
Efficient Compact Bilinear Pooling via Kronecker Product

Tan Yu, Yunfeng Cai, Ping Li
Cognitive Computing Lab

Baidu Research
10900 NE 8th St. Bellevue, Washington 98004, USA
No.10 Xibeiwang East Road, Beijing 100193, China
{tanyu01, caiyunfeng, liping11}@baidu.com

Abstract

Bilinear pooling has achieved excellent performance in fine-
grained recognition tasks. Nevertheless, high-dimensional bi-
linear features suffer from over-fitting and inefficiency. To al-
leviate these issues, compact bilinear pooling (CBP) meth-
ods were developed to generate low-dimensional features.
Although the low-dimensional features from existing CBP
methods enable high efficiency in subsequent classification,
CBP methods themselves are inefficient. Thus, the ineffi-
ciency issue of the bilinear pooling is still unsolved. In
this work, we propose an efficient compact bilinear pooling
method to solve the inefficiency problem inherited in bilinear
pooling thoroughly. It decomposes the huge-scale projection
matrix into a two-level Kronecker product of several small-
scale matrices. By exploiting the “vec trick” and the tensor
modal product, we can obtain the compact bilinear feature
through the decomposed projection matrices in a speedy man-
ner. Systematic experiments on four public benchmarks using
two backbones demonstrate the efficiency and effectiveness
of the proposed method in fine-grained recognition.

Introduction
Visual feature pooling is a vital part for image represen-
tation learning. Compared with widely-used sum-pooling
and max-pooling (Krizhevsky, Sutskever, and Hinton 2012;
He et al. 2016), bilinear pooling (Tenenbaum and Freeman
2000) has achieved competitive performance in fine-grained
recognition (Lin, RoyChowdhury, and Maji 2015; Gao et al.
2016; Wang et al. 2016; Li et al. 2017a). Given an image,
through a series of convolution layers, a set of d-dimensional
local convolutional features X = [x1, · · · ,xN ] are gener-
ated. Each local feature represents a local region in the im-
age. Bilinear pooling aggregates local convolutional features
into a bilinear matrix through M = XX> ∈ Rd×d. Then M
is unfolded into a vector b = vec(M), which is further fed
into a fully-connected layer for classification.

Straightforwardly, bilinear pooling encodes the correla-
tion between every two channels, that is, the second-order
statistics. It possesses powerful representation capability to
describe the fine-grained details in the image. Nevertheless,
the bilinear feature b ∈ Rd2

is high-dimensional, which lim-
its its effectiveness and efficiency. From the perspective of

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

effectiveness, when using a standard fully-connected layer
as a classifier, it contains d2c parameters where c is the num-
ber of classes. Assuming d = 512 and c = 200, it will need
around 52 million parameters, making the classifier prone
to over-fitting. It is especially serious in the few-shot learn-
ing scenarios. The over-fitting caused by the huge number
of parameters will significantly affect the recognition accu-
racy of the classifier. On the efficiency side, the huge number
of parameters in the classifier makes the computation and
memory cost expensive. Particularly, in the image retrieval
scenario, the high-dimension features will take huge costs
when calculating the similarity between features.

A straightforward method for feature dimension reduc-
tion is linear projection. Given the bilinear feature b ∈ Rd2

,
we can learn a projection matrix P ∈ RD×d2

(D � d2)
for dimension reduction. Then the low-dimension feature is
obtained by b̂ = Pb. However, since d2 is large, making
the projection Pb extremely slow (2d2D floating-point op-
erations). Meanwhile, P additionally brings huge number of
parameters (d2D), making the over-fitting more serious.

To obtain a low-dimensional bilinear feature, compact bi-
linear pooling (CBP) (Gao et al. 2016) relies on Tensor
Sketch (TS) (Pham and Pagh 2013) and Random Maclaurin
(RM) (Kar and Karnick 2012). Both TS and RM are based
on random projections. Basically, the low-dimensional fea-
tures from TS and RM statistically satisfy the property of bi-
linear features. Specifically, the inner-product between low-
dimensional features from TS and RM is an unbiased es-
timation of the inner-product between two bilinear features.
Nevertheless, to achieve a small estimation error, the random
projection matrix should be large-scale, making the random
projection slow. Recently, RM is revisited by MLB (Kim
et al. 2017) which achieves excellent performance in cross-
modal understanding and also revisited by HBP (Yu et al.
2018) which fuses features from different layers. However,
the inefficiency problem of RM is still unsolved.

In this work, we seek to address the inefficiency prob-
lem in compact bilinear pooling methods. Recall that the bi-
linear feature is obtained by unfolding the bilinear matrix
b = vec(XX>), thus the linear projection Pb is equivalent
to computing Pvec(XX>). Meanwhile, a well known vec
trick gives a property that vec(BYA>) = (A⊗B)vec(Y).
To exploit the nice property of vec trick, we construct the
projection matrix by a Kronecker product of two matrices,

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

3170



i.e., P = A ⊗ B. By using the vec trick, the linear projec-
tion Pb is equivalent to computing vec(BXX>A>). Since
A and B are in far smaller scale than the original projection
matrix P, the computation and memory cost is significantly
reduced. We term the factorization on the original projection
matrix P as the first-level Kronecker product factorization.
To further improve the efficiency, we factorize A as well as
B into another Kronecker product of smaller-scale matrices.
We term the factorization for A and B as second-level Kro-
necker product factorization. We will show that the second-
level factorization makes tensor modal product feasible, fur-
ther reducing the computation and memory cost.

In a nutshell, we factorize the huge-scale projection ma-
trix P into a two-level Kronecker product, making the
compact bilinear pooling efficient. We term our method as
two-level Kronecker product factorization (TKPF). Table 1
shows the number of parameters, floating-point operations
(FLOPs), and the factual latency in the inference phase of
RM and the proposed TKPF. Based on TKPF, we built an ef-
ficient compact bilinear pooling network. We conduct com-
prehensive experiments on four public benchmarks using
two backbones, VGG16 and ResNet50. Our model achieves
competitive classification accuracy in fine-grained recogni-
tion as existing compact bilinear pooling methods with con-
siderably higher efficiency in computation and memory.

Method # of para. FLOPs Latency
RM 9.4× 106 1.5× 1010 87ms

TKPF (ours) 192 3.9× 106 3ms

Table 1: Comparisons with random Maclaurin (RM) used in
CBP (Gao et al. 2016), HBP (Yu et al. 2018) and MLB (Kim
et al. 2017) based on VGG16 backbone.

Related Work
BCNN (Lin, RoyChowdhury, and Maji 2015) and
O2P (Ionescu, Vantzos, and Sminchisescu 2015) are
pioneering works for applying bilinear pooling in neu-
ral networks. The following works improve the bilinear
network in two directions: 1) improve the feature’s
effectiveness; 2) reduce dimension for higher efficiency.
Effectiveness improvement. Ker-RP (Wang et al. 2015;
Zhang et al. 2021) enhances the representation capability of
bilinear feature by exploiting kernels. G2DeNet (Wang, Li,
and Zhang 2017), FASON (Dai, Ng, and Davis 2017) and
MoNet (Gou et al. 2018) enrich the representation by taking
the first-order statistics into consideration beside the bilin-
ear pooling, the second-order statistics. In parallel, KP (Cui
et al. 2017), HOP (Koniusz et al. 2017) and HOK (Cherian,
Koniusz, and Gould 2017) exploit higher-order pooling be-
side the second-order pooling. HBP (Yu et al. 2018) en-
hances the representing capability by exploiting the features
from multiple layers. Improved bilinear pooling (IBP) (Lin
and Maji 2017) and MPN-COV (Li et al. 2017a) conduct the
root normalization on the bilinear matrix to suppress bursti-
ness. PN (Koniusz, Zhang, and Porikli 2018) also investi-
gates the influence of matrix normalization on the perfor-

mance of bilinear features. GP (Wei et al. 2018) conducts
normalization by making magnitudes of orthogonal com-
ponents in the bilinear feature identical. Benefited from the
normalization, the performance of bilinear features gets im-
proved considerably. Since the original matrix normalization
requires SVD, which does not support parallelism well, it is
inefficient for GPU computing. To enhance the efficiency
in GPU, IBP (Lin and Maji 2017) adopts Newton-Schulz
(NS) iteration (Higham 2008) to obtain the approximated
matrix square root. It only relies on matrix-matrix multi-
plications and thus is suitable for GPU computing. iSQRT-
COV (Li et al. 2018) implements NS in both forward and
backward propagation, making the matrix normalization ef-
ficient both in inference and training. RUN (Yu, Cai, and
Li 2020) further speeds up matrix normalization by utiliz-
ing the power method. Lin et al. (Lin, Maji, and Koniusz
2018) adopt democratic aggregation (Jégou and Zisserman
2014) to weight the second-order local features to balance
their contributions to the final feature.

Dimension reduction. The high dimension of the bilinear
feature limits its efficiency for classification and makes it
prone to over-fitting. To speed up the classification and sup-
press over-fitting, FBN (Li et al. 2017b) reduces the dimen-
sion of the weight matrix in the classifier by a product of
low-rank matrices. In parallel, some methods focus on di-
mension reduction for the bilinear feature. BCNN (Lin, Roy-
Chowdhury, and Maji 2015) adopts PCA to learn the projec-
tion matrix for reducing the dimension of local features. To
be specific, it uses the projection matrix learned from PCA
as initialization of a 1 × 1 convolution layer and then trains
the network in an end-to-end manner. The PCA baseline is
also utilized in LRBP (Kong and Fowlkes 2017) and iSQRT-
COV (Li et al. 2018) for dimension reduction on the local
feature. In parallel, CBP discovers the connection between
bilinear pooling and the polynomial kernel. It adopts the
methods for kernel approximation for reducing the dimen-
sion of bilinear features. To be specific, CBP attempts two
methods, tensor sketch (Pham and Pagh 2013) and random
Maclaurin (RM) (Kar and Karnick 2012), which achieve
better performance than the PCA baseline. Among them,
RM relies on two random projection matrices. It conducts
two random projections for each local feature, followed by
a Hadamard multiplication, which is quite suitable for GPU.
RM is revisited in MLB (Kim et al. 2017) for cross-modal
understanding and HBP (Yu et al. 2018) for fusing features
in different layers. Nevertheless, to achieve as good perfor-
mance as the full bilinear features, the projection matrices
used in RM are normally large-scale, limiting its efficiency.
SRM (Yu, Li, and Li 2021) improves RM through devising
a shifted operation. Wang et al. (Wang et al. 2021) extends
the 1× 1 convolution layer used in iSQRT-COV to two con-
secutive convolution layers, achieving higher accuracy.

Preliminary
We denote local features by X = [x1, · · · ,xN ] ∈ Rd×N .
Bilinear pooling obtains the bilinear matrix by

B = XX> ∈ Rd×d.

3171



Then B is unfolded into a vector b = vec(B) ∈ Rd2

as the
image representation for classification or retrieval.
Kronecker product. Let A ∈ Rm×n and B ∈ Rp×q . The
Kronecker product A⊗B ∈ Rpm×qn is defined as

A⊗B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 . (1)

Note that, A ⊗B contains pqmn entries whereas A and B
only contain mn + pq entries, which is far more less than
pqmn. Furthermore, let M ∈ Rq×n. It holds that

(A⊗B)vec(M) ≡ vec(BMA>). (2)

Hereafter, Eq. (2) is referred to as the “vec trick”. The left-
hand side of Eq. (2) is the product of an mq-by-np matrix
and a vector. Generally speaking, the matrix-vector multi-
plication between an mq-by-np matrix and a vector takes
2mnpq floating-point operations (FLOPs). When the matrix
has a Kronecker product structure, using the vec trick, it only
takes 2mp(n+ q) FLOPs, which is far less than 2mnpq. To
summarise, if a large scale matrix has a Kronecker-product
structure, we can store it in memory efficiently, and the as-
sociated matrix-vector multiplication is fast.
Modal unfolding. Let X be a tensor of size d1×· · ·×dN and
D = d1 · · · dN , then the mode-n unfolding of X , denoted
by X (n), is a dn-by-D/dn matrix, whose columns are the
mode-n fibers of X .
Tensor modal product. Let X be a tensor of size d1×· · ·×
dN , U be a matrix of size du × dn. The mode-n product of
X and U is defined by Y = X ×n U, where

Y i1,··· ,in−1,j,in+1,··· ,iN =

dn∑
in=1

X i1,··· ,iNUj,in .

Using modal unfolding, the above equation is equivalent to

Y(n) = UX (n) ∈ Rdu×D/dn ,

where D = d1 . . . dN . Therefore, computing Y = X ×n U
takes 2Ddu FLOPs.
Multilinear product and its unfolding. Given a tensor X ∈
Rd1×···×dN and Un ∈ Rkn×dn (n ∈ [2, N ]), the multilinear
product between X and {Un}Nn=2 is defined as

Y = X ×2 U2 ×3 U3 · · · ×N UN . (3)

The mode-n unfolding of Y satisfies the below property:

Y>(1) = (UN ⊗UN−1 ⊗ · · · ⊗U2)X>(1). (4)

The readers can refer to (Van Loan and Golub 2012, Chapter
12) for the derivation.
Tensorization of Matrices. Given a matrix M ∈ RN×d. If
d can be factorized into d = d1d2, we can fold M into a
third-order tensor T ∈ RN×d1×d2 . If d can be factorized
into d = d1d2d3, we can fold M into a fourth-order tensor
T ∈ RN×d1×d2×d3 . In general, if d can be factorized into
d = d1d2 · · · dR, we can fold M into a (R + 1)th-order
tensor T ∈ RN×d1×···×dR . See Figure 1 for an illustration.

Fold                    

Fold                    

Figure 1: Tensorization of block matrices, upper: a third or-
der tensor, lower: a fourth order tensor.

Two-level Kronecker Product Factorization
First-level Kronecker Product Factorization
As we mentioned, the high-dimensional bilinear feature
vec(XX>) ∈ Rd2

tends to make the classifier suffer from
over-fitting and inefficiency. Using a projection matrix P ∈
RD×d2

with D � d2, we can reduce the dimension by

b = Pvec(XX>). (5)
However, P is large-scale. Thus the projection Pb taking
2d2D FLOPs is extremely slow. Besides, the number of pa-
rameters in P, which is Dd2, is also extremely large, mak-
ing the over-fitting problem more serious. To alleviate the
over-fitting problem and improve the efficiency, one simple
yet effective way is to impose a Kronecker-product structure
on the projection matrix P. To be specific, we constrain the
projection matrix in the form of Kronecker product:

P = A⊗B, (6)
where A ∈ Ra×d, B ∈ Rb×d and ab = D. In this case,
the number of parameters in {A,B} is only (a+ b)d, which
is significantly smaller than that in P, abd2. Meanwhile, by
using the vec trick, computing (A ⊗ B)vec(XX>) is sig-
nificantly more efficient than computing Pvec(XX>). To
be specific, using the vec trick, we have

(A⊗B)vec(XX>) = vec[BX(AX)>],

where vec[BX(AX)>] can be computed very efficiently
through computing two projections S = BX and T = AX
followed by a matrix-matrix multiplication ST>. Since B,
A are small-scale matrices, computing BX, AX and ST>

takes only 2N [(a+ b)d+D] FLOPs, which is considerably
faster than computing the Pvec(XX>) with 2d2D FLOPs.

To enhance the representing capability, we factorize P
into a summation of multiple Kronecker products:

P =

Q∑
q=1

A(q) ⊗B(q). (7)

Using the vec trick, Pvec(XX>) is efficiently computed by

Pvec(XX>) =

Q∑
q=1

vec[B(q)X(A(q)X)>]. (8)

3172



Second-level Kronecker Product Factorization
The first-level Kronecker product factorization converts a
large scale projection matrix into smaller-scale projection
matrices A(q) and B(q). Meanwhile, it converts a heavy pro-
jection Pvec(XX>) into projections A(q)X and B(q)X and
earns higher efficiency. Without ambiguity and for ease of
notations, we omit the superscript in A(q) and B(q). To fur-
ther improve the efficiency, we further decompose A as well
as B as a Kronecker product of smaller-scale matrices.

A straightforward factorization for A as well as B is

A = Â1 ⊗ Â2, B = B̂1 ⊗ B̂2. (9)

However, when we plug Eq. (9) in Eq. (6), it leads to a fourth
order polynomial of parameters, which is not friendly to op-
timizer and tends to make the training unstable. Thus, we
factorize A and B in the following form:

A = Ir ⊗ Â, B = B̂⊗ Ir, (10)

where Ir is the identity matrix with rank r, and Ir is
parameter-free. To make it clear, we term that in Eq. (6) as
the first-level Kronecker product factorization, and term that
in Eq. (10) as the second-level Kronecker product factoriza-
tion. Since A ∈ Ra×d and B ∈ Rb×d, based on the defini-
tion of Kronecker product, it is straightforward to get

Â ∈ R
a
r×

d
r , B̂ ∈ R

b
r×

d
r . (11)

In this case, the number of parameters in Â is only ad/r2,
which is only 1/r2 of number of parameters in original A.
That is, the second-level Kronecker product factorization
further brings an r2 times reduction on the number of pa-
rameters. When we choose a large value for r, say r = a,
the number of parameters in Â is only ad/a2 = d/a, which
is much smaller than the number of parameters in A, da.
Below we further show the efficiency improvement brought
by the second-level Kronecker product factorization.

Algorithm 1: Tensor Modal Product

1: Input: r, X ∈ Rd×N , Â ∈ R a
r×

d
r .

2: Output: T = [Ir ⊗ Â]X.
3: Reshape X> into a tensor X ∈ RN× d

r×r.
4: Perform modal product T = X ×2 Â×3 Ir.
5: Unfold the tensor T along mode-1, and set T = T >(1).

With the help of tensorization and tensor modal product,
using the special structure of A and B in Eq. (10), we can
compute AX and BX in a fast manner. We show the details
of computing AX in Algorithm 1 and BX can be computed
in the same manner. Using the equivalence between Eq. (3)
and (4), we know that T = X ×2 Â ×3 Ir is equivalent
to T >(1) = (Ir ⊗ Â)X>(1) = AX, based on which, we can
claim that on output of Algorithm 1, T = T >(1) = AX.

Since Ir is an identity matrix, we can omit it in modal
product and directly compute T = X ×2 Â. It takes
2adN/r FLOPs. When r = a, T = X ×2 Â takes only

2dN FLOPs, which is far cheaper than computing AX with
2adN FLOPs. The computational complexity analysis for
BX based on B = B̂ ⊗ Ir is similar, and hence we omit it
here. Plugging Eq. (10) into Eq. (7), we can obtain

P̂ =

Q∑
q=1

(Ir ⊗ Â(q))⊗ (B̂(q) ⊗ Ir). (12)

That is, the projection matrix is decomposed into a summa-
tion of a two-level Kronecker product of small-scale matri-
ces. Figure 2 visualizes the pipeline of the proposed two-
level Kronecker product factorization.

vec trick

 

 

First-level Kronecker Product Decomposition

Second-level Kronecker Product Decomposition

Figure 2: The pipeline of our two-level Kronecker prod-
uct factorization. In the first level, the efficiency is boosted
through exploiting the vec trick. In the second level, the ef-
ficiency is enhanced through using tensor modal product.

Alternative Structure
Second-level Kronecker product summation. Recall from
Eq. (7) that, in the first-level Kronecker product factoriza-
tion, we use a summation of multiple items. Similarly, in the
second-level Kronecker product factorization, we can also
extend the original single-entry Kronecker product to a sum-
mation of multiple Kronecker products:

A =
P∑

p=1

Ir ⊗ Â(p), B =
P∑

p=1

B̂(p) ⊗ Ir, (13)

Our experiments show that the second-level Kronecker
product summation cannot improve the accuracy, and thus
we still adopt the single-entry form in Eq. (10).
Symmetric structure. In Eq. (10), A and B adopt different
factorization forms. We term it as asymmetric structure. An
alternative choice is a symmetric structure:

A = Ir ⊗ Â, B = Ir ⊗ B̂. (14)

Our experiments show that the asymmetric structure
achieves a better performance than its symmetric counter-
part. By default, we adopt the asymmetric structure.

Relation with Existing Methods
PCA baseline is exploited in BCNN (Lin, RoyChowdhury,
and Maji 2015) and iSQRT-COV (Li et al. 2018) for dimen-
sion reduction for bilinear features. It adopts a 1×1 convolu-
tional layer to reduce the dimension of the local feature from

3173



method formulation # of parameters FLOPs
symbolic numeric symbolic numeric

PCA b = WPCAX(WPCAX)> dm 3.3× 104 2(md+D)N 5.8× 107

RM (W1X�W2X)1N 2dD 4.2× 106 2(2dD +D)N 6.6× 109

TKPF
∑Q

q=1{[(Ir ⊗ Â(q))X][(B̂(q) ⊗ Ir)X]>}
(

ad
r2 + bd

r2

)
Q 32 2

(
ad
r + bd

r +D
)
NQ 1.6× 107

Table 2: Comparisons between PCA, Random Maclaurin (RM) and our two-level Kronecker product factorization (TKPF).

d to m. Then the bilinear pooling is conducted on the com-
pact local features and generates m2-dimensional feature.
That is, given N local features X = [x1, · · · ,xN ], PCA
baseline generates the compact local features by

X̂ = WX, W ∈ Rm×d. (15)

Then the compact bilinear feature is obtained by

b̂ = vec(X̂X̂>) ∈ Rm2

. (16)

Random Maclaurin (RM) is exploited in CBP (Gao
et al. 2016) for compact bilinear pooling. It is revisited in
MLB (Kim et al. 2017) for cross-modal understanding and
HBP (Yu et al. 2018) for fusing multi-layer features. RM
uses two projection matrices W1 and W2 and generates

b̂ =
N∑
i=1

(W1xi)� (W2xi), W1,W2 ∈ RD×d, (17)

where� denotes the Hadamard product. In RM, the number
of parameters is 2dD and the FLOPs is 4NdD. To achieve a
good performance, D is normally set as a large number, e.g.,
104. The huge D makes the projections W1xi and W2xi

for each local feature quite slow. Table 2 compares PCA
baseline, random Maclaurin (RM), and the proposed TKPF.
Compared with RM, TKPF considerably reduces the num-
ber of parameters and FLOPs. In the table, WPCA ∈ Rd×m,
d = 512 and m = 64. W1/W2 ∈ Rd×D and D = m2 =
4096. 1N is the N -dimension column vector with all ele-
ments as 1. X ∈ Rd×N and N = 282 = 784. Q = 2.
Â(q)/B̂(q) ∈ Ra/r×d/r where r = 64 and a = b = 64.

Efficient Compact Bilinear Network
Based on TKPF, we built an efficient compact bilinear net-
work. Figure 3 visualizes its architecture. Given an image,
a set of local features X = [x1, · · · ,xN ] ∈ Rd×N are ex-
tracted by a convolutional neural network. Then the com-
pact bilinear feature b̂ is obtained by TKPF. After that, a
fully-connected layer generates the class scores. Following
RUN (Yu, Cai, and Li 2020), we conduct matrix normal-
ization on local features X. We also conduct element-wise
signed square-root and `2 normalization on b̂.

Experiments
Datasets. We conduct experiments on four public bench-
marks for fine-grained recognition including FGVC-Aircraft
(AIR) (Maji et al. 2013), CUB-200-2011 (CUB) (Wah et al.
2011), MIT scene dataset (Quattoni and Torralba 2009), and
Describable Texture Dataset (DTD) (Cimpoi et al. 2014).

fold

fold

mode-2

mode-3

product

productreshape

unfold

unfold

Two-level Kronecker Product Factorization

matrix

unfold

product

Figure 3: The structure of our network.

Backbone. Following CBP (Gao et al. 2016), we use
VGG16 (Simonyan and Zisserman 2015) as the backbone,
by default. Each image is resized into 448 × 448, and gen-
erates a 28× 28× 512 feature map from conv5-3 layer. The
number of local features N = 282 = 784, and the local fea-
ture dimension, d, is 512. We also conduct experiments us-
ing ResNet50 (He et al. 2016) as the backbone. It generates
14 × 14 × 2048 feature map. The number of local features
N = 142 = 196, and the local feature dimension, d, is 2048.
Settings. We adopt a two-phase training. In the first phase,
we only update parameters in TKPF and classifier layers. In
the second phase, we fine-tune parameters of all layers. It is
implemented in PaddlePaddle platform developed by Baidu.

Ablation Study on TKPF
Here, we adopt VGG16 as the backbone on ablation studies.

Influence of a and b. Recall that Â ∈ Ra/r×d/r and B̂ ∈
Rb/r×d/r. That is, Ir ⊗ Â ∈ Ra×d and B̂(q) ⊗ Ir ∈ Rb×d.
The dimension of the compact bilinear feature is D = ab.
By default, we set a = b and thus D = a2. We evaluate
the influence of a and b on the performance of TKPF. We
fix r = 32 and vary a and b among {32, 64, 96, 128}. Thus
D varies among {322, 642, 962, 1282}. As shown in Table 3,
the accuracy increases as a increases from 32 to 96. When
D further increases from 96 to 128, the accuracy becomes

a AIR CUB MIT DTD # of pa. FLOPs
32 90.6 84.0 76.4 61.8 64 6.4M
64 91.5 85.8 79.7 67.3 128 19.3M
96 91.4 86.0 80.5 68.2 192 38.5M
128 90.8 85.8 80.0 68.0 256 64.2M

Table 3: Influence of a. M denotes million.

3174



VGG16 ResNet50
AIR CUB MIT DTD # of para. FLOPs AIR CUB MIT DTD # of para. FLOPs

PCA 90.8 84.1 77.6 65.4 49K 92M 90.4 85.2 81.9 69.8 262K 109M
PC 91.1 82.7 75.3 60.9 156K 244M 90.3 80.0 80.2 66.1 557K 225M
RM 91.2 85.6 80.3 67.0 9.4M 15B 92.0 85.9 83.2 70.4 67.1M 26.3B

TKPF 91.4 86.0 80.5 68.2 192 38.5M 92.1 85.7 84.1 71.4 4096 38.5M

Table 4: Comparisons with PCA in Lin, RoyChowdhury, and Maji (2015); Li et al. (2018), progressive convolutions (PC)
in Wang et al. (2021), and random Maclaurin (RM) in Gao et al. (2016); Kim et al. (2017); Yu et al. (2018).

slightly worse. This might be due to over-fitting. By default,
we set a = b = 96, that is, D = 962.
Influence of r. The identity matrix Ir is parameter-free.
When a and b are fixed, a larger-scale Ir leads to smaller-
scale Â(q) and B̂(q), and thus reduces the number of pa-
rameters as well as computation cost. We evaluate the influ-
ence of the dimension of identity matrices, r, on the recogni-
tion accuracy and the efficiency. In the experiments, we fix
a = b = 96 and D = 962. As shown in Table 5, as r in-
creases from 4 to 32, the number of parameters and FLOPs
are reduced, and the accuracy only slightly changes. We set
r = 32 by default when using VGG16 backbone.

r AIR CUB MIT DTD # of pa. FLOPs
4 90.8 85.5 79.4 67.4 13K 106M
8 91.1 85.6 79.6 67.4 3.1K 67.4M
16 90.9 85.5 79.9 67.3 768 48.2M
32 91.4 86.0 80.5 68.2 192 38.5M

Table 5: Influence of r. M denotes million.

Influence of Q. Recall from Eq. (7) that we use a summa-
tion of Q Kronecker products to enhance the representation
capability. We evaluate the influence of Q on TKPF. We fix
a = b = 96 and r = 32. We vary Q among {1, 2, 4}. As
shown in Table 6, as Q increases from 1 to 2, the recog-
nition accuracy gets improved, and meanwhile, FLOPs are
doubled. As Q increases from 2 to 4, the recognition accu-
racy saturates, but FLOPs are further doubled. Considering
both effectiveness and efficiency, we set Q = 2 by default.

Q AIR CUB MIT DTD # of pa. FLOPs
1 90.9 85.8 79.6 67.1 96 19.3M
2 91.4 86.0 80.5 68.2 192 38.5M
4 91.2 85.9 79.7 68.3 384 77.1M

Table 6: Influence of Q. M denotes million.

Comparisons with Other Compact Methods
VGG16 backbone. We compare with PCA used in
BCNN (Lin, RoyChowdhury, and Maji 2015), random
Maclaurin (RM) in CBP (Gao et al. 2016) and progressive
convolutions (PC) (Wang et al. 2021). To make a fair com-
parison, we fix the dimension of compact bilinear features
from different methods, D = 962. Thus, we set WPCA ∈
R96×512 in PCA method, and set W1,W2 ∈ R962×512

in RM method. In PC method, we set the kernel size of
the first convolution layer as 512 × 256 and set that of the
second layer as 256 × 96. Meanwhile, in TKPF, we set
Q = 2, a = b = 96 and r = 32. As shown in Table 4,
TKPF achieves higher classification accuracy than PCA and
PC. Despite that CP achieves an excellent performance on
large-scale datasets (Wang et al. 2021), it is not as good as
TKPF on our testing datasets. It might be due to that PC
brings more parameters, making the over-fitting more seri-
ous. Compared with RM, TKPF achieves a comparable ac-
curacy on AIR, CUB, and MIT and a higher accuracy on
DTD with significantly fewer parameters and FLOPs.
ResNet50 backbone. We fix the dimension of features of
all methods, D = 1282. The dimension of local feature
from ResNet50, d = 2048. Thus, the projection matrix we
used for PCA, WPCA, is of the size 2048 × 128. Mean-
while, the projection matrices in RM, W1/W2 is of the size
2048× 1282. In our TKPF, we set Q = 2, a = b = 128 and
r = 16. As shown in Table 4, TKPF achieves higher recog-
nition accuracy than PCA and PC. Meanwhile, we earn a
comparable accuracy as RM. But we need fewer FLOPs and
parameters than RM. An interesting observation is that the
FLOPs of TKPF with ResNet50 is the same as VGG16.

Method VGG16 ResNet50
BP total BP total

RM 87ms 410ms 161ms 577ms
TKPF 3ms 325ms 3ms 420ms

Table 7: The factual time cost. Latency in bilinear pooling
layer (BP) and the whole network (total) are reported.

Factual time cost. In Table 7, we compare the factual time
cost of TKPF in inference with RM. For both RM and TKPF,
we use the same settings as Table 4. Since our TKPF only
improves the efficiency of the bilinear pooling layer, it does
not influence the efficiency of other layers in the network.
Thus, we report the latency of the bilinear pooling (BP) layer
and that of the whole network as well. The experiments are
conducted on a single NVIDIA Titan X (Pascal) GPU card.
We report the GPU time cost for a mini-batch of 64 images.
As shown in Table 7, using VGG16 backbone, in bilinear
pooling layer, our TKPF only takes 3ms, whereas RM takes
87ms. That is, it achieves a 29× speed-up ratio. Meanwhile,
using ResNet50 backbone, BP takes 161ms in the bilinear
pooling layer. In contrast, we only take 3ms, achieving a
53× speed-up ratio. Reducing 80ms-160ms latency can con-
siderably improve the user experience in a real-time system.

3175



Method Backbone Dim AIR CUB MIT DTD # of para. FLOPs
BCNN (Lin, RoyChowdhury, and Maji 2015) VGG16 131K 86.9 84.0 − − 0 411M

Improved BCNN (Lin and Maji 2017) VGG16 131K 88.5 85.8 − − 0 411M
RUN (Yu, Cai, and Li 2020) VGG16 131K 89.8 86.3 80.8 68.4 0 411M

DeepKSPD (Engin et al. 2018) VGG16 131K 91.0 86.5 81.0 − 0 411M
ReDro (Rahman et al. 2020) VGG16 33K 89.1 86.5 80.5 − 0 103M
iSQRT-COV (Li et al. 2018) VGG16 32K 90.0 87.2 − − 131K 308M

HBP (Yu et al. 2018) VGG16 24.6K 90.3 87.2 − − 25.2M 39B
CBP-RM (Gao et al. 2016) VGG16 8.2K − 84.0 76.2 64.5 8.4M 13B

LRBP (Kong and Fowlkes 2017) VGG16 10K 87.3 84.2 − 65.8 51K 161M
MoNet-2 (Gou et al. 2018) VGG16 10K 86.7 85.7 − − 10M 16B

CBP-RM + RUN (Yu, Cai, and Li 2020) VGG16 10K 91.0 85.7 80.5 67.3 10M 16B
TKPF (ours) VGG16 9.2K 91.4 86.0 80.5 68.2 192 38.5M

DBTNet-50 (Zheng et al. 2019) DBTNet 2K 91.2 87.5 − − − −
iSQRT-COV (Li et al. 2018) ResNet50 32K 90.0 88.1 − − 131K 308M
ReDro (Rahman et al. 2020) ResNet50 132K 85.4 86.2 84.0 − 2.1M 925M

TKPF (ours) ResNet50 16K 92.1 85.7 84.1 71.4 4096 38.5M

Table 8: Comparison with state-of-the-art methods. M denotes million and B denotes billion.

Since our TKPF does not influence other layers except the
BP layer, as shown in Table 7, the speed-up ratio in the total
inference time is not as significant as that in the BP layer.

Comparisons with Existing Methods
VGG16 backbone. We first compare with full bilinear pool-
ing methods, BCNN (Lin, RoyChowdhury, and Maji 2015),
improved BCNN (Lin and Maji 2017) and RUN (Yu, Cai,
and Li 2020). As shown in Table 8, the dimension of the full
bilinear features is high, 131K. The high dimension limits
its efficiency in subsequent classification and retrieval. Our
TKPF achieves comparable accuracy with them, but the di-
mension of compact features from TKPF is only 9.2K.

Then we further compare with medium-scale bilinear fea-
tures, ReDro (Rahman et al. 2020) and iSQRT-COV (Li et al.
2018). ReDro (Rahman et al. 2020) split 512 channels of lo-
cal features into four groups and conduct bilinear pooling
within each group. Thus, it reduces the dimension of bilin-
ear features to 33K. As shown in Table 8, using more com-
pact features with less FLOPs, our TKPF achieves compara-
ble accuracy with ReDro. In parallel, iSQRT-COV (Li et al.
2018) reduces the dimension of local feature by a 1× 1 con-
volution layer from 512 to 256. Consequently, it reduces the
dimension of the bilinear feature from 131K to 32K. The
1× 1 convolution layer is equivalent to PCA baseline in Ta-
ble 4. As shown in Table 8, iSQRT-COV (Li et al. 2018) out-
performs TKPF on CUB dataset. But the better performance
of iSQRT-COV might be attributed to being pre-trained on
a large-scale ImageNet dataset. In contrast, the proposed
TKPF is only fine-tuned on the target small-scale datasets.
Without pre-training, the 1 × 1 convolution (PCA baseline)
does not perform well as our TKPF, as shown in Table 4.

After that, we compare with a group of compact bi-
linear pooling methods, including HBP (Yu et al. 2018),
CBP-RM (Gao et al. 2016), LRBP (Kong and Fowlkes
2017), MoNet-2 (Gou et al. 2018) and CBP-RM+RUN (Yu,
Cai, and Li 2020). As shown in Table 8, our TKPF
achieves higher accuracy than CBP-RM (Gao et al. 2016),

LRBP (Kong and Fowlkes 2017). Meanwhile, TKPF with
higher efficiency achieves a comparable accuracy with
MoNet-2 (Gou et al. 2018) and CBP-RM+RUN (Yu, Cai,
and Li 2020). Note that HBP (Yu et al. 2018) achieves higher
accuracy than our TKPF. The higher accuracy of HBP is ow-
ing to fusing features from multiple convolution layers.

ResNet50 backbone. As shown in Table 8, we achieve com-
parable accuracy with iSQRT-COV (Li et al. 2018) and Re-
Dro (Rahman et al. 2020) using more compact bilinear fea-
tures with less number of parameters and FLOPs. iSQRT-
COV (Li et al. 2018) pre-trained on ImageNet dataset
achieves higher accuracy than our TKPF on CUB dataset.
We can also boost TKPF through pre-training on ImageNet,
but it is not the focus of this paper. We also compare with
DBTNet-50 (Zheng et al. 2019) which upgrades blocks in
the backbone. It achieves higher accuracy than ours in CUB
dataset with a more compact feature. It is worth noting that
the focus of TKPF is not improving the architecture of the
backbone for extracting more effective local features. In-
stead, we focus on the effectiveness of the last pooling layer.

Conclusion

In this paper, we propose a fast and memory-efficient com-
pact bilinear network. It factorizes the huge-scale projection
matrix into a two-level Kronecker product of several small-
scale matrices. Benefited from factorization based on Kro-
necker product, the number of parameters is significantly
reduced, making the network much more memory-efficient.
Meanwhile, by utilizing the vec trick and tensor modal prod-
uct, the compact bilinear feature is obtained in a very fast
manner. Systematic experiments on four public benchmarks
using two popular backbones, VGG16 and ResNet, demon-
strate effectiveness and efficiency in both computation and
memory of the proposed model in fine-grained recognition.

3176



References
Cherian, A.; Koniusz, P.; and Gould, S. 2017. Higher-Order
Pooling of CNN Features via Kernel Linearization for Ac-
tion Recognition. In Proceedings of the 2017 IEEE Win-
ter Conference on Applications of Computer Vision (WACV),
130–138. Santa Rosa, CA.
Cimpoi, M.; Maji, S.; Kokkinos, I.; Mohamed, S.; and
Vedaldi, A. 2014. Describing Textures in the Wild. In
Proceedings of the 2014 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 3606–3613. Colum-
bus, OH.
Cui, Y.; Zhou, F.; Wang, J.; Liu, X.; Lin, Y.; and Belongie,
S. J. 2017. Kernel Pooling for Convolutional Neural Net-
works. In Proceedingts of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 3049–
3058. Honolulu, HI.
Dai, X.; Ng, J. Y.; and Davis, L. S. 2017. FASON: First
and Second Order Information Fusion Network for Texture
Recognition. In Proceedings of the 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
6100–6108. Honolulu, HI.
Engin, M.; Wang, L.; Zhou, L.; and Liu, X. 2018.
DeepKSPD: Learning Kernel-Matrix-Based SPD Represen-
tation For Fine-Grained Image Recognition. In Proceed-
ings of the 15th European Conference on Computer Vision
(ECCV), Part II, 629–645. Munich, Germany.
Gao, Y.; Beijbom, O.; Zhang, N.; and Darrell, T. 2016. Com-
pact Bilinear Pooling. In Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 317–326. Las Vegas, NV.
Gou, M.; Xiong, F.; Camps, O. I.; and Sznaier, M. 2018.
MoNet: Moments Embedding Network. In Proceedings of
the 2018 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 3175–3183. Salt Lake City, UT.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 770–778. Las Vegas, NV.
Higham, N. J. 2008. Functions of matrices - theory and
computation. SIAM.
Ionescu, C.; Vantzos, O.; and Sminchisescu, C. 2015. Matrix
Backpropagation for Deep Networks with Structured Lay-
ers. In Proceedings of the 2015 IEEE International Con-
ference on Computer Vision (ICCV), 2965–2973. Santiago,
Chile.
Jégou, H.; and Zisserman, A. 2014. Triangulation Embed-
ding and Democratic Aggregation for Image Search. In Pro-
ceedings of the 2014 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 3310–3317. Columbus,
OH.
Kar, P.; and Karnick, H. 2012. Random Feature Maps for
Dot Product Kernels. In Proceedings of the Fifteenth Inter-
national Conference on Artificial Intelligence and Statistics
(AISTATS), 583–591. La Palma, Canary Islands, Spain.
Kim, J.; On, K. W.; Lim, W.; Kim, J.; Ha, J.; and Zhang, B.
2017. Hadamard Product for Low-rank Bilinear Pooling. In

Proceedings of the 5th International Conference on Learn-
ing Representations (ICLR). Toulon, France.

Kong, S.; and Fowlkes, C. C. 2017. Low-Rank Bilinear
Pooling for Fine-Grained Classification. In Proceedings of
the 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 7025–7034. Honolulu, HI.

Koniusz, P.; Yan, F.; Gosselin, P.; and Mikolajczyk, K. 2017.
Higher-Order Occurrence Pooling for Bags-of-Words: Vi-
sual Concept Detection. IEEE Trans. Pattern Anal. Mach.
Intell., 39(2): 313–326.

Koniusz, P.; Zhang, H.; and Porikli, F. 2018. A Deeper
Look at Power Normalizations. In Proceedings of the 2018
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 5774–5783. Salt Lake City, UT.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
ageNet Classification with Deep Convolutional Neural Net-
works. In Advances in Neural Information Processing Sys-
tems (NIPS), 1106–1114. Lake Tahoe, NV.

Li, P.; Xie, J.; Wang, Q.; and Gao, Z. 2018. Towards Faster
Training of Global Covariance Pooling Networks by Itera-
tive Matrix Square Root Normalization. In Proceedings of
the 2018 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 947–955. Salt Lake City, UT.

Li, P.; Xie, J.; Wang, Q.; and Zuo, W. 2017a. Is Second-
Order Information Helpful for Large-Scale Visual Recogni-
tion? In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2089–2097. Venice, Italy.

Li, Y.; Wang, N.; Liu, J.; and Hou, X. 2017b. Factorized Bi-
linear Models for Image Recognition. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV),
2098–2106. Venice, Italy.

Lin, T.; and Maji, S. 2017. Improved Bilinear Pooling with
CNNs. In Proceedings of the British Machine Vision Con-
ference (BMVC). London, UK.

Lin, T.; Maji, S.; and Koniusz, P. 2018. Second-Order
Democratic Aggregation. In Proceedings of the 15th Eu-
ropean Conference on Computer Vision (ECCV), Part III,
639–656. Munich, Germany.

Lin, T.; RoyChowdhury, A.; and Maji, S. 2015. Bilin-
ear CNN Models for Fine-Grained Visual Recognition. In
Proceedings of the 2015 IEEE International Conference on
Computer Vision (ICCV), 1449–1457. Santiago, Chile.

Maji, S.; Rahtu, E.; Kannala, J.; Blaschko, M.; and Vedaldi,
A. 2013. Fine-grained visual classification of aircraft. arXiv
preprint arXiv:1306.5151.

Pham, N.; and Pagh, R. 2013. Fast and scalable poly-
nomial kernels via explicit feature maps. In Proceedings
of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), 239–247.
Chicago, IL.

Quattoni, A.; and Torralba, A. 2009. Recognizing indoor
scenes. In Proceedings of the 2009 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(CVPR), 413–420. Miami, FL.

3177



Rahman, S.; Wang, L.; Sun, C.; and Zhou, L. 2020. Re-
Dro: Efficiently Learning Large-Sized SPD Visual Repre-
sentation. In Proceedings of the 16th European Conference
on Computer Vision (ECCV), Part XV, 1–17. Glasgow, UK.
Simonyan, K.; and Zisserman, A. 2015. Very Deep Convo-
lutional Networks for Large-Scale Image Recognition. In
Proceedings of the 3rd International Conference on Learn-
ing Representations (ICLR). San Diego, CA.
Tenenbaum, J. B.; and Freeman, W. T. 2000. Separating
Style and Content with Bilinear Models. Neural Comput.,
12(6): 1247–1283.
Van Loan, C. F.; and Golub, G. H. 2012. Matrix Computa-
tions. Johns Hopkins University Press, Baltimore, MD, 4th
edition.
Wah, C.; Branson, S.; Welinder, P.; Perona, P.; and Belongie,
S. 2011. The caltech-ucsd birds-200-2011 dataset.
Wang, L.; Zhang, J.; Zhou, L.; Tang, C.; and Li, W. 2015.
Beyond Covariance: Feature Representation with Nonlinear
Kernel Matrices. In Proceedings of the 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), 4570–4578.
Santiago, Chile.
Wang, Q.; Li, P.; and Zhang, L. 2017. G2DeNet: Global
Gaussian Distribution Embedding Network and Its Appli-
cation to Visual Recognition. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 6507–6516. Honolulu, HI.
Wang, Q.; Li, P.; Zuo, W.; and Zhang, L. 2016. RAID-G: Ro-
bust Estimation of Approximate Infinite Dimensional Gaus-
sian with Application to Material Recognition. In Proceed-
ings of the 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 4433–4441. Las Vegas, NV.
Wang, Q.; Xie, J.; Zuo, W.; Zhang, L.; and Li, P. 2021. Deep
CNNs Meet Global Covariance Pooling: Better Representa-
tion and Generalization. IEEE Trans. Pattern Anal. Mach.
Intell., 43(8): 2582–2597.
Wei, X.; Zhang, Y.; Gong, Y.; Zhang, J.; and Zheng, N.
2018. Grassmann Pooling as Compact Homogeneous Bi-
linear Pooling for Fine-Grained Visual Classification. In
Proceedings of the 15th European Conference on Computer
Vision (ECCV), Part III, 365–380. Munich, Germany.
Yu, C.; Zhao, X.; Zheng, Q.; Zhang, P.; and You, X.
2018. Hierarchical Bilinear Pooling for Fine-Grained Visual
Recognition. In Proceedings of the 15th European Confer-
ence on Computer Vision (ECCV), Part XVI, 595–610. Mu-
nich, Germany.
Yu, T.; Cai, Y.; and Li, P. 2020. Toward Faster and Simpler
Matrix Normalization via Rank-1 Update. In Proceedings of
the 16th European Conference on Computer Vision (ECCV),
Part XIX, 203–219. Glasgow, UK.
Yu, T.; Li, X.; and Li, P. 2021. Fast and Compact Bilinear
Pooling by Shifted Random Maclaurin. In Proceedings of
the Thirty-Fifth AAAI Conference on Artificial Intelligence
(AAAI), 3243–3251. Virtual Event.
Zhang, J.; Wang, L.; Zhou, L.; and Li, W. 2021. Beyond
Covariance: SICE and Kernel Based Visual Feature Repre-
sentation. Int. J. Comput. Vis., 129(2): 300–320.

Zheng, H.; Fu, J.; Zha, Z.; and Luo, J. 2019. Learning Deep
Bilinear Transformation for Fine-grained Image Representa-
tion. In Advances in Neural Information Processing Systems
(NeurIPS), 4279–4288. Vancouver, Canada.

3178


