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Abstract

Recent neural rendering techniques have greatly benefited
image-based modeling and relighting tasks. They provide
a continuous, compact, and parallelable representation by
modeling the plenoptic function as multilayer perceptrons
(MLPs). However, vanilla MLPs suffer from spectral bi-
ases on multidimensional datasets. Recent rescues based on
isotropic Fourier features mapping mitigate the problem but
still fall short of handling heterogeneity across different di-
mensions, causing imbalanced regression and visual artifacts
such as excessive blurs. We present an anisotropic random
Fourier features (RFF) mapping scheme to tackle spectral bi-
ases. We first analyze the influence of bandwidth from a dif-
ferent perspective: we show that the optimal bandwidth ex-
hibits strong correlations with the frequency spectrum of the
training data across various dimensions. We then introduce
an anisotropic feature mapping scheme with multiple band-
widths to model the multidimensional signal characteristics.
We further propose an efficient bandwidth searching scheme
through iterative golden-section search that can significantly
reduce the training overload from polynomial time to loga-
rithm. Our anisotropic scheme directly applies to neural sur-
face light-field rendering and image-based relighting. Com-
prehensive experiments show that our scheme can more faith-
fully model lighting conditions and object features as well as
preserve fine texture details and smooth view transitions even
when angular and spatial samples are highly imbalanced.

Introduction
There has been renewed interest in conducting image-based
modeling and rendering (IBMR), such as new view synthesis
and post-capture relighting, largely due to recent advances
in neural modeling and rendering. Applications range from
surface reflectance modeling to photorealistic relighting in
virtual reality and augmented reality. While traditional ap-
proaches rely on ray interpolation and tedious hand-crafted
blending schemes, recent neural advances implicitly encode
continuous surface attributes like reflectance or appearance.
Such implicit solutions enable 1) powerful interpolation ca-
pabilities with continuous representation in both spatial and
angular domains; 2) de-factor compression scheme; for ex-
ample, neural relighting compresses light transport matrices
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by a factor of 200; 3) parallel implementation capability us-
ing modern computing hardware to achieve near real-time
performance.

The core of these implicit image-based rendering tech-
niques is the adoption of deep fully-connected net-
works (also called multilayer perceptrons or MLPs). Such
coordinate-based MLPs take low-dimensional coordinates
as inputs and compactly regress a continuous output for var-
ious attributes like shape, density, or color (Mescheder et al.
2019; Chen et al. 2018; Mildenhall et al. 2020; Yariv et al.
2020). Theoretically, the MLPs can approximate any mea-
surable functions to any desired degree of accuracy (Hornik,
Stinchcombe, and White 1989). However, it is known that
standard MLPs tend to learn low-frequency functions due to
“spectral bias” (Rahaman et al. 2019), leading to severe blur
artifact for neural image-based rendering and relighting.

To overcome such drawbacks of vanilla MLPs, previous
researchers (Mildenhall et al. 2020; Zhong et al. 2019) ex-
perimentally adopt a heuristic sinusoidal mapping of the in-
put coordinates called positional encoding to recover high-
frequency details in protein structures and surface textures.
At the same time, the recent work (Sitzmann et al. 2020)
utilizes the “SIREN” network to substitute the traditional
ReLU activation function in MLPs with a periodic one. The
most notable method (Tancik et al. 2020) adopts Gaussian
random Fourier features (RFF), which relies on a carefully
chosen standard deviation (bandwidth) to sample frequen-
cies from an isotropic normal distribution and generate si-
nusoids for feature transformation. However, current meth-
ods still utilize a time-consuming grid-search scheme for
the bandwidth parameter, leading to inefficient training over-
load. Moreover, such isotropic Gaussian RFF mapping treats
every coordinate equally, without considering the hetero-
geneity of a plenoptic function across various dimensions for
image-based rendering and relighting. Thus it suffers from
imbalanced regression and the loss of high-frequency de-
tails (over-smoothness) or rough signal estimation (under-
smoothness). For example, a surface light field displays
much more substantial color variation among adjacent sur-
face points than among different viewing angles. However,
only using a single bandwidth fails to balance different de-
grees of smoothness in the spatial and angular domain.

In this paper, we attack the above challenges and present
an anisotropic RFF mapping scheme for a range of neural

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

3152



implicit image-based rendering and relighting tasks. Our ap-
proach significantly improves the performance of MLPs for
these IBMR applications by taking the RFF mapping into
the new anisotropic realm.

Specifically, we first show that applying Gaussian RFF
mapping results in a kernelized neural network by compos-
ing the neural tangent kernel (NTK) (Jacot, Gabriel, and
Hongler 2018) of the vanilla MLP with a radial basis func-
tion (RBF) kernel, where the bandwidth of the RBF kernel
plays a crucial role in controlling the smoothness of MLPs.
Then through empirical analysis, we find that the optimal
bandwidth is determined by the density of training data and
the signal’s frequency spectrum. Based on such critical in-
sight, we propose an anisotropic feature mapping that em-
ploys multiple bandwidths to match plenoptic characteris-
tics in different dimensions for the image-based rendering
and relighting tasks. To enable automatic bandwidth search-
ing and efficient training, we propose an iterative algorithm
based on linear golden-section search (GSS) to search multi-
ple bandwidth parameters. Our method significantly outper-
forms the computationally expensive brute-force grid search
algorithm by reducing the number of searches from poly-
nomial time to logarithm time during training. We apply our
novel anisotropic scheme for various IBMR tasks. For neural
surface light field rendering, we implement a 2-bandwidth
Gaussian kernel and the corresponding anisotropic RFF
mapping to model both the high-frequency texture of the ob-
ject surfaces and the low color variation in the angular do-
main simultaneously. We adopt a similar implementation for
neural image relighting to capture the reflectance variation in
spatial and angular domains. Our approach faithfully models
lighting conditions and object features to recover fine texture
details and preserve smooth viewing transition. To summa-
rize, our main contributions include:

• We introduce an anisotropic Fourier features mapping
scheme for multidimensional representations of neural
IBMR tasks where the traditional isotropic mapping
method fails. The key motivation is that the optimal
bandwidth is determined by the training data density
and signal’s frequency spectrum in each dimension of
plenoptic functions through empirical analysis about the
isotropic Fourier features.

• We propose an efficient golden-section-based algorithm
for searching optimal bandwidths under multidimen-
sional settings, which reduces training time remarkably.

• We achieve high-quality results on both neural surface
light field rendering and relighting tasks, which outper-
form previous state-of-the-art methods favorably.

Related Work
Our work is mainly related to recent advances in deep
network-based neural rendering (NR) as well as emerg-
ing machine learning techniques for further refining NR
schemes.

Neural Rendering and Relighting. There have been sig-
nificant progresses on applying implicit neural represen-
tations (Park et al. 2019; Henzler, Mitra, and Ritschel

2020; Yariv et al. 2020; Niemeyer et al. 2020) for image-
based modeling and rendering (Zhang et al. 2021; Chen
et al. 2018; Mildenhall et al. 2020). Different from tra-
ditional IBMR techniques that aim to conduct view in-
terpolation from input images with hand-crafted blending
schemes (Hedman et al. 2016; Penner and Zhang 2017;
Buehler et al. 2001), neural rendering schemes set out
to learn such schemes. Hedman et al. proposed to learn
the blending weights using a convolutional neural net-
work (Hedman et al. 2018) whereas Chen et al. utilized a
fully-connected neural network to represent a surface light
field to encode geometry and appearance simultaneously
for efficient interpolation. However, these schemes still ex-
hibit excessive blurs (Chen et al. 2018), as we will demon-
strate, due to the misleading similarity measure inherent
to standard MLPs. Alternatively, Aliev et al. presented a
point-based neural renderer for modeling geometry and col-
ors. The seminal work of Neural Radiance Field (NeRF)
(Mildenhall et al. 2020; Martin-Brualla et al. 2021) adopted
a learnable volumetric representation that consists of opac-
ity and color at each position along every ray and applied an
MLP-based network to recover the complete plenoptic func-
tion.

Another important IBMR problem is image-based relight-
ing stemming from the pioneer LightStage system (Debevec
et al. 2000). A LightStage captures the reflectance of objects
(e.g., human faces) under a dense set of directional lights
to form the light transport matrix. These images can then
be used for relighting human faces, e.g., to match a new
environment in virtual production. The majority of the ef-
forts have been focused on reducing data size (Reddy, Ra-
mamoorthi, and Curless 2012; Wang et al. 2009; Ren et al.
2013). Ren et al. proposed an MLP-based method to re-
construct the light transport matrix from a sparse set of re-
flectance images (Ren et al. 2015). Specifically, they store an
average reflectance map in advance to tackle over-smoothed
outputs of neural networks. Likewise, Xu et al. leveraged a
CNN-based method to exploit coherence in the light trans-
port function (Xu et al. 2018).

High-Frequency Functions Learning. Our goal is to
study how to enhance MLP-based NR schemes by reduc-
ing blurring and aliasing artifacts. Recent methods (Ra-
haman et al. 2019; Basri et al. 2020) have shown that MLPs
with a ReLU activation function fail to adequately repre-
sent fine details in complex low-dimensional signals due to
the spectral bias. These studies reveal that standard MLPs
have difficulties in learning high-frequency functions. To ad-
dress this problem, existing works either replace the tradi-
tional ReLU activation function with periodic ones (Sitz-
mann et al. 2020) or lift the input coordinates into a Fourier
feature space (Mildenhall et al. 2020; Tancik et al. 2020).
With the latter approach, original inputs are mapped through
a series of sinusoidal functions with either fixed (Milden-
hall et al. 2020) or isotropic Gaussian-sampled frequen-
cies (Tancik et al. 2020). By adopting the Neural Tangent
Kernel (NTK) theory, Tancik et al. show that coordinated-
based MLPs correspond to kernels with a rapid spectrum
falloff and subsequently cause extremely slow convergence
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to high-frequency components. Although the application of
isotropic Fourier features mitigates the problem, it does
not consider anisotropy across dimensions. In particular, we
show that existing isotropic Fourier features fall short under
multidimensional regression tasks with non-uniform data
distribution or different changing rate of signal values. In
IBMR tasks, they lead to visual artifacts such as loss of de-
tails or specularity.

Preliminaries
Isotropic Fourier Features Mapping (IFFM). To over-
come the spectral bias introduced by standard MLPs, an
isotropic Fourier features mapping scheme was introduced
by (Tancik et al. 2020). It maps input coordinates x into the
following function φ(x) before passing them into an MLP:

φ(x) := 1√
m

[cos(wT
1 x + b1), . . . , cos(wT

mx + bm)], (1)

where x is the original input; bi is a random number
in [0, 2π). All components of wi are random frequencies
drawn from a uni-variate normal distribution.

By Bochner’s theorem (Liu et al. 2020), we obtain the
following asymptotic results:

lim
m→∞

φ(x)φ(x′)T = exp(−1

2
‖x− x′

α
‖2), (2)

where α is the reciprocal of the standard deviation of fre-
quencies in φ(x). In our IBMR tasks, α denotes the smooth-
ing parameter that controls reconstruction bandwidth.

Perspective From Neural Tangent Kernel. The neural
tangent kernel (NTK) theory (Lee et al. 2019; Jacot, Gabriel,
and Hongler 2018) shows that a trained neural network in the
infinite-width regime equates to a Gaussian process, there-
fore making the dynamics of the training algorithm tractable
and amenable to quantitative analysis. Specifically, the NTK
theory states that given an MLP after sufficient iterations of
training, for every test input point x, the output of such an
MLP denoted by f̂(x) converges to a normal distribution as
the network width goes to infinity. The asymptotic distribu-
tion of f̂(x) is given by

N
(
kg(x,X )K−1Y, kg(x,x)− kg(x,X )K−1kg(X ,x)

)
,

(3)
where the function kg(·, ·) is defined over data pairs to mea-
sure the similarity of two inputs. It is called the “neural tan-
gent kernel” inherent to an MLP of a certain architecture.
K is an n × n matrix with entries Kij = kg(xi,xj). It
is worth noting that kg(x,x′) is an increasing function with
respect to the dot product of x and x′ (Lee et al. 2018, 2019).
Therefore, applying IFFM to the input of an MLP results in
a composed neural tangent kernel in place of kg(x,x′):

k̃g(x,x
′) := kg(φ(x)φ(x′)T ) ≈ kg(exp(−1

2
‖x− x′

α
‖2)).

(4)

In this way, the original dot product NTK is replaced with
an bell-shaped kernel. In other words, the MLP is kernel-
ized by an RBF kernel after applying IFFM to its input. We

also explore scenarios where we make use of Laplacian (and
other) kernels. More details can be found in Appendix A.

Now we focus on the MLPs kernelized by the RBF kernel.
Intuitively, after kernelization, the prediction at a test point
x is a weighted average of the n training points with blend-
ing weights positively correlated to the values of k̃g(xi−x).
Thus, the bandwidth parameter α tunes MLPs to lie between
over-smoothing and under-smoothing regimes by adjusting
blending schemes. Thus, selecting appropriate α is crucial
for improving the performance of neural image-based ren-
dering and relighting.

Our Method
Drawback of IFFM
In this subsection, we conduct numerical analysis and derive
the critical observation: the optimal bandwidth is determined
by the density of training data and the signal’s frequency
spectrum.

For basic numerical setting, we follow Tancik et al. and
generate ground truth 1D functions “1/fλ” on the inter-
val [0, 1): sample a vector from a standard Gaussian with
size 2000, multiply its ith entry with 1/iλ and return the
real components of its inverse Fourier transform. The per-
formance metric to measure the goodness of a bandwidth is
defined by the mean integrated squared error (MISE):

MISE(f̂(x;α)) =

∫ 1

0

E (f̂(x;α)− f(x))2 dx

=

∫ 1

0

Var (f̂(x;α)) dx+

∫ 1

0

(E f̂(x;α)− f(x))2 dx,

(5)

where f(x) denotes the ground-truth signal. The expectation
inside the integral is taken with respect to network initializa-
tion. We reinitialize and train the same network several times
and take the average in practice. The variance and expecta-
tion of f̂(x;α) are given in Eqn.3.

In Fig. 1, we show how the generalization error (MISE)
depends on the bandwidth under various data density and
signal frequencies. In Fig. 1a, we train MLPs to fit a
“1/f1.5” signal using IFFM (m = 256) under various band-
width settings, which reveals that smaller bandwidth (less
smoothing) is required as more training points are included,
i.e., higher data density. This relation is more evident in
Fig. 1b, where we show bandwidths that minimize gener-
alization error versus data density under different signal fre-
quencies. In Fig. 1c, we train MLPs to fit signals of vari-
ous frequencies given the same number of training points.
It shows that when the signal has more features (smaller λ),
a smaller bandwidth is called for faithful reconstruction. In
contrast, smoother signals correspond to larger bandwidths.
Fig. 1d also illustrates this trend under various training set-
tings.

We have an intuitive explanation for the above numeri-
cal results. Since Var (f̂(x;α)) in Eqn.5 decreases as more
training points are considered (Williams and Vivarelli 2000),
we can obtain the upper bound of the integrated variance
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Figure 1: The selection of the bandwidth is a trade-off and
relies on the number of training points per unit (a) and sig-
nal frequencies (c). Smaller bandwidths are called for when
training points increase (b) or the signal shows stronger vari-
ations and more features (d).

term in Eqn.5 by considering 1 closest training point. The fi-
nal upper bound is of order k′g(1)(nα)−2 (More details can
be found in Appendix B). This upper bound indicates that
the integrated variance term depends on the network archi-
tecture and the training data density. It also indicates that
a small α value will cause a high variance, which means
each independently trained network will produce diverse
outputs at the same point. This usually results in a spiky
(under-smoothed) function estimate. Furthermore, we note
that the squared bias term depends on the first and higher-
order derivatives of the actual signal. The bias is significant
when the absolute values of these derivatives are large. This
usually happens in regions such as boundaries and features.
In these cases, a small bandwidth is called for to reconstruct
details. The dilemma of reducing variance or bias indicates
that optimal bandwidth selection is a trade-off between the
training data density and signal frequencies.

Anisotropic Fourier Features Mapping (AFFM)
We know that IFFM with a single bandwidth fails to regress
signals that show imbalanced characteristics (frequency and
density) in different dimensions. This motivates us to de-
velop a new mapping method for multidimensional tasks,
especially for neural IBMR applications, where either the
training data have different densities or the signal shows dis-
tinct smoothness across spatial and angular dimensions. To
the best of our knowledge, we are the first to propose an
anisotropic Fourier features mapping (AFFM) φ(x) in the
field of MLPs:

lim
m→∞

φ(x)φ(x′)T = exp(−1

2

∑
i

‖xi − x′
i

αi
‖2), (6)

where the parameter αi denotes the bandwidth for i-th di-
mension. It differs from IFFM in that we incorporate mul-
tiple bandwidths to match signal heterogeneity in different
dimensions. It is worth noting that a group of dimensions
can share the same bandwidth if they have similar semantic

Figure 2: We compare the performance of IFFM and AFFM
on regressing a stripe pattern image (a). Each column of the
pattern is random color, making the pattern exhibit strong
variation on the width dimension and none variation on the
height dimension. The application of IFFM fails to regress
such an image even with optimal bandwidth (c). The pre-
diction is noisy due to the high variance caused by a small
bandwidth. However, a larger bandwidth can lead to high
bias (d) and over-smoothed prediction. AFFM alleviates this
difficulty by introducing two bandwidths to capture diverse
signal characteristics and outperforms IFFM remarkably (b).

meanings. Basically, a large bandwidth corresponds to the
dimension where the total curvature (variation) of the signal
is small or the number of training points per unit is small.
The construction of AFFM is also straightforward. In prac-
tice, we sample frequencies wi from a multivariate normal
distribution whose covariance is a diagonal matrix whose ith
diagonal entry is 1/αi.

To illustrate the superiority of our AFFM over IFFM, we
train MLPs with both schemes to fit a strip-like square pat-
tern using half pixels. Corresponding results are shown in
Fig. 2, where the reconstructed image using AFFM is vi-
sually lossless and has a much higher PSNR than using
IFFM. More specifically, Fig. 2(b) shows the results by ap-
plying AFFM, with two smoothing parameters for width and
height dimensions, respectively. The bandwidth correspond-
ing to the height dimension is significant to produce enough
smoothness on that dimension, while the substantial varia-
tion on the width dimension is also faithfully reconstructed.

In contrast, applying IFFM to regress this image results in
either noisy estimates (Fig. 2c) or loss of details (Fig. 2d).
Fig. 2c shows the predicted result by applying IFFM with
optimal bandwidth (highest PSNR). We observe that the op-
timal α value is small to compensate for a high variation on
the width dimension. However, such small α value results in
high output variance (large Var (f̂(x;α))) and causes noisy
artifacts on the height dimension. In Fig. 2d, we employ a
bandwidth that is 10 times larger than the optimal one. Nev-
ertheless, it leads to losing high frequencies details in the
width dimension by introducing more biases. Note that we
are unable to find a good middle point.

Efficient Search of (Near) Optimal Bandwidth
In implementing AFFM for practice, it is critical to search
for (near) optimal bandwidth(s). The brute force method that
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Figure 3: We show the first 3 iterations of a 2D GSS and cor-
responding training losses of the 4 candidates in each itera-
tion. The most promising bandwidth candidate (red curve)
usually prevails early in selection.

uses grid search to enumerate possible solutions is computa-
tionally prohibitive, leading to extremely high training over-
load. To tackle such a challenge, we adopt a linear golden-
section search (GSS) algorithm as the start point. It is well
known that GSS has several advantages over other search
algorithms: 1) it is gradient-free; calculating gradients with
respect to bandwidth is even more time-consuming; 2) it
avoids the selection of initial point; 3) it saves function
evaluations per iteration since each evaluation of bandwidth
takes an entire network training; 4) it is natural to extend
GSS to multidimensional scenarios.

Uni-bandwidth Selection. For uni-bandwidth setting, a
linear GSS works as follows: given the initial interval in-
side which the optimal bandwidth lies, it first evaluates two
bandwidth candidates that are located at proportional posi-
tions 0.382 and 0.618; then it reduces the interval around the
minimum by a factor of 0.618 (the golden ratio); it repeats
until convergence. Note that one evaluation at each iteration
is saved from the last iteration. Therefore, after k iterations,
the width of the search interval becomes (0.618)k, while the
number of network trainings is k + 1. In this way, golden-
section search reduces the number of searches from polyno-
mial to logarithmic.

Multi-bandwidth Selection. The extension of linear GSS
to multiple dimensions is natural. We provide an example
in the two-bandwidth setting. A 2D GSS first selects two pa-
rameters in both dimensions, producing 4 pairs of bandwidth
candidates; then shrinks the search box around the minimum
by a factor of 0.6182 and repeats until convergence. After k
iterations, we obtain a parameter box of area 0.6182k. The
number of network training is 3k + 1. We provide the algo-
rithm pseudocode of 2D GSS in Appendix C.

Heuristics to Speed Up Selection. We observe that in
each iteration, the most promising pair of bandwidths tend
to prevail early in the process. For example, in Figure 3,
we plot 3 search iterations under the strip pattern regression
discussed in the previous subsection. The most promising
candidate (denoted by the red curve) always performs better
than other candidates during the whole training process. This
motivates us to throw away ‘bad’ candidates sooner progres-
sively. A similar idea is proposed in (Li et al. 2017). Specif-
ically, we divide each iteration into 3 phases. We take out
one-third of the total candidates at the end of the first two
phases. At the end of the final phase, we take out all but the

winning candidate. We empirically find that 5 iterations are
sufficient to achieve good practice convergence.

AFFM for Neural IBMR Tasks
Neural implicit IBMR applications usually rely on plenoptic
functions, which usually behaves differently across various
dimensions, i.e., spatial and angular domains, for generating
high-quality and photorealistic results. Thus we apply our
AFFM scheme to two typical MLP-based IBMR scenarios,
i.e., surface light field (SLF) rendering and image-based re-
lighting.

An SLF represents the radiance of rays emitting from all
points on the surface of an object to all directions and hence
serves as an image-based representation of the plenoptic
function (Chen et al. 2018). Specifically, a neural SLF de-
fines a continuous mapping using a coordinated-based MLP:

L : M × Ω→ RGB, (7)

where M ⊆ R3 denotes the set of points on the surface
(spatial) and Ω denotes all unit vectors in R3 (angular). For
a fixed surface point m ∈ M , the slice L(m, ·) represents
outgoing radiances of the point to all directions. If the sur-
face is Lambertian, L(m, ·) is constant. For non-Lambertian
surface points, L(m, ·) exhibits view dependency properties
such as specularity. Nevertheless, such variation in the angu-
lar domain is generally much smaller than texture variations
in the spatial domain as illustrated in (Chen et al. 2018).
Therefore, IFFM with a global bandwidth fails to address
this heterogeneity, as shown in the next section. To this end,
for SLF rendering, we apply AFFM using a two-bandwidth
Gaussian kernel and the corresponding anisotropic Fourier
features. Our anisotropic scheme encodes both the high-
frequency texture of the object surfaces in the spatial domain
and the low color variation in the angular domain simultane-
ously.

Another representative IBMR problem is the image-based
relighting stemming from the pioneer Light Stage sys-
tem (Debevec et al. 2000). Such a technique aims to ren-
der photorealistic objects illuminated under novel lighting
conditions from a fixed viewpoint with coordinate-based im-
plicit OLAT (one light at a time) imagesets. According to the
additivity of light, the relighting at a pixel p is formulated as
an integration on the sphere with respect to the angular light-
ing vector ω:

L(p) =

∫
Ω

R(ω, p)E(ω) dω ≈ 1

4πN

N∑
i=1

R(ωi, p)E(ωi),

(8)
where R(ω, p) is the reflectance at pixel p in the direction
ω; E(ω) is the novel illumination (usually encoded in an
environment map). Here L denotes the relighting function.
Usually, R(ω, p) shows more data coherence in the angular
domain than in the spatial domain (Ren et al. 2015), since the
BRDF of most materials is smooth with respect to incident
light direction. Thus, we utilize MLPs with two-bandwidth
AFFM to regress a continuous form ofR(ω, p). The training
dataset consists of discrete images to capture the reflectance
variations in both spatial and angular domains. During the
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Figure 4: The high-quality neural rendering results using our anisotropic random Fourier features mapping scheme for both the
surface light field rendering and image-based relighting applications.

Synthetic ↑ Real ↑
Ship Chicken Lucy Materials Lego Tang San Cai Beer Can

No Mapping 25.72/0.698 22.82/0.491 19.79/0.432 20.66/0.707 23.30/0.655 22.21/0.577 19.62/0.463
IFFM 26.74/0.732 24.09/0.573 21.75/0.600 23.39/0.832 25.10/0.745 26.33/0.782 22.38/0.689
D-SLF 26.12/0.710 25.61/0.761 21.78/0.586 22.53/0.794 27.54/0.860 24.08/0.719 22.53/0.746
Ours 28.12/0.806 27.36/0.803 28.76/0.880 26.87/0.913 31.23/0.931 29.61/0.903 25.94/0.864

Table 1: Quantitative comparisons on surface light-field rendering against various methods in terms of PSNR and SSIM. Our
anisotropic scheme achieves consistently better results for various test scenes and metrics.

relighting phase after training, we sample a set of novel
lights, query the MLP network for reflectances at each pixel
to each light direction, and evaluate Eqn. 8 using the Monte
Carlo approximation.

Experiments

In this section, we qualitatively and quantitatively evaluate
our anisotropic approach for two typical MLP-based IBMR
tasks (surface light field rendering and image-based relight-
ing), followed by the evaluation of our GSS-based iterative
bandwidth searching scheme. We run our experiments on a
PC with 2.2 GHz Intel Xeon 4210 CPU 64GB RAM and
Nvidia TITAN RTX GPU. For all the applications, we use a
ReLU fully-connected network with 8 layers and 256 chan-
nels in different solutions. The length of features is 8192
for SLF and 1024 for relighting. All the models are trained
using the Adam (Kingma and Ba 2014) optimizer with a
learning rate of 10−4 using PyTorch (Paszke et al. 2019).
As shown in Fig. 4, our approach generates high-quality re-
sults for various MLP-based neural rendering and relight-
ing tasks. It faithfully recovers texture details and preserves
smooth viewing transition under challenging heterogeneous
input manifolds.

Comparison
Here we first compare our approach under the neural sur-
face light field rendering task, which maps the spatial and
angular coordinates of a surface to the RGB texture output.
Let AFFM and IFFM denote our approach with anisotropic
Fourier features mapping and the isotropic one from previ-
ous method, respectively. For thorough evaluation, we also
compare against the state-of-the-art deep surface light field
framework (Chen et al. 2018) denoted as D-SLF, and the
one using standard MLP without feature mapping denoted as
No Mapping. For quantitative evaluation, we adopt the peak
signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) as metrics similar to previous methods. As shown
in Tab. 1, our approach consistently outperforms the other
baselines in terms of all these metrics under both real and
synthetic datasets. The corresponding qualitative compari-
son in Fig. 5 also illustrates our capability to recover finely
detailed texture results with rich view-dependent effects.

We further evaluate our approach under the image-based
relighting task, which aims to render objects into novel light-
ing conditions from a fixed viewpoint with neural implicit
OLAT imagesets. Similarly, we adopt the same PSNR metric
and compare against the two IFFM and No Mapping base-
lines. As shown in Fig. 6 and Tab. 2, our anisotropic ap-
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OursGround Truth IFFM DSLF

Figure 5: Qualitative comparisons on surface light field ren-
dering. Our approach recovers fine detailed reflection and
texture results remarkably across all the scenes.

No Mapping IFFM Ours

Armor (Eucalyptus) 27.57 27.38 29.23
Knight 27.55 27.92 29.73
Armor (Cathedral) 27.06 27.16 28.03
Knight 29.68 30.06 32.72

Table 2: Quantitative comparisons on neural image-based re-
lighting in terms of PSNR.

proach recovers high quality relighting details remarkably.
All these comparisons on various neural representation

tasks illustrate that our approach with anisotropic Fourier
features can faithfully model lighting conditions and object
features under challenging heterogeneous input manifolds.
Impressively, our approach renews the capability of popular
MLP-based implicit representation for challenging IBMR
tasks.

Evaluation of Bandwidth Searching

We evaluate our GSS-based bandwidth searching scheme
using the relighting task with 253 reflectance images of the
“kneeling knight” imageset. Let 2D GSS and Linear GSS
denote the variations by applying our GSS-based search-
ing scheme to the AFFM and IFFM methods, respectively,
while Grid search denotes the original scheme in (Tan-
cik et al. 2020). As shown in the training curves from
Fig. 7, our GSS-based searching scheme for the bandwidth
parameters consistently reduces the training overload and
achieves roughly 7× speed-up for the training process com-
pared to the brute-force grid searching. Besides, the superi-
ority of our AFFM against the enhanced IFFM with GSS-
based searching further demonstrates the effectiveness of
our anisotropic Fourier features mapping design.

Ours Ground TruthIFFM

Figure 6: Qualitative comparisons on neural relighting task.
Our approach recovers high quality relighting details.
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Figure 7: Evaluation of our GSS-baded bandwidth searching
scheme. We provide numerical training time curves for three
methods under the neural relighting task.

Conclusions
In this paper, we presented a novel approach to take the
isotropic Fourier features into the anisotropic realm for neu-
ral imaged-based rendering and relighting tasks. From the
perspective of NTK theory, we connect MLPs using FFM
with Gaussian processes. Then we empirically show the
drawback of IFFM and propose AFFM. It employs multi-
ple bandwidths to model signal heterogeneity under differ-
ent dimensions, while our golden-section-based bandwidth
searching scheme further reduces the training overload. Im-
pressively, our anisotropic approach achieves state-of-the-art
performance for both the neural SLF rendering and relight-
ing. It successfully regresses fine texture details and pre-
serves smooth viewing transition under challenging input
manifolds. We believe that it is a critical step for understand-
ing coordinate-based MLPs, with burgeoning applications
using implicit neural representations for IBMR.
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