning ratio for each block of
DeiT-Small after the pruning procedure. We learn that our
method allocates the pruning ratio to each layer accordingly
and adaptively learns the compact structure of each block
in the transformer, which is beneficial to learn a structured
pruning network with good performance.
Effect of depth pruning. To study the effect of trans-
former block pruning, we train DeiT-Small with 5 plug-in
learnable classifiers that are inserted in transformer blocks
of {2,4,6,8,10}. In this experiment, WDPruning does not
prune the width of vision transformer and we focus on the
effect of depth pruning. The results are shown in Table 4, and
we learn from that the DeiT-Small can be losslessly pruned
away 4 transformer blocks where the accuracy is retained
above 98%. This experiment demonstrates we can obtain
multiple models with different depth versions in one training
by depth pruning.
Visualization. We use Attention Rollout (Abnar and
Zuidema 2020) to project the attention maps from the out-
put token to the input image, and visualize the 6-th block
of multi-head self-attention of DeiT-Small. As shown in

Figure 5: Input image (left) and visualization of atten-
tion maps (right) of DeiT-block6. Attention maps with red
bounding boxes are the attention heads to be retained.

Dataset Method mAP #Param. Throughput

Market-1501
TransReID 88.5% 85.1M 459im/s

Our 87.7% 59.6M 572im/s

Table 5: Results of pruning TransReID on Market-1501.

Fig. 5 the attention maps with red bounding boxes are re-
mained after the pruning procedure, and we record their ul-
timate saliency scores. From the figure, these pruned atten-
tion maps mainly focus more on the patch of background,
and contribute less to the classification object. In contrast,
the attention maps that are retained obtain higher saliency
scores and contribute more to the foreground object.
Its application to image retrieval tasks. As described

above, our method is effective in image classification. To
further analyze the generalization of our method, we use
DeiT-Base as a backbone network to deploy TransReID (He
et al. 2021) for image retrieval task, and then compress DeiT-
Base by reducing 30% parameters of the backbone network.
In the experimental implementation, we evaluate the perfor-
mance with mean Average Precision (mAP) on Market-1501
(Zheng et al. 2015) dataset. As shown in Table 5, our pruned
transformer shows a good result. The mAP of our method
is slightly lower than the baseline, but the throughput is 572
images per second, which is higher than the baseline. This
demonstrates that our method has good generalization on
other vision tasks.

Conclusion
In this work, we present a structured pruning framework to
reduce the width and depth of vision transformers. In our ex-
periments, we demonstrate very promising pruning results
on image classification and image retrieval tasks. We can
adaptively adjust the depth and width of vision transform-
ers based on budgets at hand and difficulties of each task.
We believe these pruning results can further inspire the de-
sign of more compact vision transformers. In the future, we
plan to extend the proposed methods from image domain to
video transformers, e.g. Video Swin Transformer (Liu et al.
2021b), Video Transformer Network (Neimark et al. 2021).
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