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Abstract

This paper presents an end-to-end instance segmentation
framework, termed SOIT, that Segments Objects with
Instance-aware Transformers. Inspired by DETR, our method
views instance segmentation as a direct set prediction prob-
lem and effectively removes the need for many hand-crafted
components like RoI cropping, one-to-many label assign-
ment, and non-maximum suppression (NMS). In SOIT, mul-
tiple queries are learned to directly reason a set of ob-
ject embeddings of semantic category, bounding-box loca-
tion, and pixel-wise mask in parallel under the global im-
age context. The class and bounding-box can be easily em-
bedded by a fixed-length vector. The pixel-wise mask, es-
pecially, is embedded by a group of parameters to construct
a lightweight instance-aware transformer. Afterward, a full-
resolution mask is produced by the instance-aware trans-
former without involving any RoI-based operation. Over-
all, SOIT introduces a simple single-stage instance segmen-
tation framework that is both RoI- and NMS-free. Exper-
imental results on the MS COCO dataset demonstrate that
SOIT outperforms state-of-the-art instance segmentation ap-
proaches significantly. Moreover, the joint learning of mul-
tiple tasks in a unified query embedding can also substan-
tially improve the detection performance. Code is available at
https://github.com/yuxiaodongHRI/SOIT.

Introduction
Instance segmentation is a fundamental yet challenging task
in computer vision, which requires an algorithm to predict
a pixel-wise mask with a category label for each instance of
interest in an image. As popularized in the Mask R-CNN
framework (He et al. 2017), state-of-the-art instance seg-
mentation methods follow a detect-then-segment paradigm
(Cai and Vasconcelos 2019; Chen et al. 2019a; Vu, Kang,
and Yoo 2021). These methods employ an object detector to
produce the bounding boxes of instances and crop the fea-
ture maps via RoIAlign (He et al. 2017) according to the de-
tected boxes. Then pixel-wise masks are predicted by a fully
convolutional network (FCN) (Long, Shelhamer, and Darrell
2015) only in the detected region (as shown in Fig 1a). The
detect-then-segment paradigm is sub-optimal since it has
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Figure 1: Comparisons of different instance-level perception
pipelines. We proposed the fully end-to-end framework as
shown in (c), which is RoI-free and NMS-free.

the following drawbacks: 1) Segmentation results heavily
rely on the object detector, incurring inferior performance in
complex scenarios; 2) RoIs are always resized into patches
of the same size (e.g., 14 × 14 in Mask R-CNN), which re-
stricts the quality of segmentation masks, as large instances
would require higher resolution features to retain details at
the boundary. To overcome the drawbacks of this paradigm,
recent works (Chen et al. 2019b; Xie et al. 2020; Cao et al.
2020a; Peng et al. 2020) start to build instance segmenta-
tion frameworks on top of single-stage detectors (Lin et al.
2017b; Tian et al. 2019), getting rid of local RoI operations.
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However, these methods still rely on one-to-many label as-
signment in training and hand-crafted Non-Maximum Sup-
pression (NMS) post-processing to eliminate duplicated in-
stances when testing. As a result, these two categories of
instance segmentation methods are not end-to-end fully op-
timized and suffer from sub-optimal solutions.

Inspired by the recent application of transformer archi-
tecture in object detection (Carion et al. 2020; Zhu et al.
2021), we present a transformer-based instance segmen-
tation framework, namely SOIT (Segment Objects with
Instance-aware Transformer) in this paper. We reformulate
instance segmentation as a direct set prediction problem
and builds a fully end-to-end approach. Concretely, given
multiple randomly initialized object queries, SOIT learns
to reason a set of object embeddings of semantic category,
bounding-box, and pixel-wise mask simultaneously, under
the global image context. SOIT adopts the bipartite match-
ing strategy to assign a learning target for each object query.
As shown in Fig. 1c, this training approach is advantageous
to conventional one-to-many instance segmentation training
strategies (He et al. 2017; Wang et al. 2020b; Tian, Shen,
and Chen 2020) as it avoids the heuristic label assignment
and eliminates the need for NMS post-processing.

A compact fixed-length vector can easily embed the se-
mantic category and bounding-box in the end-to-end learn-
ing framework. However, it is not trivial to represent a spa-
tial binary mask of each object for learning as the mask is
high-dimensional and varies from each instance. To solve
this problem, we embed the pixel-wise mask to a group
of instance-aware parameters, whereby a unique instance-
aware transformer is constructed. Moreover, we propose a
novel relative positional encoding for the transformer, which
provides strong location cues to distinguish different objects.
Then the instance-aware transformer is employed to seg-
ment the object in a high-resolution feature map directly.
It is expected that the instance-aware parameters and rel-
ative positional encoding can encode the characteristics of
each instance. Thus it can only fire on the pixels of the par-
ticular object. As described above, our method is naturally
RoI-free and NMS-free, which eliminates many extra hand-
crafted operations involved in previous instance segmenta-
tion methods.

Our main contributions are summarized as follows:

• We attempt to solve instance segmentation from a new
perspective that uses parallel instance-aware transform-
ers in an end-to-end framework. This novel solution en-
ables the framework to directly generate pixel-wise mask
results of each instance without RoI cropping or NMS
post-processing.

• In our method, queries learn to encode multiple ob-
ject representations simultaneously, including categories,
locations, and pixel-wise masks. This multi-task joint
learning paradigm establishes a collaboration between
objection detection and instance segmentation, encourag-
ing these two tasks to benefit from each other. We demon-
strate that our architecture can also significantly improve
object detection performance.

• To show the effectiveness of the proposed framework,

we conduct extensive experiments on the COCO dataset.
SOIT with ResNet-50 achieves 42.5% mask AP and
49.1% box AP on the test-dev split without any
bells and whistles, outperforming the complex well-
tuned HTC (Chen et al. 2019a) by 2.8% in mask AP and
4.2% in box AP.

Related Work
Instance Segmentation
Instance segmentation is a challenging task, as it requires
instance-level and pixel-wise predictions simultaneously.
The existing approaches can be summarized into three cat-
egories: top-down, bottom-up, and single-stage methods. In
top-down methods, the Mask R-CNN family (He et al. 2017;
Cai and Vasconcelos 2019; Chen et al. 2019a; Cao et al.
2020b) follow the detect-then-segment paradigm, which first
performs object detection and then segments objects in the
boxes. Moreover, some recent works (Lee and Park 2020;
Wang et al. 2020a; Chen et al. 2020b) are proposed to
improve the segmentation performance further. Bottom-up
methods (Liu et al. 2017; Gao et al. 2019) view the task as a
label-then-cluster problem. They first learn per-pixel embed-
dings and then cluster them into instance groups. Besides,
YOLACT (Bolya et al. 2019), CondInst (Tian, Shen, and
Chen 2020) and SOLO (Wang et al. 2020b) build single-
stage instance segmentation framework on the top of one-
stage detectors (Tian et al. 2019), achieving competitive per-
formance. Concurrently, QueryInst (Fang et al. 2021) and
SOLQ (Dong et al. 2021) aim at building end-to-end in-
stance segmentation frameworks, eliminating NMS post-
processing. However, they still need RoI cropping to sepa-
rate different instances first, which may have the same limi-
tations of the detect-then-segment pipeline. In this paper, we
go for an end-to-end instance segmentation framework that
neither relies on RoI cropping nor NMS post-processing.

Transformer in Vision
Transformer (Vaswani et al. 2017) introduces the self-
attention mechanism to model long-range dependencies and
has been widely applied in natural language processing
(NLP). Recently, several works attempted to involve Trans-
former architecture in computer vision tasks and showed
promising performances. ViT series (Dosovitskiy et al.
2020; Touvron et al. 2021) take an image as a sequence of
patches and achieve the cross-patch interactions by trans-
former architecture in image classification. DETR (Car-
ion et al. 2020), and Deformable DETR (Zhu et al. 2021)
adopted learnable queries and transformer architecture to-
gether with bipartite matching to perform object detection
in an end-to-end fashion, without any hand-crafted process
such as NMS. SETR (Zheng et al. 2021) reformulates the
image semantic segmentation problem from a sequence-
to-sequence learning perspective, offering an alternative to
the dominating encoder-decoder FCN model design. De-
spite transformer architecture is being widely used in many
computer vision tasks, few efforts are conducted to build
a transformer-based instance segmentation framework. We
aim to achieve this goal in this paper.
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Figure 2: Illustration of the overall architecture of SOIT. F3 to F6 are the multi-scale image feature maps extracted from the
backbone (e.g., ResNet-50). P3 to P6 are the multi-scale feature memory refined by the transformer encoder. Fmask represents
mask features produced by the mask encoder. D-dimensional (e.g. 441 by default) dynamic parameters generated in the mask
branch are used to construct the instance-aware transformer. As shown in the blue dashed box, the pixel-wise mask is produced
via the instance-aware transformer, of which the details are described in Figure 3.

Dynamic Networks
Unlike traditional network layers with fixed filters once
trained, the filters of dynamic networks are conditioned on
the input and dynamically generated by another network.
This idea has been explored previously in convolution mod-
ules like dynamic filter networks (Jia et al. 2016), and Cond-
Conv (Yang et al. 2019), to increase the capacity of a clas-
sification network. Recently, some works (Tian, Shen, and
Chen 2020; Shi et al. 2021) employ the dynamic filters,
conditioned on each instance in the image, to implement
instance-level vision tasks. In this work, we extend this idea
to transformer architecture and build instance-aware trans-
formers to solve the challenging instance segmentation task.

Method
In this section, we first introduce the overall architecture
of our framework. Next, we elaborate on the proposed
instance-aware transformer employed to produce the full-
resolution mask for each instance. Then, we describe rel-
ative positional encoding to improve instance segmentation
performance further. At last, the training losses of our model
are summarized.

Overall Architecture
As depicted in Fig. 2, the proposed framework is com-
posed of three main components: a backbone network to ex-
tract multi-scale image feature maps, a transformer encoder-
decoder to produce object-related query features in parallel,
and a multi-task prediction network to perform object detec-
tion and instance segmentation simultaneously.

Multi-Level Features. Given an image I ∈ RH×W×3,
we extract multi-scale feature maps F = {F3, F4, F5, F6}

(blue feature maps in Fig 2) from the backbone (e.g., ResNet
(He et al. 2016)). Specifically, {F l}5l=3 are produced by
adding a 1 × 1 convolution on the output feature maps of
stage C3 through C5 in the backbone, where Cl is of reso-
lution 2l lower than the input images. The lowest resolution
feature map F6 is obtained via a 3 × 3 stride 2 convolution
on the final C5 stage. Multi-scale image feature maps in F
are all of 256 channels.

Transformer Encoder-Decoder. In this work, we employ
the deformable transformer encoder (Zhu et al. 2021) to pro-
duce multi-scale feature memory. Each encoder layer com-
prises a multi-scale deformable attention module (Zhu et al.
2021) and a feed-forward network (FFN). There are six en-
coder layers stacked in sequence in our framework. The en-
coder takes the image feature maps F as input and output
the refined multi-scale feature memory P = {P l}6l=3 (or-
ange feature maps in Fig. 2) with the same resolutions.

Given the refined multi-scale feature memory P and N
learnable object queries, we then generate the instance-
aware query embeddings for target objects by the de-
formable transformer decoder (Zhu et al. 2021). Similar
to the encoder, six decoder layers are applied sequentially.
Each one is composed of a self-attention module, and a de-
formable cross-attention module (Zhu et al. 2021), where
object queries interact with each other and the global con-
text, respectively. In the end, the instance-aware query fea-
tures are collected and then fed into the multi-task prediction
network.

Multi-Task Predictions. After query feature extraction,
each query embedding represents the features of the corre-
sponding instance. Subsequently, we simultaneously apply
three branches to generate the category, bounding-box lo-
cation, and pixel-wise mask of the targeting instance. The
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Figure 3: Detailed structure of the instance-aware trans-
former. Two linear projections (i.e., FC) predict sampling lo-
cations and attention weights for different feature points, re-
spectively. Another linear projection is employed for output
projection. In our instance-aware transformer, all weights of
these three layers are dynamically generated in the mask
branch and conditioned on the target object.

classification branch is a linear projection layer (FC) that
predicts the class confidence for each object. The location
branch is a multi-layer perceptron (MLP) with a hidden
size of 256 and predicts the normalized center coordinates,
height, and width of the box w.r.t. the input image. The mask
branch architecture is the same as the location branch ex-
cept that the channel of the output layer is set to D. It is
worth noting that the output of the mask branch is a group of
dynamic parameters conditioned on the particular instance.
These parameters are later employed to construct instance-
aware transformers to directly generate masks from full-
image feature maps, elaborated in the following subsection.

Instance-Aware Transformers
Unlike semantic category and bounding-box, it is challeng-
ing to represent the per-pixel mask by a compact fixed-
length vector without RoI cropping. Our core idea is that for
an image withN instances,N different transformer encoder
networks will be dynamically generated. It is expected that
the instance-aware transformer can encode the characteris-
tics of each instance and only fires on the pixels of the cor-
responding object. To avoid the quadratic growth of the com-
putational complexity in the original transformer encoder
(Vaswani et al. 2017), we build our instance-aware trans-
former on the deformable transformer encoder (Zhu et al.
2021) for efficiency.

Concretely, given an input feature map x ∈ RC×H×W ,
let q indexes a query (e.g., the green grid point in Fig. 3)
with content feature zq and a 2-d reference point pq , the
deformable multi-head attention feature is calculated by

Hn
m =

K∑
k=1

An
mqk · x(pq + ∆pnmqk), (1)

where m ∈ [1, 2, . . . ,M ] indexes the attention head, k in-

dexes the sampled keys, andK is the total sampled key num-
ber (K � HW ). n denotes the n-th object query (i.e., in-
stance). As shown in Fig. 3, ∆pmqk and Amqk are the sam-
pling offset and attention weight of the kth sampling point in
the mth attention head, respectively. Both ∆pmqk and Amqk

are obtained via a linear projection (i.e., FC) layer over the
query feature zq . Afterwards, another linear projection layer
(i.e., Wn) is applied for output projection, which can be for-
mulated as

Maskn = Wn [Concat (Hn
1 , H

n
2 , . . . ,H

n
M )] , (2)

where “Concat” represents the concatenating operation.
To establish our instance-aware transformer encoder, the
weights of these three linear projection layers are dynami-
cally generated, conditioned on the target instance. Specif-
ically, for n-th object query, the D parameters predicted in
the mask branch are split into three parts and converted as
the weights of the three linear projections. Moreover, the
channel of the output projection layer is set to 1 for the mask
prediction, followed by a sigmoid activate function. Note
that the attention locations and weights for each instance are
different even at the same feature point, so each instance has
a particular preference for where to focus in the feature map.

Shared Mask Features. To get high-quality masks, our
method generates pixel-wise masks on a full-image feature
map, not a cropped region with fixed size (e.g., 14 × 14
in Mask R-CNN (He et al. 2017)). As shown in Fig. 2,
the mask encoder branch is employed to provide the high-
resolution feature map Fmask ∈ RHmask×Wmask×Cmask

that the instance-aware transformers take as input to pre-
dict the per-instance mask. The mask encoder branch is
connected to aggregated feature P3, and thus, its output
resolution is 1/8 of the input image. It consists of a de-
formable transformer encoder layer, whose feature dimen-
sion is 256 (same as the feature channels of P3). Afterward,
a linear projection layer with layer normalization (LN) is
employed to reduce the feature dimension from 256 to 8
(i.e., Cmask = 8). As described above, the instance-aware
transformer mask head is very compact due to the few chan-
nels of the shared mask feature.

Relative Positional Encodings
As described in (Vaswani et al. 2017), the original positional
encoding in transformer is calculated by sine and cosine
functions of different frequencies:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
(3)

where pos is the absolute position, i is the dimension and
dmodel is the embedding dimension. DETR (Carion et al.
2020) extends the above positional encoding to the 2D case.
Specifically, for both spatial coordinates (x, y) of each em-
bedding in the 2D feature map, DETR independently uses
dmodel/2 sine and cosine functions with different frequen-
cies. Then they are concatenated to get the final dmodel chan-
nel positional encoding.

For our instance-aware transformer encoder, the input is
the sum of the shared mask feature and the absolute posi-
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tional encoding as described above. To further utilize the lo-
cation information of each object query, we propose a new
relative positional encoding, which can be written as:

PE(pos,2i) = sin((pos− posq)/100002i/dmodel)

PE(pos,2i+1) = cos((pos− posq)/100002i/dmodel)
(4)

where posq is the center location of the box predicted by
current object query. Please note that the proposed relative
positional encoding provides a strong cue for predicting the
instance mask. The performance improvement in the abla-
tion study demonstrates its superiority compared to the orig-
inal absolute positional encoding.

Training Loss
In this work, the final outputs of our framework are su-
pervised by three sub-tasks: classification, localization, and
segmentation. We use the same loss functions for classifi-
cation and localization as in (Zhu et al. 2021), and adopt
the Dice Loss (Milletari, Navab, and Ahmadi 2016) and the
binary cross-entropy (BCE) loss for instance segmentation.
The overall loss function is written as:

L = λclsLcls+λL1LL1+λiouLiou+λdiceLdice+λbceLbce.

Following (Zhu et al. 2021), we set λcls = 2, λL1 = 5 and
λiou = 2. We empirically find λdice = 8 and λbce = 2 work
best for the proposed framework.

Experiments
Dataset and Metrics
We validate our method on COCO benchmark (Lin et al.
2014). COCO 2017 dataset contains 115k images for train-
ing (split train2017), 5k for validation (split val2017)
and 20k for testing (split test-dev), involving 80 ob-
ject categories with instance-level segmentation annotations.
Following the common practice, our models are trained with
split train2017, and all the ablation experiments are eval-
uated on split val2017. Our main results are reported on
the test-dev split for comparisons with state-of-the-art
methods. Consistent with previous methods (He et al. 2017),
the standard mask AP is used to evaluate the performance of
instance segmentation. Moreover, we also report the box AP
to show the object detection performance.

Implementation Details
ImageNet (Deng et al. 2009) pre-trained ResNet (He et al.
2016) is employed as the backbone and multi-scale feature
maps {F l}Ll=1 are extracted without FPN (Lin et al. 2017a).
Unless otherwise noted, the deformable attention (Zhu et al.
2021) has 8 attention heads, and the number of sampling
points is set as 4. The feature channels in the encoder and
decoder are 256, and the hidden dim of FFNs is 1024. We
train our model with Adam optimizer (Kingma and Ba 2015)
with base learning rate of 2.0 × 10−4, momentum of 0.9
and weight decay of 1.0 × 10−4. Models are trained for 50
epochs, and the initial learning rate is decayed at 40th epoch
by a factor of 0.1. Multi-scale training is adopted, where the
shorter side is randomly chosen within [480, 800] and the

Figure 4: Qualitative results of object detection and in-
stance segmentation on COCO val2017 split. The model
is trained on COCO train2017 split with ResNet-50
backbone.

longer side is less or equal to 1333. When testing, the in-
put image is resized to have the shorter side being 800 and
the longer side less or equal 1333. All experiments are con-
ducted on 16 NVIDIA Tesla V100 GPUs with a total batch
size of 32.

Main Results
As shown in Table 1, we compare SOIT with state-of-the-
art instance segmentation methods on COCO test-dev
split. Without bells and whistles, our method achieves the
best performance on object detection and instance segmen-
tation. Compared to the typical two-stage method Mask R-
CNN (He et al. 2017), SOIT with ResNet-50 significantly
improves box AP and mask AP by 7.8% and 5.0%, respec-
tively. The performance of SOIT is also better than the well-
tuned HTC (Chen et al. 2019a) by 4.2% box AP and 2.8%
mask AP, which is an improved version of Mask R-CNN
presenting interleaved execution and complicated mask in-
formation flow. CondInst (Tian, Shen, and Chen 2020) is
the latest state-of-the-art one-stage instance segmentation
approach based on dynamic convolutions. SOIT with the
same ResNet-50 backbone outperforms CondInst with 4.7%
mask AP. With a stronger backbone, ResNet-101, SOIT still
outperforms the state-of-the-art methods over 2.0% mask
AP. Benefiting from the RoI-free scheme, our method with
ResNet-50 surpasses the recent SOLQ (Dong et al. 2021)
and QueryInst (Fang et al. 2021) by 2.8% and 1.9%, re-
spectively. We also apply SOIT to the recent Swin Trans-
former backbone (Liu et al. 2021) without further modifica-
tion, building a pure transformer-based instance segmenta-
tion framework. Our model with Swin-L can achieve 56.9%
and 49.2% in box AP and mask AP, respectively.

We provide some qualitative results of SOIT with ResNet-
50 backbone on COCO val2017 split, as shown in Fig 4.
Our masks are generally of high quality (e.g., preserving
more details at object boundaries), and the detected boxes
are precise.
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Method Backbone RoI-free NMS-free AP AP50 AP75 APS APM APL APbox

Mask R-CNN (He et al. 2017)

ResNet-50

37.5 59.3 40.2 21.1 39.6 48.3 41.3
CMR (Cai and Vasconcelos 2019) 38.8 60.4 42.0 19.4 40.9 53.9 44.5
HTC (Chen et al. 2019a) 39.7 61.4 43.1 22.6 42.2 50.6 44.9
BlendMask (Chen et al. 2020a) 37.0 58.9 39.7 17.3 39.4 52.5 42.7
CondInst (Tian, Shen, and Chen 2020) X 37.8 59.2 40.4 18.2 40.3 52.7 41.9
SOLOv2 (Wang et al. 2020c) X 38.2 59.3 40.9 16.0 41.2 55.4 40.4
DSC (Ding et al. 2021) 40.5 61.8 44.1 - - - 46.0
RefineMask (Zhang et al. 2021) 40.2 - - - - - -
SCNet (Vu, Kang, and Yoo 2021) 40.2 62.3 43.4 22.4 42.8 53.4 45.0
SOLQ (Dong et al. 2021) X 39.7 - - 21.5 42.5 53.1 47.8
QueryInst (Fang et al. 2021) X 40.6 63.0 44.0 23.4 42.5 52.8 45.6
SOIT (Ours) X X 42.5 65.3 46.0 23.8 45.4 55.7 49.1
Mask R-CNN (He et al. 2017)

ResNet-101

38.8 60.9 41.9 21.8 41.4 50.5 43.1
CMR (Cai and Vasconcelos 2019) 39.9 61.6 43.3 19.8 42.1 55.7 45.7
HTC (Chen et al. 2019a) 40.7 62.7 44.2 23.1 43.4 52.7 46.2
MEInst (Zhang et al. 2020) 33.9 56.2 35.4 19.8 36.1 42.3 -
BlendMask (Chen et al. 2020a) 39.6 61.6 42.6 22.4 42.2 51.4 44.8
CondInst (Tian, Shen, and Chen 2020) X 39.1 60.9 42.0 21.5 41.7 50.9 43.3
SOLOv2 (Wang et al. 2020c) X 39.7 60.7 42.9 17.3 42.9 57.4 42.6
DCT-Mask (Shen et al. 2021) 40.1 61.2 43.6 22.7 42.7 51.8 -
DSC (Ding et al. 2021) 40.9 62.5 44.5 - - - 46.7
RefineMask (Zhang et al. 2021) 41.2 - - - - - -
SCNet (Vu, Kang, and Yoo 2021) 41.3 63.9 44.8 22.7 44.1 55.2 46.4
SOLQ (Dong et al. 2021) X 40.9 - - 22.5 43.8 54.6 48.7
QueryInst (Fang et al. 2021) X 42.8 65.6 46.7 24.6 45.0 55.5 48.1
SOIT (Ours) X X 43.4 66.3 46.9 23.9 46.4 57.4 50.0
SOLQ (Dong et al. 2021)

Swin-L
X 46.7 - - 29.2 50.1 60.9 56.5

QueryInst (Fang et al. 2021) X 49.1 74.2 53.8 31.5 51.8 63.2 56.1
SOIT (Ours) X X 49.2 74.3 53.5 30.2 52.7 65.2 56.9

Table 1: Comparisons with state-of-the-art instance segmentation methods on the COCO test-dev. “CMR” is short for
“Cascade Mask RCNN”. APbox denotes box AP, and AP without superscript denotes mask AP. All models are trained with
multi-scale and tested with single scale.

Ablation Study
Number of Heads in Instance-Aware Transformers.
The multi-head attention mechanism is of great importance
for the transformer. In this section, we discuss the effect of
this design on our instance-aware transformer encoder. We
vary the number of heads of multi-head attention, and the
performance of instance segmentation is shown in Table 2.
We find that using only one head of attention already has a
moderate capacity and leads to a qualified performance with
37.8% mask AP. The performance of instance segmentation
improves gradually with the increased number of attention
heads in the instance-aware transformer. Besides, when the
number of attention heads increases up to 8, segmentation
performance does not improve further. We assume there are
two reasons for this saturation in performance. One is that
4 different spaces of representation are sufficient for distin-
guishing various instances. The other reason is that predict-
ing too many parameters (873 parameters) makes optimiz-
ing the mask branch difficult. Therefore, we set the number
of attention heads in the instance-aware transformer to 4 by
default in the following experiments.

Architectures of Mask Encoder. We then investigate the
impact of the proposed mask encoder with different archi-
tectures. We first changeCmask, i.e., the number of channels

Heads AP AP50 AP75 APS APM APL

1 37.8 61.6 39.5 18.1 41.1 57.6
2 38.1 61.9 39.9 18.5 41.3 58.1
4 38.4 62.0 40.1 18.6 41.7 58.4
8 38.3 62.0 40.1 18.4 41.9 58.4

Table 2: Instance segmentation results on COCO val2017
split with different number of heads of multi-head atten-
tion in instance-aware transformer. The input feature chan-
nel (i.e., Cmask) is fixed to 8 by default.

of the mask encoder’s output feature maps (i.e., Fmask). As
shown in Table 3a, the performance drops 0.8% in mask AP
(from 38.4% to 37.6%) when the channel of Fmask shrinks
from 8 to 4. In this case, the multi-heads attention only has
a single-channel map in each attention head. It is hard for
the attention module to obtain sufficient information on each
instance. Besides, the performance keeps almost the same
when Cmask increases from 8 to 16. Thus, we fix the mask
feature channels to 8 in all other experiments by default. As
the Cmask = 8 and the number of attention heads is 4, there
are a total of 441 parameters predicted by the mask branch
for constructing the instance-aware transformer.
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Channels AP AP50 AP75 APS APM APL

4 37.6 61.8 39.2 18.2 40.8 57.5
8 38.4 62.0 40.1 18.6 41.7 58.4

16 38.3 62.0 40.0 18.5 41.7 58.3

(a) Vary the output channels of the mask encoder.

Layers AP AP50 AP75 APS APM APL

0 37.9 61.4 39.4 18.0 40.9 57.6
1 38.4 62.0 40.1 18.6 41.7 58.4
2 38.4 61.9 40.1 18.5 41.6 58.6

(b) Vary the layers of stacked mask encoder.

Table 3: Instance segmentation results on COCO val2017 split with different architectures of the mask encoder. “Channels”:
the number of channels of the mask encoder’s output. “Layers”: the number of stacked mask encoder.

PE AP AP50 AP75 APS APM APL

None 37.9 61.4 39.6 18.3 41.2 58.0
Abs 38.4 62.0 40.1 18.6 41.7 58.4
Rel 39.2 62.9 41.3 19.7 43.0 59.2

Table 4: Impact of the positional encoding in instance-aware
transformer on COCO val2017 split. “None” means re-
moving positional encoding, “Abs” represents the traditional
absolute positional encoding and “Rel” represents the pro-
posed relative positional encoding.

To demonstrate the effectiveness of the mask encoder, we
directly connect a linear projection (output channel is 8) with
layer normalization to the feature map P3 instead of the pro-
posed mask encoder. As shown in Table 3b, the segmenta-
tion performance drops 0.5% (from 38.4% to 37.9%). This
result proves the importance of the mask encoder, which
generates the specialized mask feature and decouples it from
the generic image context feature. Moreover, when more
mask encoders are stacked, no noticeable improvement of
performance is obtained, as shown in Table 3b (3rd row).
This indicates that one mask encoder is sufficient, resulting
in a compact instance segmentation model.

Relative Positional Encodings. We further investigate the
effect of our proposed relative positional encodings for
the instance-aware transformers. Abs is the absolute posi-
tional encodings used in many transformer-based architec-
tures (Carion et al. 2020; Zhu et al. 2021). Rel is the pro-
posed relative positional encodings in Equation (4), which
employ the box center coordinates of object queries to ob-
tain the instance-aware location information. As shown in
Table 4 (1st row), the performance of our model drops 0.5%
in mask AP after removing absolute positional encodings to
the mask features. The instance-aware transformer cannot
distinguish the instances with similar appearances at differ-
ent locations without the positional information. As shown
in Table 4 (3rd row), the relative positional encodings im-
prove the segmentation performance of our SOIT by 0.8%
compared to the absolute positional encodings. We argue
that the relative positional encoding is highly correlated with
the corresponding object query and provides a strong loca-
tion cue, for instance mask prediction. Therefore, in the se-
quel, we use the proposed relative positional encoding for
all the following experiments.

Stages Enabling Mask Loss. Ultimately, we ablate the
impact of the number of decoder stages enabling mask loss

Stages AP AP50 AP75 APbox APbox
50 APbox

75

0 - - - 46.8 66.3 50.7
1 39.2 62.9 41.3 47.3 66.2 52.0
2 40.7 63.6 43.4 47.6 66.4 52.5
3 41.2 63.9 44.1 48.1 66.5 52.8
4 41.7 64.2 44.5 48.2 66.4 53.0
5 42.0 64.5 44.9 48.5 66.7 53.2
6 42.2 64.6 45.3 48.9 67.0 53.4

Table 5: Ablation of the number of decode stages enabling
mask loss on COCO val2017 split. Stages isK means that
enable the last K decoder layers with mask loss. 0 stages
represents a object detection model without any mask su-
pervision. APbox denotes box AP.

in training. The classification and localization loss are en-
abled in all decoder stages in these ablations by default. Note
that we throw away all the predicted mask parameters in the
intermediate stages when the training is completed and only
use the final stage predictions for inference. As shown in Ta-
ble 5, enabling more decoder layers with mask loss can im-
prove both instance segmentation and object detection per-
formance consistently. The experimental results show that
adding mask loss on all decoders can improve 3.0% mask
AP and 1.6% box AP compared to enabling mask loss on
only one decoder, respectively. The gain of detection per-
formance is mainly derived from the joint training with in-
stance segmentation. As shown in Table 5 (last row), the de-
tection performance of the SOIT surpasses the pure object
detector by 2.1% (from 46.8% to 48.9%) with all decoder
stages enabling mask loss. This indicates the advantages of
our framework, which learns a unified query embedding to
perform instance segmentation and object detection simul-
taneously.

Conclusion
In this paper, we present a transformer-based instance seg-
mentation approach, termed SOIT. It reformulates instance
segmentation as a direct set prediction problem and builds
a fully end-to-end framework. SOIT is naturally RoI-free
and NMS-free, avoiding many hand-crafted operations in-
volved in previous instance segmentation methods. Exten-
sive experiments on the MS COCO dataset show that SOIT
achieves state-of-the-art performance in instance segmenta-
tion as well as object detection. We hope that our simple
end-to-end framework could serve as a strong baseline for
instance-level perception.
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